Какие бывают стандарты Wi-Fi и какой для смартфона лучше. Wi-Fi для начинающих: стандарты


Я прочитал что в характеристиках моего роутера написана скорость 54 Мбит/сек, но мой ноутбук качает файлы только на скорости 20-24 мбит/сек. И когда я передаю файлы с одного ноутбука на другой ноутбук, он подключен к этому же роутеру, и когда я передаю файл скорость упала еще больше. В чем здесь спрятана проблема?

Проблема в том, что скорость, на которую говорят в характеристиках создатели беспроводного Wi-Fi оборудования, не есть скоростью для передачи данных пользователей. Предоставленная в характеристике скорость - лишь такая называемая "скорость радио", в то самое время как реальная скорость для передачи пользовательских файлов должна хотя составлять половину от скорости которая написана в характеристике. Тем более, когда два компьютера подключены к и той же точке доступа или роутеру по Wi-Fi, в силу технических мощностей стандарта скорость файловая обменная скорость между компьютерами уменьшается еще в два раза. В случае когда с Wi-Fi 802.11g скорость при передаче пакетов между двумя ПК сможет составить всего около 12 Мбит/с. Если какой-то из ПК будет приключен к роутеру по LAN кабелю, тогда скорость заново востановиться до 20-24 Мбит/с.

При этом все данные цифры актуальны лишь для того случая, когда все клиенты и точка доступа находится в при пределах самой прямой видимости. Когда будет увеличено расстояник скорость будет невнушаемо падать (реальная дальность действия wi-fi с нормальной скоростью обычно не переходит за 100 м). Большое влияние дают перекладины в здания (при этом не только железобетонные или кирпичные, но и гипсокартонные или стеклянные). Также сказывается на сигнале Wi-Fi мебель и даже комнатные разные растения.

Если Вы хотите, полностью раскрыть потенциал нового стандарта 802.11n, в характеристиках которого написана скорость радио до 300 Мбит/с (это где то, 150 Мбит/с скорость при передачи данных), вам нужно будет особенное оборудование. Только лишь роутеры и и радио приемники, у которых иметься три антенны, и также они поддерживают работу на мощной частоте 5 ГГц, они способны по теории даже приблизиться к высокой отметке в 150 Мит/сек для высокой скорости при передачи данных. В то же самое время огромная большая часть системного оборудования, которая может поддерживать 802.11n, и имеет только одну антенну (особенно узко все это касается USB-приемников или встроенных на ноутбуки сетевых адаптеров) и работает она только на частоте 2,4 ГГц, что на все сто процентов "урезает" теоретически максимальную скорость при передачи данных между пользователями лишь около 75 Мбит/сек.

К сожалению, теоретическая скорость очень редко оказывается реально достижимой. На практике же самое лучшее из доступного на рынке оборудования для домашнего применения, полностью соответствующего требованиям стандарта 802.11n (со скоростью радио 300 Мбит/с), обеспечивает скорость передачи данных лишь 90-110 Мбит/сек вместо теоретических 150 Мбит/сек.

Способы увеличения скорости соединения и стабильности беспроводной сети Wi-Fi при использовании стандарта IEEE 802.11n

Многие современные устройства, которые мы используем (смартфон, планшет, ноутбук, роутер, телевизор), умеют работать с беспроводными сетями Wi-Fi. Самым распространенным на данный момент является стандарт IEEE 802.11n.

У пользователей периодически возникают вопросы по скорости и стабильности работы устройств по Wi-Fi. Самые распространенные из них:

  • Почему в статусе беспроводного соединения отображается максимальная скорость подключения, а реальная скорость передачи данных значительно ниже?
  • Почему при подключении беспроводного адаптера с поддержкой стандарта 802.11n скорость подключения 54 Мбит/с или ниже?
  • Где обещанная скорость 300 Мбит/с (или 150 Мбит/с) при подключении беспроводных устройств на стандарте 802.11n?
  • Как правильно настроить устройства беспроводной сети, чтобы они работали эффективно, стабильно и по возможности на максимальных скоростях, используя все преимущества стандарта IEEE 802.11n?

1. Максимальная скорость передачи данных и скорость подключения (канальная скорость) - разные понятия.

Начнем с того, что многие пользователи ошибочно ориентируются на скорость подключения в мегабитах в секунду, которое отображается в строке Скорость (Speed) на закладке Общие (General) в окне Состояние (Status) беспроводного соединения в операционной системе Windows.

