Как вырабатывается электрический ток. Трехфазный генератор переменного тока. Альтернативные источники энергии

Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно , представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, - так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс - возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает .


Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом - используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.


Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.


Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым .

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути - постоянному току, существуют целые отрасли металлургии и химической промышленности.


Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.


Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные выдают на электрод постоянное напряжение.


Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).


Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.


А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров - тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и - почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.


Подводная лодка - и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.


И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

Задумывались ли вы когда-нибудь о том, что питает все ? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия - электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, - генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.


Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток , или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках и ГАЗ-69 ставились именно генераторы постоянного тока.

Другой вид электричества - переменный ток - назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?


В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:


При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Завершающая стадия «готовки» правильного тока - регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето - простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем - Ипполит Пикси.

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще - при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.


Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР» , первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия. Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми. Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела. Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей. Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии. В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция. Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания и последующего преобразования выделяемой При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные. Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции. В первом случае предполагается от движения воды, а во втором — в результате деления атомов в специальных реакторах.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления. Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях. Отдельно стоит отметить и отделы которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей. Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами. Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.

Электричества, которое генерирует человек, может хватить для зарядки мобильного телефона. Наши нейроны находятся под постоянным напряжением, а разницу между жизнью и смертью можно определять по электрическим волнам на энцефалограмме.

Лечение скатами

Как-то в Древнем Риме сын богатого архитектора и начинающий врач, Клавдий Гален прогуливался по берегу Средиземного моря. И тут его глазам предстало весьма странное зрелище – навстречу ему шли два жителя близлежащих деревушек, к головам которых были привязаны электрические скаты! Так история описывает первый известный нам случай применения физиотерапии при помощи живого электричества. Метод был взят Галеном на заметку, и столь необычным способом он спасал от боли после ранений гладиаторов, и даже излечил больную спину самого императора Марка Антония, который вскоре после этого назначил его личным врачом.

После этого человек не раз сталкивался с необъяснимым явлением «живого электричества». И опыт не всегда был положительный. Так, однажды, в эпоху великих географических открытий, у берегов Амазонки, европейцы столкнулись с местными электрическими угрями, которые генерировали электрическое напряжение в воде до 550 вольт. Горе было тому, кто случайно попадал в трехметровую зону поражения.

Электричество в каждом

Но впервые наука обратила внимание на электрофизику, а точнее на способность живых организмов вырабатывать электричество, после презабавного случая с лягушачьими лапками в XVIII, которые в один ненастный день где-то в Болонье, начинали дергаться от соприкосновения с железом. Зашедшая в лавку мясника за французским деликатесом, жена болонского профессора Луиджи Гальватти, увидела эту ужасную картину и рассказала мужу о нечистой силе, которая бушует по соседству. Но Гальватти посмотрел на это с научной точки зрения, а спустя 25 лет упорных трудов вышла его книга «Трактаты о силе электричества при мышечном движении». В ней ученый впервые заявил – электричество есть в каждом из нас, а нервы это своеобразные «электропроводы».

Как это работает

Как же человек генерирует электричество? Всему причиной многочисленные биохимические процессы, которые происходят на клеточном уровне. Внутри нашего организма присутствует множество разных химических веществ – кислород, натрий, кальций, калий и многие другие. Их реакции друг с другом и вырабатывают электрическую энергию. Например, в процессе «клетчатого дыхания», когда клетка высвобождает энергию, полученную от воды, углекислого газа и так далее. Она, в свою очередь откладывается в особые химические макроэргические соединения, условно назовем это «хранилищами», и впоследствии используется «по мере необходимости».

Но это всего лишь один из примеров – в нашем теле много химических процессов, которые вырабатывают электричество. Каждый человек – это настоящая электростанция, и ее вполне можно использовать в быту.

Много ли мы производим ватт?

Энергия человека как альтернативный источник питания уже давно перестала быть мечтой фантастов. У людей большие перспективы в качестве генераторов электричества, его можно вырабатывать практически из любого нашего действия. Так, от одного вдоха можно получить 1 Вт, а спокойного шага хватит, чтобы питать лампочку в 60 Вт, да и зарядить телефон будет достаточно. Так что проблему с ресурсами и альтернативными источниками энергии, человек может решить, в буквальном смысле, сам.

