Добавляем резервный аккумуляторный источник питания в небольшие электронные устройства. Автоподзаряд аккумулятора резервного питания

Источником аварийного питания во многих объектах является аккумуляторная батарея. Для длительного использования батареи ее необходимо регулярно заряжать, сделать это можно с помощью предложенной схемы.

Устройство работает от сетевого напряжения 220В. Во время зарядки аккумулятора тиристор Т1 открыт. При этом напряжение на С1 (R4) ниже порогового напряжения 12-14В стабилитрона Д7, и тиристор Т2 закрыт. Когда напряжение батареи приближается к значению полного заряда, отпирается тиристор Т2, и через делитель напряжения R6-R7 на управляющий электрод Т1 подается запирающее напряжение отрицательной полярности. Т1 закрывается, батарея разряжается и переходит в режим дозарядки малым током, определяемым величиной сопротивления резисторов R1 R2 R3.

Величину зарядного тока можно контролировать амперметром. Повторный заряд батареи начинается автоматически, когда ее напряжение упадет настолько, что тиристор Т2 закроется.

При первом включении схему следует настроить. Это достигается изменением сопротивления R4 до такого значения пока в цепи батареи не появится ток и не откроется тиристор Т1.

В дальнейшем схема в подстройке не нуждается и работает автоматически. Амперметр необходим только для контроля тока подзарядки в момент настройки, после чего его можно заменить на перемычку.

Литература - Бастанов В.Г. 300 практических советов. Москва: Издательство «Московский рабочий», 1982

  • Похожие статьи
  • 20.09.2014

    Радиоволны излучаемые антенной представляют собой электромагнитные и магнитные поля. Скорость распространения радиоволн в пространстве 300000 км/с. Длина волны λ (м) и частота f (МГц) связаны между собой соотношением:λ=300/f. Такое соотношение удобно для практики, поэтому радиовещательные станции работают в диапазонах: километровых — 30…300кГц гектаметровых — 300кГц…3МГц декаметровых — 3…30МГц метровых — …

  • 28.09.2014

    На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, …

  • 04.10.2014

    Свинцово-кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в их находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку …

  • Обеспечение надежности и бесперебойности электроснабжения имеет первостепенное значение. И, естественно, одним из основных средств решения этой задачи есть автоматизация включения резервного электропитания (АВР). Схемы АВР широко применяются в энергосистемах и распределительных электросетях всех напряжений.

    Ниже даются описания трех вариантов выполнения АВР в простых электросетях напряжением до 1000 В, из который больше всего часто придется иметь дело электромонтерам.

    Схема АВР в двухпроводных сетях напряжением до 220 В (рис.1) рассчитанная на наличие двух линий, одна из которых является рабочей, другая - резервной, и применяется как в однофазных сетях переменного тока, так и в двухпроводных сетях постоянного тока.

    Практическое применение системы двух линий из АВР распространяется на ответственные электросети с небольшой подключенной мощностью токоприемников, как, например, аварийное освещение, цепи управления и сигнализации и др. В случаях питания исключительно ламп накаливания при равенстве напряжений рабочей и резервной линий схема может быть использована совместно для переменного и постоянного токов, например с питанием рабочей линии от источника переменного, а резервного - от источника постоянного тока.

    Самая простая схема АВР осуществляется с помощью реле контроля наличия напряжения РКН, контакты которого непосредственно включены в линии рабочего и резервного питания. В двухпроводных сетях переменного тока 220 В в качестве реле РКН может быть применено реле типа ЭП -41/33Б. Контакты этого реле рассчитаны на рабочий ток до 20 А, что при 220 В отвечает мощности 4,4 кВт, достаточной для большинства небольших однофазных установок переменного тока. При постоянном току необходимо выбрать соответствующее реле другого типу, имея при этом в виду, что размыкать цепь при постоянном току значительно труднее, чем при переменном. Следовательно, даже при сравнительно небольших токах придется применить не реле, а контактор с дугогасящими камерами.

    Действие схемы показано на мал.1. Реле РКН получает питание от рабочей линии и имеет запирающие контакты в той же линии, что и размыкающие линии резервного питания. Поэтому при наличии питания на рабочей линии реле РКН используется и питание нагрузки осуществляется от нее; резервная линия (независимо от того, есть на ней напряжение или нет) от нагрузки отсоединена. При отсутствии напряжения в рабочей линии происходит переключение контактов реле РКН, то есть размыкаются контакты в цепи питания от рабочей линии и защелкивающиеся в цепи питания резервной.

    Рис 1. Схема АВР в двухпроводных сетях.

    При возобновлении напряжения на рабочей линии происходит обратное переключение.

    Схема АВР в трехфазных сетях переменного тока к 380/220В без контроля обрыва фаз (рис. 2). Как и в предыдущем случае, схема рассчитана на наличие двух линий, из которых одна рабочая, другая - резервная.

