Аналоговые и дискретные сигналы. Аналоговые и цифровые сигналы

Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметическим цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют процессом. Обратите внимание, что эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров).

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д., часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ
  • Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные соотношения)
  • Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
  • Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
  • Формирование сигналов обратной связи (управление промышленными процессами)
  • Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
  • Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Формирование сигналов

В большинстве приведенных ситуаций (связанных с использованием DSP-технологий), необходимы как АЦП, так и ЦАП. Тем не менее, в ряде случаев требуется только ЦАП, когда аналоговые сигналы могут быть непосредственно сгенерированы на основе DSP и ЦАП. Хорошим примером являются дисплеи с разверткой видеоизображения, в которых сгенерированный в цифровой форме сигнал управляет видеоизображением или блоком RAMDAC (преобразователем массива пиксельных значений из цифровой в аналоговую форму).

Другой пример — это искусственно синтезируемые музыка и речь. В действительности, при генерации физических аналоговых сигналов с использованием только цифровых методов полагаются на информацию, предварительно полученную из источников подобных физических аналоговых сигналов. В системах отображения данные на дисплее должны донести соответствующую информацию оператору. При разработке звуковых систем задаются статистическими свойствами генерируемых звуков, которые были предварительно определены с помощью широкого использования методов ЦОС (источник звука, микрофон, предварительный усилитель, АЦП и т.д.).

Методы и технологии обработки сигналов

Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или ASP), цифровых методов (цифровой обработки сигналов, или DSP) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или MSP). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.

Что касается DSP, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием и сжатие данных в реальном масштабе времени.

Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.

Недавние успехи технологии создания микросхем с очень высокой степенью интеграции (VLSI) позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.

Сравнение аналоговой и цифровой обработки сигналов

Сегодняшний инженер стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.

Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым так и цифровым методом. Цепи нормализации сигнала — это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).

Несколько методов реализации процесса обработки сигналов показано на рисунке 1. В верхней области рисунка изображен чисто аналоговый подход. В остальных областях изображена реализация DSP. Обратите внимание, что, как только выбрана DSP технология, следующим решением должно быть определение местоположения АЦП в тракте обработки сигнала.

ОБРАБОТКА АНАЛОГОВЫХ И ЦИФРОВЫХ СИГНАЛОВ

Рисунок 1. Способы обработки сигналов

Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.

При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.

В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x).

На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования&nbp;— кодеки (Analog Front End, AFE), которые имеют встроенную в микросхему аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322).

Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).

Пример реализации

В качестве примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц.

Цифровой фильтр реализован в виде типовой цифровой системы, показанной на рисунок 2. Обратите внимание, что в диаграмме принято несколько неявных допущений. Во -первых, чтобы точно обработать сигнал, принимается, что тракт АЦП /ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во -вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (1/f s), устройство ЦОС должно иметь достаточное быстродействие. В -третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах ограничения и восстановления спектра сигнала (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.




Рисунок 2. Структурная схема цифрового фильтра

Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется фильтром Чебышева первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачи в полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рисунке 2. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.

Представленный же на рисунке 2 цифровой КИХ-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не подвержен дрейфу параметров, так как частота синхронизации фильтра стабилизирована кварцевым резонатором. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходного отсчёта. Эти вычисления должны быть закончены в пределах интервала дискретизации 1/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75MIPS. В листинге 1 приведен ассемблерный код, реализующий фильтр на DSP процессорах семейства ADSP-21xx. Обратите внимание, что фактические строки исполняемого кода помечены стрелками; остальное — это комментарии.



Рисунок 3. аналогового и цифрового фильтров

Конечно, на практике имеется много других факторов, рассматриваемых при сравнительной оценке аналоговых и цифровых фильтров или аналоговых и цифровых методов обработки сигнала вообще. В современных системах обработки сигналов комбинируются аналоговые и цифровые методы реализации желаемой функции и используются преимущества лучших методов, как аналоговых, так и цифровых.