Дело за малым – научиться передавать энергию, которую мы столь бесполезно растрачиваем, «куда надо». И у исследователей уже есть предложения на этот счет. Так, активно изучается эффект пьезоэлектричества, который создает напряжение из механического воздействия. На его основе еще в 2011 году австралийские ученые предложили модель компьютера, который заряжался бы от нажатия клавиш. В Корее разрабатывают телефон, который будет заряжаться от разговоров, то есть от звуковых волн, а группа ученых из Georgia Institute of Technology создала действующий прототип «наногенератора» из оксида цинка, который вживляется в человеческое тело и вырабатывает ток от каждого нашего движения.

Но это еще не все, в помощь солнечным батареям в некоторых городах собираются получать энергию из часа пик, точнее от вибраций при ходьбе пешеходов и машин, а потом использовать ее для освещения города. Такую идею предложили лондонские архитекторы из фирмы Facility Architects. По их словам: «В часы пик через вокзал Виктория за 60 минут проходит 34 тысячи человек. Не нужно быть математическим гением, чтобы понять - если удастся применять эту энергию, то может фактически получиться очень полезный источник энергии, которая в настоящее время расходуется впустую». Кстати, японцы уже используют для этого турникеты в Токийском метро, через которые каждый день проходят сотни тысяч человек. Все-таки железные дороги – основные транспортные артерии Страны Восходящего солнца.

«Волны смерти»

Кстати, живое электричество является причиной многих весьма странных явлений, которые наука объяснить до сих пор не в силах. Пожалуй, самое известное из них – «волна смерти», открытие которой повлекло новый этап споров о существовании души и о природе «околосмертного опыта», о котором иногда рассказывают люди, пережившие клиническую смерть.

В 2009 году в одной из американских больниц были сняты энцефолограммы у девяти умирающих людей, которых на тот момент было уже не спасти. Эксперимент проводился, чтобы разрешить давний этический спор о том, когда человека действительно мертв. Результаты были сенсационными – после смерти у всех испытуемых мозг, который уже должен был быть умерщвлён, буквально взрывался – в нем возникали невероятно мощные всплески электрических импульсов, которые никогда не наблюдались у живого человека. Они возникали через две-три минуты после остановки сердца и продолжались примерно три минуты. До этого, подобные эксперименты проводились на крысах, у которых то же самое начиналось спустя минуту после смерти и продолжалось 10 секунд. Подобное явление ученые фаталистично окрестили «волной смерти».

Научное объяснение «волнам смерти» породило множество этических вопросов. По словам одного из экспериментаторов, доктора Лакхмира Чавла, подобные всплески мозговой активности объясняются тем, что от недостатка кислорода нейроны теряют электрический потенциал и разряжаются, испуская импульсы «лавинообразно». «Живые» нейроны постоянно находятся под небольшим отрицательным напряжением – 70 миннивольт, которое удерживается, за счет избавления от положительных ионов, которые остаются снаружи. После смерти – равновесие нарушается, и нейроны быстро меняют полярность с «минуса» на «плюс». Отсюда и «волна смерти».

Если эта теория верна, «волна смерти» на энцефолограмме проводит ту неуловимую черту между жизнью и смертью. После нее работу нейрона восстановить нельзя, организм больше не сможет получать электрические импульсы. Иными словами, дальше врачам уже нет смысла бороться за жизнь человека.

Но, что если посмотреть на проблему с другой стороны. Предположить, что «волна смерти» - последняя попытка мозга дать сердцу электрический разряд, чтобы восстановить его работу. В таком случае, во время «волны смерти» нужно не складывать руки, а напротив использовать этот шанс для спасения жизни. Так утверждает доктор-реаниматолог, Ланс-Беккер из Пенсильванского Университета, указывая на то, что бывали случаи, когда человек «оживал» после «волны», а значит яркий всплеск электрических импульсов в человеческом теле, а потом спад, еще не могут считаться последним порогом.

По десятку раз на дню, включая и выключая свет и пользуясь бытовой техникой, мы даже не задумываемся, откуда берется электричество и какова его природа. Понятно конечно, что по ЛЭП (линия электропередач ) оно поступает от ближайшей электростанции, но это весьма ограниченное представление об окружающем мире. А ведь если выработка электроэнергии во всем мире прекратится хотя бы на пару дней, количество погибших будет измеряться сотнями миллионов.

Как возникает ток?