    Вообще говоря, схемы АВР в трехфазных сетях переменного тока с электросиловой или смешанной электросиловой и осветительным нагрузками требуют контроля обрыва фаз. Это объясняется тем, что трехфазные электродвигатели не могут работать под нагрузкой на двух фазах: они остановятся, и их обмотки могут сгореть (предохранители в этом случае вовремя не перегорают). Однако в некоторых, но достаточно распространенных случаях необходимость контроля отпадает. Это имеет место при защите линий автоматическими выключателями, которые отключают все три фазы одновременно при любом повреждении в электросети, которая защищается, без предохранителей, и выполнении линий питания трехжильными или четырехжильными кабелями, в которых обрыв одной фазы маловероятен. Отсутствие контроля обрыва фаз позволяет существенно упростить схему АВР.

    В противовес описанной выше схеме для двухпроводных сетей, где переключения в цепях рабочей и резервной линий осуществлялись непосредственно контактами реле, в схеме АВР для сетей трехфазного переменного тока как исполнительные органы используются магнитные или пускатели трехполюсные контакторы. Это позволяет существенно расширить область применения схемы, потому что номинальные рабочие токи для магнитных пускателей серии П лежат в пределах от 15 до 135 А, а трехполюсных контакторов (типов КТЭ и КТВ) - от 75 до 600 А.

    Режимы работы схемы. В рассмотренной схеме каждое из четырех возможных положений переключателя режимов ПП (пакетный переключатель) определяет один из четырех режимов работы схемы.

    Положение АВР-1: линия №1 является рабочей, линия №2 - резервной с автоматическим включением резерва.

    Положение АВР-2: линия №2 рабочая, линия №1 резервная с автоматическим включением резерва.

    Положение Мест, (местное управление) : переключение линий происходит пакетными выключателями 1В и 2В.

    Положение 0 (нуль) : обе линии отключенные от цепи управления контакторами 1К и 2К и лишенные питания.

    Прежде чем перейти к подробному рассмотрению схемы, необходимо обратить внимание на то, что в цепи управления обеими линиями введенные контакты того же переключателя Пп. Потому его контакты, которые отвечают потому или другому положению, в цепях катушек 1К и 2К обоих контакторов замкнуты одновременно. Так, например, при замыкании контакта переключателя 1-7 Линии №1 одновременно оказывается замкнутым контакт 11-13 Линии №2, на что указывают черные кружки на пунктирных линиях АВР-1.

    Рис. 2. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В без контроля обрыва фаз.

    Но контакты 1-3 и соответственно 11-17, а также контакты 1-5 и 11-15 разомкнуты. Контакты 1-3 и 11-17 замкнутся в положении ЛВР-2, при этом контакты 1-7, 11-13, 1-5 и 11-15 будут разомкнуты. Контакты 1-5 и 11-15 замкнуты в положении Мест и, наконец, в положении 0 все контакты разомкнуты, на что указывает отсутствие черных кружков на пунктирной линии 0.

    Автоматическая работа схемы. В положении АВР-1, катушка контактора 1К питательного Линии №1 получает питание по цепи 1-7-0. При этом главные контакты 1К замкнуты и нагрузку питает Линия №1, тем временем катушка контактора 2К Линии №2 (цепь которой разомкнута блоком-контактом 1К) лишена питания. Следовательно, Линия №2 отключена от шин и является резервной.

    Допустимо теперь, что Линия №1 осталась без напряжения. В этом случае контактор 1К отпустит, его главные контакты отсоединят Линию №1 от шин, а блок-контакт замкнет цепь катушки 2К (11-13- 17-0). Если на Линии №2 есть напряжение, то контактор 2К включится и питание шин возобновится. Другими словами, состоится АВР, то есть автоматическое включение резерва.

    При возобновлении питания по Линии №1 создаются обратные переключения, то есть автоматически включится контактор 1К, а потом отключится контактор 2К, потому что при включении контактора 1К его блок-контакт 13-17 размыкает цепь катушки 2К.

    Таким образом, рассмотренная схема относится к категории схем из самовозвратом.

    Необходимо подчеркнуть, что такое самовозвратом не всегда допустимая, особенно в сложных сетях высокого напряжения. В этих случаях схема возвращается в исходное положение после ряда предыдущих операций, осуществляемых вручную или с помощью телемеханики.

    Если переключатель ПП занимает положение АВР-2, то рабочей является Линия №2, а резервная - Линия №1. Катушка контактора 2К включена по цепи 11-17-0, тем временем как катушка контактора К1 отключена блоком-контактом 2К 3-7. При исчезновении напряжения на Линии №2 автоматически включается Линия №1 аналогично описанному выше.

    Работа схемы на местном (ремонтному, «ручному») управлении. В положении переключателя Мест цепи АВР разомкнуты. Контактор 1К руководствуется выключателем 1В по цепи 1-5-7-0, контактор 2К. - выключателем 2В по цепи 11-15-17-0. Этот режим предвиден для испытания и проверок действия всего устройства потом или ремонту налаживания, а также на случай неисправности в цепях автоматического управления.

    Наконец, положение переключателя 0 отвечает полному отключению как главных цепей, так и цепей управления, что необходимо при ремонтных работах.