ПРОГРАММА НА АССЕМБЛЕРЕ:
FIR ФИЛЬТР ДЛЯ ADSP-21XX (ОДИНАРНАЯ ТОЧНОСТЬ)

MODULE fir_sub; { Подпрограмма КИХ фильтра Параметры вызова подпрограммы I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра L0 = Длина фильтра (N) L4 = Длина фильтра (N) M1,M5 = 1 CNTR = Длина фильтра - 1 (N-1) Возвращаемые значения MR1 = Результат суммирования (округлённый и ограниченный) I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра Изменяемые регистры MX0,MY0,MR Время работы (N - 1) + 6 cycles = N + 5 cycles Все коэффициенты записаны в формате 1.15 } .ENTRY fir; fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5) CNTR = N-1; DO convolution UNTIL CE; convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5); MR=MR+MX0*MY0(RND); IF MV SAT MR; RTS; .ENDMOD; ОБРАБОТКА СИГНАЛОВ В РЕАЛЬНОМ ВРЕМЕНИ

  • Цифровая обработка сигналов;
    • Ширина спектра обрабатываемого сигнала ограничена частотой дискретизации АЦП/ЦАП
      • Помните о критерии Найквиста и теореме Котельникова
    • ограничен разрядностью АЦП /ЦАП
    • Производительность процессора DSP ограничивает объем обработки сигнала, так как:
      • Для работы в реальном масштабе времени все вычисления, производимые сигнальным процессором, должны быть закончены в течение интервала дискретизации, равного 1/f s
  • Не забывайте об аналоговой обработке сигнала
    • высокочастотной /радиочастотной фильтрации, модуляции, демодуляции
    • аналоговых ограничивающих и восстанавливающих спектр фильтрах (обычно ФНЧ) для АЦП и ЦАП
    • там, где диктуют здравый смысл и стоимость реализации

Литература:

Вместе со статьей "Виды сигналов" читают:

Понятие стыка цифровых АТС

ЦСК должна обеспечивать интерфейс (стык) с аналоговыми и цифровыми абонентскими линиями (АЛ) и системами передачи.

Стыком называется граница между двумя функциональными блоками, которая задается функциональными характеристиками, общими характеристиками физического соединения, характеристиками сигналов и другими характеристиками в зависимости от специфики.

Стык обеспечивает одноразовое определение параметров соединения между двумя уст­ройствами. Эти параметры относятся к типу, количеству и функциям соединительных цепей, а также к типу, форме и последовательности сигналов, которые передаются по этим цепям.

Точное определение типов, количества, формы и последовательности соединений и взаимосвязи между двумя функциональными блоками на стыке между ними задается спе­цификацией стыка.

Стыки цифровой АТС можно разделить на следующие

Аналоговый абонентский стык;

Цифровой абонентский стык;

Абонентский стык ISDN;

Сетевые (цифровые и аналоговые) стыки.

Кольцевые соединители

Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо. При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

Аналоговый, дискретный, цифровой сигналы

В системах электросвязи информация передается с помощью сигналов. Международный союз электросвязи дает следующее определение сигнала:

Сигналом систем электросвязи называется совокупность электромагнитных волн, ко­торая распространяется по одностороннему каналу передачи и предназначена для воздей­ствия на приемное устройство.

1) аналоговый сигнал - сигнал у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений

2) дискретный по уровню сигнал - сигнал, у которого значения представляющих пара­метров задается функцией непрерывного времени с конечным множеством возможных зна­чений. Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал - сигнал, у которого каждый представляющий пара­метр задается функцией дискретного времени с непрерывным множеством возможных зна­чений

4) цифровой сигнал - сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений

Модуляция - это преобразование одного сигнала в другой путем изменения па­раметров сигнала-переносчика в соответствии с преобразуемым сигналом. В качестве сиг­нала-переносчика используют гармонические сигналы, периодические последовательности импульсов и т.д.

Например, при передаче по линии цифрового сигнала двоичным кодом может появиться постоянная составляющая сигнала за счет преобладания единиц во всех кодовых словах.

Отсутствие же постоянной составляющей в линии позволяет использовать согласующие трансформаторы в линейных устройствах, а также обеспечить дистанционное питание реге­нераторов постоянным током. Чтобы избавиться от нежелательной постоянной составляющей цифрового сигнала, перед посылкой в линию двоичные сигналы преобразуются с помощью специальных кодов. Для первичной цифровой системы передачи (ЦСП) принят код HDB3.

Кодирование двоичного сигнала в модифицированный квазитроичный сигнал с ис­пользованием кода HDB3 производится по следующим правилам (рис. 1.5).