Из курса физики мы знаем, что:

  • Вся материя состоит из атомов, мельчайших частиц.
  • По орбите вокруг ядра атома вращаются электроны, они имеют отрицательный заряд.
  • В ядре располагаются положительно заряженные протоны.
  • В норме эта система находится в состоянии равновесия.

А вот если хоть один атом потеряет всего один электрон:

  1. Его заряд станет положительным.
  2. Положительно заряженный атом начнет притягивать к себе электрон, из-за разности зарядов.
  3. Чтобы получить для себя недостающий электрон, его придется «сорвать» с чьей-то орбиты.
  4. В результате еще один атом станет положительно заряженным и все повторится, начиная с первого пункта.
  5. Такая цикличность приведет к образованию электрической цепи и линейному распространению тока.

Так что с точки зрения ядерной физики все предельно просто, атом пытается получить то, чего ему больше всего не хватает и таким образом запускает начало реакции .

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру ». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Двадцатый век стал периодом расцвета электроэнергии :

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции и проведены линии электропередач .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Как получить электричество?

Представлять человека в виде наркомана, которому регулярно необходима «живительная доза электричества» немного наивно, но попробуйте полностью обесточить свое жилище и спокойно прожить хотя бы сутки. Отчаянье может заставить вспомнить оригинальные способы добычи тока. На практике это мало кому пригодится, но может кому-то пара Вольт спасет жизнь или поможет произвести впечатление на ребенка:

  • Разрядившийся аккумулятор телефона можно потереть об одежду, подойдут джинсы или шерстяной свитер. Статического электричества надолго не хватит, но это уже хоть что-то.
  • Если рядом есть морская вода , можно налить ее в две банки или стакана, соединить их медным проводом, предварительно обмотав его оба конца фольгой. Конечно для всего этого, помимо соленой воды, понадобятся еще емкости, медь и фольга. Не лучший вариант для экстремальных ситуаций.
  • Куда реалистичнее наличие железного гвоздя и небольшого медного прибора. Два куска металла следует использовать как анод и катод - гвоздь в ближайшее дерево, медь в землю. Между ними натянуть любую нить, незамысловатая конструкция даст примерно один Вольт.
  • Если использовать драгоценные металлы - золото и серебро, получится добиться большего напряжения.

Как экономить электричество?

У экономии электроэнергии могут быть разные причины - желание сохранить экологию, попытка уменьшить ежемесячные счета или что-то другое. Но способы всегда примерно одни:

Не всегда следует себя в чем-то сурово ограничивать, чтобы снизить расходы. Есть еще один неплохой совет - отключайте от сети все приборы, пока вы ими не пользуетесь .

Холодильник, естественно, не в счет. Даже находясь в «ждущем» режиме техника потребляет некоторое количество электричества. Но если хоть на секунду задуматься, то можно прийти к мысли, что почти все приборы большую часть суток вам не нужны. И все это время они продолжают сжигать ваше электричество .

Современные технологии тоже нацелены на то, чтобы снизить общий уровень потребления электроэнергии. Чего стоят хотя бы энергосберегающие лампочки , которые могут уменьшить расходы на освещение помещения, раз так в пять. Совет жить по «солнечным часам» может показаться диким и абсурдным, но уже давно доказано, что искусственное освещение повышает риск развития депрессии.

Как вырабатывается электричество?

Если углубляться в научные детали:

  1. Ток появляется за счет потери атомом электрона.
  2. Положительно заряженный атом притягивает к себе отрицательно заряженные частицы.
  3. Происходит потеря другим атомом своих электронов с орбиты и история повторяется снова.
  4. Это объясняет направленное движение тока и наличие вектора распространения.

А вообще электричество вырабатывается электростанциями . Там либо сжигают топливо, либо используют энергию расщепления атомов, а может даже пускают в ход природные стихии. Речь идет о солнечных батареях, ветряках и ГРЭС.

Полученную механическую или тепловую энергию, за счет генератора, переводят в ток. Он накапливается в аккумуляторах и по ЛЭП поступает в каждый дом.

Сегодня не обязательно знать, откуда берется электричество, чтобы пользоваться всеми благами, которое оно предоставляет. Люди уже давно отошли от первоначальной сути вещей и потихоньку начинают о ней забывать.

Видео: откуда поступает электричество к нам?

В этом видео наглядно будет показан путь электричества от электростанции до нас, откуда оно берется и как поступает в наш дом:



Просмотров