    Предупредительная сигнализация. Действие АВР возобновляет питание электроустановки по резервной линии, но вместе с тем свидетельствует о нарушении нормального режима работы и необходимости принять меры к устранению причины, что вызывало действие АВР. Поэтому нужно немедленное оповещение дежурного персонала пункта, в ведении которого находится электроустановка, о переключении. Для оповещения служит предупредительная сигнализация, которая особенно необходима для полностью автоматизированных установок, которые работают без дежурного персонала, где ненормальность в питании, которое вызывало действие АВР, может оставаться незамеченной очень долгое время.

    Для предупредительной сигнализации используется третий полюс переключателя режимов ПП, через который включенные блоки-контакты 1К и 2К. Схема работает таким способом. При нормальном питании шин цепь предупредительной сигнализации разомкнута.

    При автоматическом переключении введений в положение переключателя ПП АВР-1 Линия №2 включится, блок-контакт 2К замкнется, благодаря чему на дежурный пункт подается предупредительный сигнал. В положении переключателя АВР-2 при включении Линии №1 цепь предупредительной сигнализации защелкивающаяся блоком-контактом 1К.

    Аварийная сигнализация. Оповещение о полном отключении установки выполняет аварийная сигнализация. Для аварийной сигнализации, которая действует при отсутствии напряжения на обеих линиях, используется специальная цепь с включенными последовательно блоками-контактами контакторов обеих линий. Если хотя бы одна из линий находится в рабочем состоянии, то цепь аварийной сигнализации прервана соответствующим блоком-контактом 1К или 2К. При исчезновении напряжения на обеих линиях оба блоки-контакта окажутся замкнутыми и по цепи аварийной сигнализации будет поданный сигнал на дежурный пункт.

    Важное замечание. Рассмотренная схема, так же как рассмотрена ниже схема с контролем обрыва фаз, допускает возможность одновременного питания шин по двум линиям в течение очень короткого времени, необходимого для процесса переключения. Хотя это время вычисляется долями секунды, однако для обеих линий должны быть соблюденные условия рівнобіжної работы (тот же вид тока - постоянный или переменный, равенство напруг, соблюдение фаз).

    Схема АВР в трехфазных сетях переменного тока к 380/220В с контролем обрыва фаз (рис. 3) применяется в случаях, когда возможен обрыв одной или двух фаз без отключения всей питательной линии.

    Наиболее часто это возникает в электросетях, защищенных плавкими предохранителями, когда короткое замыкание или перегрузка вызывает перегорание предохранителя лишь в одной или двух фазах. Аналогичное явление возможно при обрыве одного или двух проводов в результате ветра, гололеда, неосторожность обслуживающего персонала и тому подобное

    Как и в схеме на рис. 2, шины электроустановки получают независимое одно от одного питания по двум трехфазным линиям, одна из которых является рабочей, а вторая резервной. На введениях линий устанавливаются магнитные пускатели или трехполюсные контакторы.

    Выбор режима осуществляется с помощью переключателя режимов ПП, что выполняет той же функции, что и в описанной выше схеме.

    Реле контроля обрыва фаз. Для контроля обрыва фаз служит специальное реле типа Е-511 Киевского завода реле и автоматики. Оно состоит из двух электромагнитных реле напряжения: основного реле 2ПП для линии №1 (4ПП для линии №1) и вспомогательного реле 1ПП (3ПП), а также содержит конденсаторы C1, С2 и активные опоры R1 и R2. Как видно из схемы, конденсатор C1 и сопротивление R1 соединены последовательно и включены между фазами А1 и В1 линии №1 (А2, В2 линии №2). Конденсатор С2 и сопротивление R2 также соединены последовательно и присоединены между фазами В1 и С1 (У2, С2).

    Величины сопротивлений и конденсаторов подобраны таким образом, что при отсутствии обрыва фаз (нормальный режим) между точками X1 и Y1 для реле линии №1 (Х2 и Y2 для реле линии №2) напряжение равняется нулю. Следовательно, реле 1ПП (3ПП, проходит между точками X1 и Y1 (X2 и Y2), отпущенный и его контакт в цепи реле 2ПП (4ПП) замкнут: реле 2ПП (4ПП) притянуто.

    При обрыве одной из фаз симметрия напряжений нарушается. Вследствие этого между точками X1 и Y1 (Х2 и Y2) возникает разница потенциалов, достаточная для срабатывания реле 1ПП (3ПП). При срабатывании реле 1ПП (3ПП) его контакт размыкает цепь катушки реле 2ПП (4ПП), реле отпускает, что, как будет объяснено ниже, приводит к действию АВР.

    Рис. 3. Схема АВР в трехфазных сетях переменного тока напряжением к 380/220В с контролем обрыва фаз. Пунктирными линиями обведенные элементы, которые входят в состав реле типа Е-511.

    При обрыве двух фаз, например А1 и В1, реле 2ПП также отпускает, потому что оно остается присоединенным только к одной фазе С1. При обрыве фаз У1 и С1 реле 2ПП отпускает, потому что остается присоединенным только на одной фазе А1. И, наконец, при обрыве фаз А1 и С1 реле 2ПП полностью избавляется от питания.