Рис. 1.5. Двоичный и соответствующий ему HDB3 коды

Импульсно-кодовая модуляция

Преобразование непрерывного первичного аналогового сигнала в цифровой код называется импульсно-кодовой модуляцией (ИКМ). Основными операциями при ИКМ являются операции дискретизации по времени, квантова­ния (дискретизации по уровню дискретного по времени сигнала) и кодирования.

Дискретизацией аналогового сигнала по времени называется преобразование, при кото­ром представляющий параметр аналогового сигнала задается совокупностью его значений в дискретные моменты времени, или, другими словами, при котором из непрерывного анало­гового сигнала c(t) (рис. 1.6, а) получают выборочные значения с„ (рис. 1.6, б). Значения представляющего параметра сигнала, полученные в результате операции дискретизации по времени, называются отсчетами.

Наибольшее распространение получили цифровые системы передачи, в которых при­меняется равномерная дискретизация аналогового сигнала (отсчеты этого сигнала произво­дятся через одинаковые интервалы времени). При равномерной дискретизации используют­ся понятия: интервал дискретизации At (интервал времени между двумя соседними отсче­тами дискретного сигнала) и частота дискретизации Fd (величина, обратная интервалу дискретизации). Величина интервала дискретизации выбирается в соответствии с теоремой Котельникова.

Согласно теореме Котельникова, аналоговый сиг­нал с ограниченным спектром и бесконечным интерва­лом наблюдения можно без ошибок восстановить из дискретного сигнала, полученного дискретизацией ис­ходного аналогового сигнала, если частота дискретиза­ции в два раза больше максимальной частоты спектра аналогового сигнала:

Теорема Котельникова

Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста-Шеннона) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчѐтам, взятым с частотой более удвоенной максимальной частоты спектра Fmax.

Аналоговый сигнал

Различают два пространства сигналов - пространство L (непрерывные сигналы), и пространство l (L малое) - пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L - есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени , поэтому аналоговый сигнал иногда называют непрерывным сигналом . Аналоговым сигналам противопоставляются дискретные (квантованные , цифровые). Примеры непрерывных пространств и соответствующих физических величин:

  • окружность : положение ротора , колеса , шестерни , стрелки аналоговых часов , или фаза несущего сигнала
  • отрезок : положение поршня , рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде
  • различные многомерные пространства : цвет , квадратурно-модулированный сигнал.

Свойства

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

  • Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.
  • Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал , снимаемый с термопары , несет информацию об изменении температуры , сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т. п.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Аналоговый сигнал" в других словарях:

    аналоговый сигнал - аналоговый сигнал: По ГОСТ 22670. Источник: ГОСТ Р 51386 99: Аппаратура радиорелейная. Цепи стыка. Методы измерений параметров … Словарь-справочник терминов нормативно-технической документации

    аналоговый сигнал

    аналоговый сигнал - данных аналоговый сигнал Сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. [ГОСТ 17657 79 ] аналоговый сигнал Сигнал, информационный параметр которого… … Справочник технического переводчика

    аналоговый сигнал - данных аналоговый сигнал Сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. [ГОСТ 17657 79 ] аналоговый сигнал Сигнал, информационный параметр которого… … Справочник технического переводчика

    Сигнал, величина которого непрерывно изменяется во времени. Аналоговый сигнал обеспечивает передачу данных путем непрерывного изменения во времени амплитуды, частоты либо фазы. Аналоговые сигналы естественным образом передают речь, музыку и… … Финансовый словарь

    АНАЛОГОВЫЙ СИГНАЛ, в телекоммуникации и электронике передача информации посредством варьирования непрерывной формы волны. Аналоговый сигнал изменяется (обычно по амплитуде или частоте) прямо пропорционально информационному содержанию сигнала … Научно-технический энциклопедический словарь

    аналоговый сигнал - выходной сигнал, который изменяется пропорционально изменениям входного сигнала … Hacker"s dictionary

    Физическая величина, изменения которой в пространстве и во времени отображает передаваемое сообщение. Например, изменения напряжения (или тока, частоты, фазы и т. п.) отражают процесс речи. Сигнал имеет следующие измерения высота H (динамический… … Словарь бизнес-терминов

    аналоговый сигнал - Analog Signal Аналоговый сигнал Сигнал, область определения которого составляет непрерывное пространство, то есть пространство, не являющееся дискретным. См. Цифровой сигнал … Толковый англо-русский словарь по нанотехнологии. - М.