    Взаимодействие реле обрыва фаз с схемой АВР. Для приведения схемы в рабочее состояние необходимо переключатель режимов ПП установить в положение АВР-1, а потом включить рубильник 1P. При этом реле 2ПП сработает и включит катушку контактора 1К: на шины будет поданное напряжение от линии №1. Потом нужно включить рубильник 2Р. При включении рубильника 2Р контактор 2К не включится, потому что цепь его катушки уже разомкнута блоком-контактом 11-13 включенного ранее контактора 1К, но реле 4ПП сработает и замкнет свой контакт 15-13.

    При перегорании предохранителей и обрыве проводов в одной, двух или трех фазах линий № 1 реле 2ПП отпустит и контактом 1-3 отключит контактор 1К, после чего через блок-контакт, который замкнулся, 1К 11-13 включится контактор 2К: питание шин возобновится от линии №2.

    При возобновлении нормального питания по линии №1 схема автоматически вернется в первобытное положение: включится контактор 1КО, после чего отключится контактор 2К.

    В положении переключателя ПП АВР-2 будут происходить аналогичные переключения.

    Необходимо особенно подчеркнуть следующее:

    а) В процессе возобновления питания после действия АВР обе линии кратковременно оказываются соединенными через шины.

    б) При переключении переключателя ПП из положения АВР-1 (АВР-2) в положение АВР-2 (АВР-1) возможный перерыв питания шин на время, необходимое для включения контактора 2К (1К).

    в) Прежде чем переводить схему на местное управление, необходимо включить выключатель 1В или 2В в зависимости от того, какая линия должна будет продолжать питать шины.

    Причины применения в схеме реле типа Е-511. Реле типа Е-511, как видно из приведенного выше описания, являет собой сравнительно сложное устройство, и, естественно, возникает вопрос: или нельзя контролировать обрыв фаз более простыми средствами. Ответ дает рис. 4. На нем показано, что в системах трехфазного переменного тока при наличии присоединенных к сети электродвигателей обрыв одной фазы не вызывает полного отсутствия напряжения в этой фазе со стороны нагрузки. Некоторая часть напряжения в оборванной фазе Uост будет поддерживаться через обмотки неотключенного электродвигателя, и она достаточно большая, чтобы удерживать притянутым якорь простого промежуточного реле (какое с целью осуществления контроля за обрывом фазы должно было бы отпустить). Выходит, контроль даже с помощью трех промежуточных реле не достигает цели.

    Рис. 4. Недопустимость контроля обрыва фаз тремя промежуточными реле.

    а - при соединении обмоток электродвигателя в звезду; бы - при соединении в треугольник.

    Надежный контроль обеспечивается или тремя реле минимального напряжения, значительно более чувственными, чем промежуточные реле, или специальным реле, например типа Е-511.

    Могла сработать только тогда, когда пропадало напряжение основного источника, от понижение или повышения напряжения защитить нагрузку не могло. В новом варианте устройства были исправлены эти недочёты, а именно:

    1. Устройство не переключит нагрузку на резервный источник питания при наличии даже пониженного напряжения основного источника.
    2. Устройство не способно работать при напряжении менее 6-ти вольт.

      Устройство не защитит нагрузку при повышении напряжения сверх допустимой величины.

    Новый вариант устройства обладает значительно улучшенными характеристиками.

      Способно работать при входном напряжении основного источника от 6 до 15 в.

      Защита нагрузки от пониженного или повышенного напряжения. Для контроля напряжения основного источника используются два компаратора. При отключении основного источника напряжения, работа устройства аналогична его предыдущей версии.

      Ток потребляемый нагрузкой ограничен только максимальным током, который могут выдержать контакты применяемого электромагнитного реле.

    Питается устройство от резервного источника питания на 12 в и потребляет ток около 100 ма, в случае если напряжение основного источника меньше 12-ти вольт, нужно применить стабилизатор и включить его в разрыв показанный на схеме, а также установить пороги срабатывания защиты построечными резисторами.

    Работа устройства

    Напряжение основного источника поступает на резисторы R6 и R12 с которых напряжение поступает на входы компараторов, где сравнивается с напряжением поступающим со стабилизатора VR1. Отдельный стабилизатор VR1 применён для того, чтобы при изменении величины напряжения резервного источника питания не менялись пороги срабатывания защиты. Кратко опишу для чего предназначены эти подстроечные резисторы. Резистор R12 отвечает за срабатывание защиты при падении напряжения ниже минимального порога, который этим резистором выставляется. В моём случае этот порог 10.5 вольт и для того, чтобы его выставить, нужно при входном напряжении 10.5 вольт с помощью этого резистора выставить на выводе 7 компаратора напряжение 1.3в, что ниже порога срабатывания компаратора, так как на 6 ноге микросхемы напряжение 1.65 вольта, сразу же сработает защита. Резистор R6 отвечает за срабатывание защиты в случае критического повышения напряжения основного источника. В моём случае величина максимального напряжения установлена на уровне 13 вольт. При этом напряжении резистором R6 необходимо выставить на 5-й ноге микросхемы напряжение 4 вольта, что приведёт к срабатыванию защиты и переключению нагрузки на резервный источник. Благодаря этим резисторам защита срабатывает при понижении напряжения до 10.5 вольт, или повышении до 13.

    Самой интересной частью схемы является узел собранный на микросхемах DD1 и DD2. Он собственно и является схемой защиты. Два входа этого узла подключены к компараторам, но для того, чтобы на выводе 8 микросхемы DD1 появился уровень логической 1 и сработала защита должны быть созданы определённые условия. Данный узел интересен ещё и тем, что логическая единица на выходе 8 DD1.1 появится при наличии одинаковых логических состояний на входах, либо два 0 , либо две 1. Если на одном входе будет 1, а на другом 0, то защита не сработает.

    Работает схема защиты следующим образом. При нормальном входном напряжении основного источника работает только компаратор DA1.2, так как напряжение выше минимального порога отключения и следовательно открытый выходной транзистора компаратора DA1.2 замыкает выводы 4 и 5 элемента DD2.4 на массу, что аналогично состоянию логического 0, а на входах 1 и 2 элемента DD2.3 действует напряжение около 4.5 - 5 вольт, что аналогично состоянию логической 1, так как напряжение не достигает 13 вольт и компаратор DA1.1 не работает. При таком условии защита не сработает. При повышении напряжения основного источника до 13 вольт начинает работать компаратор DA1.1, открывается выходной транзистор и замыкая входы 1 и 2 DD2.3 на массу принудительно создаёт уровень логического 0, тем самым на обоих входах принудительно появляется уровень логического 0 и срабатывает защита. Если напряжение упало ниже минимального порога, то напряжение подводимое к 7-й ноге компаратора падает до уровня ниже 1.65 вольта, выходной транзистор закроется и перестанет замыкать входы 4 и 5 элемента DD2.4 на массу, что приведёт к установлению на входах 4 и 5 напряжения 4.5 - 5 вольт(уровень 1). Поскольку DA1.1 уже не работает и DA1.2перестал, то создаётся условие при котором уровень логической единицы появится на обоих входах узла защиты и она сработает. Подробнее работа узла показана в таблице. В таблице показаны логические состояния на всех выводах микросхем.

    Таблица логических состояний элементов узла.

    Налаживание устройства

    Правильно собранное устройство требует минимальной наладки, а именно установки порогов срабатывания защиты. Для этого необходимо вместо основного источника напряжения подключить к устройству регулируемый блок питания и с помощью подстроечных резисторов выставить пороги срабатывания защиты.

    Внешний вид устройства

    Расположение деталей на плате устройства.

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    DD1, DD2 Логическая ИС

    К155ЛА3

    2 В блокнот
    DA1 Компаратор

    LM339-N

    1 В блокнот
    VR1, VR2 Линейный регулятор

    LM7805

    2 В блокнот
    VT1 Биполярный транзистор

    КТ819А

    1 В блокнот
    Rel 1 Реле RTE24012 1 В блокнот
    R1 Резистор

    3.3 кОм

    1 В блокнот
    R2, R3 Резистор

    1 кОм

    2

    Ничего не может быть хуже, чем отключение света зимой. Любой из загородных жителей рано или поздно сталкивается с ситуацией, когда лампочки гаснут, скважинный насос перестаёт качать воду, а батареи системы отопления остывают на глазах. Время задействовать резервное питание!

    Но есть и другое решение проблемы с перебоями электричества: система резервного питания дома или сокращённо – СРП.

    Для правильного выбора такой системы питания необходимо понять, чем она отличается от системы автономного питания (САП).

    Андрей-АА, Новая Москва.

    СРП используется в том случае, когда к основной электросети. При отключении основного питания резервное электропитание «подхватывает» основных потребителей электроэнергии: скважинный насос, котёл, холодильник, компьютер, телевизор и другое электрооборудование . САП – это основная система электропитания для дома, применяемая при полном отсутствии основной электросети.

    Переходим к выбору системы резервного питания. По мнению Андрей-АА , существует 4 основных типа резервного питания для дома.

    • Если сеть отключается ненадолго, но суммарно в месяц более чем на 10 часов, то оптимальной будет система, состоящая из инвертора, зарядного устройства и блока аккумуляторов, заряжаемых от сети.

    Инвертор – это преобразователь постоянного тока от аккумуляторных батарей в переменное однофазное напряжение 220В, от которого работает оборудование в доме.

    • Если сеть отключают менее чем на 10 часов в месяц, то выгодней система из электрогенератора с двигателем внутреннего сгорания (ДВС), оборудованного системой автоматического пуска.
    • Если сеть отключают часто и надолго, или когда напряжение в сети слишком низкое, то оптимальной является система, состоящая из генератора, блока аккумуляторов, зарядного устройства и инвертора.

    По аналогичному принципу строятся и системы автономного электропитания, но к ним предъявляются более высокие требования по мощности.