    аналоговый сигнал - analoginis signalas statusas T sritis Standartizacija ir metrologija apibrėžtis Signalas, išreiškiamas laiko funkcija, kartojančia atitinkamo dydžio kitimo dėsnį. atitikmenys: angl. analog signal; analogue signal vok. analoges Signal, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Аналого-цифровой преобразователь , Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Аналого-цифровой преобразователь (АЦП, англ.…

Выделяют следующие типы сигналов, которым соответствуют определенные формы их математического описания.

Рис. 1.2.1. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример математической записи сигнала: y(t)= 4.8 exp[-(t-4) 2 /2.8]. Пример графического отображения данного сигнала приведен на рис. 1.2.1, при этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y 1 y  y 2 , t 1 t  t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от - до +. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Рис. 1.2.2. Дискретный сигнал

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nt), где y 1 y  y 2 , t - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0,1,2,...,N. Величина, обратная шагу дискретизации: f = 1/t, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nt.

Пример дискретизации аналогового сигнала, приведенного на рис. 1.2.1, представлен на рис. 1.2.2. При t = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y(n). В технической литературе в обозначениях дискретизированных функций иногда оставляют прежние индексы аргументов аналоговых функций, заключая последние в квадратные скобки - y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s(t i)}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для числовых последовательностей (равномерных и неравномерных) применяется и следующее числовое описание: s(t i) = {a 1 ,a 2 , ..., a N }, t = t 1 ,t 2 , ...,t N . Примеры дискретных геофизических сигналов - результаты вертикального электрического зондирования, профили геохимического опробования и т.п.

Рис. 1.2.3. Цифровой сигнал

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k , где Q k - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при t = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис 1.2.3. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).

В дискретных системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов, а, следовательно, всегда является цифровым. С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов. Что касается формы обращения цифровых сигналов в системах хранения, передачи и обработки, то, как правило, они представляет собой комбинации коротких одно- или двуполярных импульсов одинаковой амплитуды, которыми в двоичном коде с определенным количеством числовых разрядов кодируются числовые последовательности сигналов (массивов данных).

Рис. 1.2.4. Дискретно-аналоговый сигнал

В принципе, квантованными по своим значениям могут быть и аналоговые сигналы, зарегистрированные соответствующей аппаратурой (рис. 1.2.4), которые принято называть дискретно-аналоговыми. Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело при обработке геофизических данных, являются аналоговыми по своей природе, дискретизированными в силу методических особенностей измерений или технических особенностей регистрации. Но существуют и сигналы, которые изначально относятся к классу цифровых, как, например отсчеты количества гамма-квантов, зарегистрированных по последовательным интервалам времени.

Преобразования типа сигналов. Формы математического отображения сигналов, особенно на этапах их первичной регистрации (детектирования) и в прямых задачах описания геофизических полей и физических процессов, как правило, отражают их физическую природу. Однако последнее не является обязательным и зависит от методики измерений и технических средств детектирования, преобразования, передачи, хранения и обработки сигналов. На разных этапах процессов получения и обработки информации как материальное представление сигналов в устройствах регистрации и обработки, так и формы их математического описания при анализе данных, могут изменяться путем соответствующих операций преобразования типа сигналов.

Операция дискретизации (discretization) осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу, как, например s(t) s(nt), где значения s(nt) представляют собой отсчеты функции s(t) в моменты времени t = nt, n = 0,1,2,...N.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

В общем случае, дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал, и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Операция квантования или аналого-цифрового преобразования (АЦП; английский термин Analog-to-Digital Converter, ADC) заключается в преобразовании дискретного сигнала s(nt) в цифровой сигнал s(n) = s n  s(nt), n = 0,1,2,..,N, как правило, кодированный в двоичной системе счисления. Процесс преобразования отсчетов сигнала в числа называется квантованием по уровню (quantization), а возникающие при этом потери информации за счет округления – ошибками или шумами квантования (quantization error, quantization noise).

При преобразовании аналогового сигнала непосредственно в цифровой сигнал операции дискретизации и квантования совмещаются.