    • Если требуемую мощность можно ограничить 1-1,5 кВт, то в качестве резервной системы питания можно использовать автомобиль с подключённым к нему инвертором.

    Остановимся подробнее на третьем варианте. Пользователь с ником galexy456 предлагает пошаговый план создания бюджетной системы резервного питания для дома.

    1 В электрический щиток заводятся два кабеля из подсобного помещения. Первый кабель необходим, чтобы подать электричество на инвертор. Второй – чтобы передать электричество от инвертора в дом.

    galexy456

    У меня на улице смонтирован маленький щиток, в котором реализована схема автоматического ввода резерва, или сокращённо АВР

    АВР – это автоматический переключатель одной нагрузки на две питающих линии – основную и резервную.

    2 В подсобное помещение ставим инвертор, аккумуляторы и коммутируем все устройства.

    Инверторы бывают двух основных типов – с синусом на выходе (оптимальный вариант) и с так называемым «модифицированным синусом». Если инвертор выдаёт «модифицированный синус», то некоторые приборы при подключении к нему могут выйти из строя из-за высокого уровня гармоник частоты в питании – 150Гц, 250Гц, 350Гц и т.д.

    В случае отключения электричества такая система работает следующим образом. АВР самостоятельно и быстро – так, что приборы не успевают отключиться, переключает питание с основного на резервное.

    Теперь все подключённые энергопотребители продолжают работать от аккумуляторов и инвертора. Если энергоснабжение отсутствует больше 5-6 часов, то, не дожидаясь полного разряда аккумуляторов (от этого сильно сокращается срок их службы), для продолжения бесперебойного питания необходимо вручную завести генератор.

    Существуют системы резервного питания с автоматическим запуском генератора, установленным в отапливаемом подсобном помещении и снабжённом принудительным отводом выхлопных газов. Главный недостаток таких СРП – это их высокая цена.

    galexy456

    После запуска генератора инвертор переводит нагрузку на питание приборов от него и одновременно начинает заряжать аккумуляторы. Таким образом, продлевается время работы системы и экономится моторесурс генератора, т.к. он работает не в постоянном режиме.

    Необходимо помнить, что запускать генератор следует уже после израсходования ёмкости аккумуляторов примерно на 30-60%.

    Любая, даже самая продвинутая и дорогая система резервного питания, в первую очередь, приучает экономить энергоресурсы в доме, т.к. от этого напрямую зависит время работы системы резервного электроснабжения дома.

    Форумчане советуют:

    • заменить все лампочки в доме на энергосберегающие;
    • проложить вторую, резервную линию электросети, к которой, в случае отключения электричества, можно подключить самое необходимое оборудование в доме;
    • как следует утеплить дом, чтобы уменьшить затраты на отопление;
    • при работе резервной системы питания не пользоваться мощными электроприборами: утюгом, электрочайником, пылесосом.

    Андрей-АА

    Включение фена, чайника или утюга на 3-7 минут сильно не разрядит аккумуляторы, но глажку или работу с мощным электроинструментом лучше не допускать.

    Для построения СРП нагрузку в доме можно условно разделить на три части:

    1. Отопление.
    2. Водонагревательные приборы.
    3. Приборы, требующие обязательного резервного питания, а именно:
    • освещение;
    • циркуляционные насосы отопления;
    • скважинный насос и насосная станция;
    • компьютер;
    • холодильник, телевизор, Интернет.

    Также в качестве резервной системы питания можно использовать и автомобиль. Для этого необходимо:

    1. Приобрести инвертор с синусоидальным выходом на 12-220 В мощностью до 2 кВт с защитой от перегрузки по току или по мощности.
    2. Пользователи сайта FORUMHOUSE могут узнать, как самостоятельно сделать систему питания. Вся информация по расчёту собрана в этом дневнике. Автоматический «от А до Я» описан в этой теме.

      А в этом видео рассказывается о том, как инвертор и блок аккумуляторов могут увеличить электрическую мощность в доме.

    В работе электроснабжения коттеджа или загородного дома нередко случаются перебои в электропитании, особенно при большом удалении от мегаполисов. Для обеспечения автономного резервного электроснабжения сегодня предлагается немало эффективных приборов и схем, которые защищают чувствительную к перепадам напряжения бытовую технику и высокотехнологичное оборудование. Несложно представить себе, как чувствуют себя в глубинке хозяева домов в холодное время года при отключении электричества, особенно если на нем работает система автономного отопления и все электроприборы. Чтобы решить эту проблему, стоит установить в доме резервное электроснабжение.

    Способы устранения перебоев в системе подачи электроэнергии

    Выключение линии электропередач несет немало неудобства, и чтобы предотвратить многие проблемы, связанные с отключением электричества, разработано немало вариантов. Специалисты рекомендуют не отказывать себе во всех благах цивилизации, тем более, что ничего не надо изобретать - приборы для резервного электроснабжения дома есть в продаже. Они призваны стать альтернативным источником, который будет обеспечивать электричеством в том объеме, который длительное время будет обеспечивать работу основных электроприборов:

    • охранных и противопожарных систем;
    • принудительную вентиляцию и кондиционирование;
    • запуск твердотопливного котла;
    • насосы для работы водоснабжения и канализации;
    • бытовые электроприборы и другое оборудование.