Операция цифро-аналогового преобразования (ЦАП; Digital-to-Analog Converter, DAC) обратна операции квантования, при этом на выходе регистрируется либо дискретно-аналоговый сигнал s(nt), который имеет ступенчатую форму (рис. 1.2.4), либо непосредственно аналоговый сигнал s(t), который восстанавливается из s(nt), например, путем сглаживания.

Так как квантование сигналов всегда выполняется с определенной и неустранимой погрешностью (максимум - до половины интервала квантования), то операции АЦП и ЦАП не являются взаимно обратными с абсолютной точностью.

Спектральное представление сигналов. Кроме привычного динамического представления сигналов и функций в виде зависимости их значений от определенных аргументов (времени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов первого рода (бесконечных значений на интервале своего задания), можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром . Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник по частотному спектру сигнала.

Широкое использование гармонических функций при анализе сигналов объясняется тем, что они являются достаточно простыми ортогональными функциями и определены при всех значениях t. Кроме того, они являются собственными функциями времени, сохраняющими свою форму при прохождении колебаний через любые линейные системы и системы обработки данных с постоянными параметрами (изменяются только амплитуда и фаза колебаний). Немаловажное значение имеет и то обстоятельство, что для гармонических функций и их комплексного анализа разработан мощный математический аппарат.

Примеры частотного представления сигналов уже приводились выше в разделе классификации сигналов (рис. 1.1.5 – 1.1.12)

Кроме гармонического ряда Фурье применяются и другие типы разложения: по функциям Уолша, Бесселя, Хаара, полиномам Чебышева, Лаггера, Лежандра и др.

Графическое отображение сигналов общеизвестно и особых пояснений не требует. Для одномерных сигналов график – это совокупность пар значений {t, s(t)} в прямоугольной системе координат (рис. 1.2.1 – 1.2.4). При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента, либо способ огибающей (плавной или ломанной) по значениям отсчетов. В силу непрерывности геофизических полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Тестовые сигналы (test signal). В качестве тестовых сигналов, которые применяются при моделировании и исследовании систем обработки данных, обычно используются сигналы простейшего типа: гармонические синус-косинусные функции, дельта-функция и функция единичного скачка.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

(t-) = 0 при t  ,

(t-) dt = 1.

Функция (t-) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки , где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t =  на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта - функция имеет вполне определенный физический смысл. Представим себе импульсный сигнал прямоугольной формы П(t-) длительностью , амплитуда которого равна 1/, а площадь соответственно равна 1. При уменьшении значения длительности  импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при   0 и носит название дельта - импульса. Этот сигнал (t-) сосредоточен в одной координатной точке t = , конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1. Это не мгновенное значение функции в точке t = , а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.п.) – математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством . Суть его заключается в том, что если дельта-функция (t-) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке  расположения дельта-импульса, т.е.:

f(t) (t-) dt = f().

Интегрирование в этом выражении может ограничиваться ближайшими окрестностями точки .

Функция единичного скачка или функция Хевисайда иногда называется также функцией включения. Полное математическое выражение функции:


При моделировании сигналов и систем значение функции скачка в точке t=0 очень часто принимают равным 1, если это не имеет принципиального значения.

Функция единичного скачка используется также при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций единичного скачка

s(t) = (t) - (t-T),

из нее вырезается участок на интервале 0-Т, и обнуляются значения функции за пределами этого интервала.

Функция Кронекера. Для дискретных и цифровых систем разрешающая способность по аргументу сигнала определяется интервалом его дискретизации t. Это позволяет в качестве единичного импульса использовать дискретный интегральный аналог дельта-функции - функцию единичного отсчета (kt-nt), которая равна 1 в координатной точке k = n, и нулю во всех остальных точках. Функция (kt-nt) может быть определена для любых значений t = const, но только для целых значений координат k и n, поскольку других номеров отсчетов в дискретных функциях не существует.

Математические выражения (t-) и (kt-nt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не будем забывать, что это не просто единичные импульсы в координатных точках  и nt, а импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от - до .

Понятие стыка цифровых АТС

ЦСК должна обеспечивать интерфейс (стык) с аналоговыми и цифровыми абонентскими линиями (АЛ) и системами передачи.