    Все они не могут работать без электросети, поэтому так важна эффективная схема резервного электроснабжения. У многих загородных построек не всегда гарантируется надежная работа централизованной подачи электричества. Из-за нестабильных характеристик напряжения в сети и частых неплановых отключений электроснабжения на несколько часов, а то и суток, такие системы или чувствительные электроприборы выходят из строя. Загородный дом не должен быть местом решения постоянных проблем, а отличным местом для отдыха. Бесперебойное автономное электроснабжение коттеджа или загородного домовладения должно функционировать стабильно - для работы всех систем жизнеобеспечения.

    Существует несколько вариантов решения проблемы с перебоями электропитания. Например, монтаж автономного резервного источника электроснабжения бесперебойного типа, который можно приобрести вместе с комплектом АКБ (аккумуляторных батарей). Они способны работать автономно некоторое время, в зависимости от их мощности и общей нагрузки.

    Аккумуляторы для резервной системы питания гарантирует бесперебойное снабжение электроэнергией потребителей при длительных отключениях сети или при отсутствии внешних электросетей в удаленных районах.

    Проект резервного электроснабжения

    В проект резервного электроснабжения входит вся документация, где учитывается суммарная мощность всех автономных источников. В систему резервного автономного энергоснабжения загородного дома могут входить и ультрасовременные мини-электростанции, и традиционные источники электричества. Чем больше предполагается источников питания сети, тем больше эффективность. Однако, в такой проект должны быть внесены все показатели мощности генераторов и емкости аккумуляторов.

    Проектная мощность автономного резервного электроснабжения, включая инвертор, рассчитывается так - суммарная мощность работающих устройств плюсуется и умножается на 3. Это вызвано тем, что при запуске техника тянет максимальное количество энергии. Данный показатель учитывается для того, чтобы автономная сеть справлялась с максимально возможной нагрузкой по проектной мощности. В расчеты входят потребности электропитания питаемых схемой приборов:

    • активные нагревательные (плита и электрочайник, лампочки накаливания);
    • индуктивные (холодильник, стиральная машина, телевизор, микроволновка и пр.)

    Их потребляемую мощность суммируют (по таблице или согласно прилагаемой инструкции) и добавляют 20-25% от максимальной величины, на тот случай, если все электроприборы будут работать одновременно. То есть, небольшая дача с минимальным освещением, телевизором и холодильником будет работать по схеме резервного электроснабжения загородного дома при мощности в 2 кВт. Если пользоваться электроинструментом и другими приборами, то прибавляем еще 5-6 кВт.

    Разновидности генераторов

    Сегодня наиболее распространенные автономные резервные источники электроснабжения:

    • станция бесперебойного питания;
    • дизельный генератор;
    • ветряной генератор;
    • бензиновый генератор;
    • инвертор.

    1. Бензиновый электрогенератор считается одним из наиболее эффективных, хотя экономичным его не назовешь. Но для его достаточно при потребляемой мощности порядка 6 кВт. Такие источники энергии уместны там, где нет другой альтернативы, а бензин можно транспортировать без проблем. Например, если загородный дом стоит где-то у трассы или недалеко от бензоколонки.

    Основные преимущества:

    • почти бесшумная работа;
    • хорошо запускается в зимний период;
    • может использоваться как резервный источник.

    2. В большом домовладении потребление энергии довольно больше, особенно если много осветительных приборов и нет другого отопления, кроме электрокаминов. При потребляемой мощности более 6 кВт специалисты рекомендуют приобрести дизельный генератор. Однако тут тоже не обойдется без значительных финансовых вложений. Зато он работает практические в любых условиях.

    3. Ветряной генератор, или в просторечии «ветряк», довольно эффективен, но он может быть установлен в местности, где всегда дуют довольно сильные ветра или тянут по гонному ущелью сезонные сквозняки.

    4. Среди резервных источников электроснабжения нового поколения также нередко используются импульсные конденсаторы (ИКЭ). Прекрасная альтернатива другим системам автономного электропитания, практически инновационное оборудование, которое можно приобрести в готовом виде. Эти портативные модели предлагают улучшенные характеристики бесперебойного питания, которые могут работать автономно или в системе резервного электроснабжения. Они предполагают такой комплект:

    • преобразователь напряжения;
    • реле переключения от сети к аккумулятору;
    • зарядное устройство.

    При подключении к схеме инвертора и автономных аккумуляторных батарей тоже получается мини-электростанция с достаточной мощностью.

    Инверторная система на основе солнечных панелей

    Во всем мире установка на крышу солнечных панелей - не новинка, а привычное дело. Правда стоит это дорого, но инвестиции через время окупаются. Энергия солнца легко преобразуется в переменный ток, однако не в каждом регионе ее достаточно для зарядки мощных батарей и полноценного обеспечения целого жилого дома.

    В летнее время для зарядки аккумулятора для резервного электроснабжения этого может быть вполне достаточно, чтобы накапливать его для работы электросети в вечернее время - в течение нескольких часов. С дрогой стороны, такие панели оправданы, когда есть второй источник автономного электроснабжения, такой как дизельный генератор или инвертор.

    Основное оборудование для работы по схеме получения энергии солнца и преобразования в электричество:

    • солнечные панели, монтируемые на крыше дома или в другом месте;
    • контроллер электрической зарядки;
    • автоматическая защита постоянного/переменного тока;
    • набор аккумуляторных батарей большой емкости;
    • инверторный блок требуемой мощности.

    Получается небольшая домашняя электростанция на территории удаленного больших городов коттеджа. Она может быть дополнена эффективной схемой инверторного типа, где источники энергии призваны эффективно дополнять друг друга.

    Система инверторного типа идеально подходит для обеспечения бесперебойного питания в комплексе с солнечными панелями. Генератор можно отключать, пока работает аккумулятор, заряжаемый от энергии солнца, существенно увеличивая срок его работы.

    Инвертор

    Инвертор - важная составляющая автономного электроснабжения загородного дома или коттеджа. Он дает возможность периодически отключать генератор, чтобы минимизировать расходы топлива. За рубежом, как альтернативная схема обеспечения электричеством, инверторы считаются неотъемлемой частью автономного электропитания. Они универсальны и в том случае, когда нет возможности использовать энергию ветра и солнца.

    Этот аппарат сверхнадежен, функционирует по схеме «включи и забудь». Современные инверторы гарантируют бесперебойное резервное питание не только объектов недвижимости, но и «мобильного» жилья типа вагончики, яхты и авто-трейлеры и пр.

    Для защиты от перебоев электропитания при отключении электричества хорошо справляется инвертор для резервного электроснабжения дома. При напряжении 220В он способен обеспечить снабжение электроэнергией, при минимальных затратах на обслуживание. При этом он предоставляет возможность подключать аккумуляторные батареи, дающие длительное резервное снабжение электричеством. Инверторы относят к линейке наиболее выносливых ИБП для использования домашних электроприборов и чувствительной к перепадам напряжения технике.

    Важные плюсы инвертора:

    • бесшумное функционирование;
    • возможность установки в любом помещении;
    • минимальный уход и обслуживание;
    • высокая надежность;
    • длительная гарантия производителя;
    • отменное качество;
    • стабильная подача электричества;
    • автоматический переход с подключением на схему резервного электроснабжения.

    Инвертор при отключении питания линии электропередач на улице или в поселке сроком до суток - вне конкуренции. Бесперебойное электроснабжение дачи или загородного участка с помощью инвертора при частом отключении выгоднее схемы работы с генератором.

    Совет: Как вариант - генератор плюс инвертор. Тут суммируются их «плюсы» и нивелируются «минусы». Инвертор способен запустить генератор если разряжены аккумуляторы, а потом отключится без необходимости. Генератор шумит, поэтому целесообразно включать его днём, пока находиться на работе или вне дома, а вечером переходить на бесшумный инвертор.

    Особенности работы электрогенератора

    Электрические генераторы работают на разных источниках энергии и вырабатывают:

    • 1-фазный ток - для питания приборов на 220 Вт;
    • 3-фазный ток - на 380 Вт.

    Генератор для резервного электроснабжения очень эффективен, а его мощность может превышать 16 кВт, поэтому вполне подходит для полноценного автономного обеспечения загородного дома. Как вариант - для поддержки бесперебойного питания при частых отключениях электричества.

    Генератор открытого исполнения идет в комплекте с:

    • автоматической системой вентиляции;
    • щитом для обеспечения работы;
    • системой газоотведения выхлопов;
    • модулем автоматической топливной дозаправки;
    • системой автоматического тушения пламени (противопожарные меры).

    Минусы генератора:

    Без смены фильтров, свечей и масла генератор выходит из строя, а также ему требуется:

    • помещение с вентиляцией;
    • канистры для транспортировки дизельного топлива или качественной зимней солярки для работы в холодное время года;
    • фоновый шум и претензии соседей при несогласованных включениях;
    • запах перерабатываемого дизтоплива;
    • потребность в периодическом облуживании, заправке и контроле работы;
    • соблюдение графика замены расходных материалов.

    Хотя этих проблем не так много, чтобы отказаться от возможности его использования, но это нарушает покой и нормальный отдых в загородном доме. И хотя он гарантирует резервное электроснабжение и бесперебойное питание дома, его лучше использовать в комплексе с другими системами и в отсутствие хозяев дома.

    Именно по этой причине дизельные электрогенераторы чаще всего применяется как резервный источник обеспечения электричеством. Сегодня на отечественном рынке предлагается немало разновидностей дизель-генераторов, используемых для резервного электроснабжения загородных домов, а также для отопления и подачи воды. Современные дизельные электростанции идут в модульном и классическом (открытом) варианте.



    Просмотров