Стыком называется граница между двумя функциональными блоками, которая задается функциональными характеристиками, общими характеристиками физического соединения, характеристиками сигналов и другими характеристиками в зависимости от специфики.

Стык обеспечивает одноразовое определение параметров соединения между двумя уст­ройствами. Эти параметры относятся к типу, количеству и функциям соединительных цепей, а также к типу, форме и последовательности сигналов, которые передаются по этим цепям.

Точное определение типов, количества, формы и последовательности соединений и взаимосвязи между двумя функциональными блоками на стыке между ними задается спе­цификацией стыка.

Стыки цифровой АТС можно разделить на следующие

Аналоговый абонентский стык;

Цифровой абонентский стык;

Абонентский стык ISDN;

Сетевые (цифровые и аналоговые) стыки.

Кольцевые соединители

Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо. При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

Аналоговый, дискретный, цифровой сигналы

В системах электросвязи информация передается с помощью сигналов. Международный союз электросвязи дает следующее определение сигнала:

Сигналом систем электросвязи называется совокупность электромагнитных волн, ко­торая распространяется по одностороннему каналу передачи и предназначена для воздей­ствия на приемное устройство.

1) аналоговый сигнал - сигнал у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений

2) дискретный по уровню сигнал - сигнал, у которого значения представляющих пара­метров задается функцией непрерывного времени с конечным множеством возможных зна­чений. Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал - сигнал, у которого каждый представляющий пара­метр задается функцией дискретного времени с непрерывным множеством возможных зна­чений

4) цифровой сигнал - сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений

Модуляция - это преобразование одного сигнала в другой путем изменения па­раметров сигнала-переносчика в соответствии с преобразуемым сигналом. В качестве сиг­нала-переносчика используют гармонические сигналы, периодические последовательности импульсов и т.д.

Например, при передаче по линии цифрового сигнала двоичным кодом может появиться постоянная составляющая сигнала за счет преобладания единиц во всех кодовых словах.

Отсутствие же постоянной составляющей в линии позволяет использовать согласующие трансформаторы в линейных устройствах, а также обеспечить дистанционное питание реге­нераторов постоянным током. Чтобы избавиться от нежелательной постоянной составляющей цифрового сигнала, перед посылкой в линию двоичные сигналы преобразуются с помощью специальных кодов. Для первичной цифровой системы передачи (ЦСП) принят код HDB3.

Кодирование двоичного сигнала в модифицированный квазитроичный сигнал с ис­пользованием кода HDB3 производится по следующим правилам (рис. 1.5).


Рис. 1.5. Двоичный и соответствующий ему HDB3 коды

Импульсно-кодовая модуляция

Преобразование непрерывного первичного аналогового сигнала в цифровой код называется импульсно-кодовой модуляцией (ИКМ). Основными операциями при ИКМ являются операции дискретизации по времени, квантова­ния (дискретизации по уровню дискретного по времени сигнала) и кодирования.

Дискретизацией аналогового сигнала по времени называется преобразование, при кото­ром представляющий параметр аналогового сигнала задается совокупностью его значений в дискретные моменты времени, или, другими словами, при котором из непрерывного анало­гового сигнала c(t) (рис. 1.6, а) получают выборочные значения с„ (рис. 1.6, б). Значения представляющего параметра сигнала, полученные в результате операции дискретизации по времени, называются отсчетами.

Наибольшее распространение получили цифровые системы передачи, в которых при­меняется равномерная дискретизация аналогового сигнала (отсчеты этого сигнала произво­дятся через одинаковые интервалы времени). При равномерной дискретизации используют­ся понятия: интервал дискретизации At (интервал времени между двумя соседними отсче­тами дискретного сигнала) и частота дискретизации Fd (величина, обратная интервалу дискретизации). Величина интервала дискретизации выбирается в соответствии с теоремой Котельникова.

Согласно теореме Котельникова, аналоговый сиг­нал с ограниченным спектром и бесконечным интерва­лом наблюдения можно без ошибок восстановить из дискретного сигнала, полученного дискретизацией ис­ходного аналогового сигнала, если частота дискретиза­ции в два раза больше максимальной частоты спектра аналогового сигнала:

Теорема Котельникова

Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста-Шеннона) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчѐтам, взятым с частотой более удвоенной максимальной частоты спектра Fmax.



Просмотров