Неверно думать, что это значение показывает реальную пропускную способность конкретного сетевого соединения. Данная цифра отображается драйвером беспроводного адаптера и показывает, какая скорость подключения на физическом уровне используется в настоящее время в рамках выбранного стандарта, то есть операционная система сообщает лишь о текущей (мгновенной) физической скорости подключения 300 Мбит/c (её называют ещё канальной скоростью), но реальная пропускная способность соединения при передаче данных может быть значительно ниже. Реальная скорость передачи данных зависит от многих факторов, в частности от настроек точки доступа 802.11n, числа одновременно подключенных к ней клиентских беспроводных адаптеров и др. Разница между скоростью подключения, которое показывает Windows, и реальными показателями объясняется прежде всего большим объемом служебных данных, потерями сетевых пакетов в беспроводной среде и затратами на повторную передачу.

Чтобы получить более или менее достоверное значение реальной скорости передачи данных в беспроводной сети, можно использовать один из указанных ниже способов:

Скачать:

2. Преимущества стандарта 802.11n работают только для адаптеров 802.11n.

Стандарт 802.11n использует различные технологии, включая MIMO, для достижения более высокой пропускной способности, но они эффективны только при работе клиентов, поддерживающих спецификации 802.11n.Нужно помнить, что использование беспроводной точки доступа стандарта 802.11n не повысит производительность работы уже существующих клиентов стандарта 802.11b/g.

3. При тестах скорости Wi-Fi необходимо отключать все устройства в сети, кроме испытуемых (особенно устаревших стандартов).

В беспроводной сети на базе точки доступа 802.11n можно использовать устройства предыдущих стандартов. Точка доступа 802.11n может одновременно работать и с 802.11n-адаптерами, и со старыми устройствами стандарта 802.11g и даже 802.11b. Стандартом 802.11n предусмотрены механизмы поддержки устаревших стандартов (legacy-механизмы). Скорость работы с клиентами 802.11n снижается (на 50-80%) только тогда, когда более медленные устройства активно передают или принимают данные. Для достижения максимальной производительности (или, по крайней мере, ее проверки) беспроводной сети 802.11n рекомендуется использовать в сети клиенты только этого стандарта.

4. Почему при подключении адаптера 802.11n скорость соединения только 54 Мбит/с или ниже?

В большинстве устройств стандарта 802.11n будет наблюдаться снижение пропускной способности до 80% при использовании устаревших методов обеспечения безопасности WEP или WPA/TKIP. В стандарте 802.11n установлено, что высокая производительность (свыше 54 Мбит/с) не сможет быть реализована, если используется один из указанных выше методов. Исключение составляют лишь устройства, которые не являются сертифицированными под стандарт 802.11n.

Если вы не хотите получить снижение скорости, используйте только метод безопасности беспроводной сети WPA2 с алгоритмом AES (стандарт безопасности IEEE 802.11i).
Внимание! Использование открытой (незащищенной) сети небезопасно!

В некоторых случаях, при использовании Wi-Fi-адаптера стандарта 802.11n и беспроводной точки доступа стандарта 802.11n, происходит подключение только на стандарте 802.11g. Это также может происходить по причине того, что в точке доступа по умолчанию в настройках безопасности беспроводной сети предустановлена технология WPA2 с протоколом TKIP. Опять же рекомендация: в настройках WPA2 используйте именно алгоритм AES вместо протокола TKIP, и и тогда подключение к точке доступа будет происходить с использованием стандарта 802.11n.

Другая возможная причина соединения только на стандарте 802.11g заключается в том, что в настройках точки доступа используется режим автоопределения (802.11b/g/n). Если вы хотите установить соединение на стандарте 802.11n, то не используйте режим автоопределения 802.11b/g/n, а вручную установите использование только 802.11n. Но помните, что в этом случае клиенты 802.11b/g не смогут подключиться к беспроводной сети, кроме клиентов с поддержкой 802.11n.

5. Убедитесь, что на точке доступа и на адаптере поддерживается и включен режим WMM.

Для получения скорости свыше 54 Мбит/с должен быть включен режим WMM (Wi-Fi Multimedia).
В спецификации 802.11n требуется поддержка в устройствах стандарта 802.11e (Качество обслуживания QoS для улучшения работы беспроводной сети) с целью использования режима с высокой пропускной способностью HT (High Throughput), т.е. скорости свыше 54 Мбит/с.

Поддержка режима WMM требуется для устройств, которые будут сертифицированы для использования стандарта 802.11n. Рекомендуем включать по умолчанию режим WMM во всех сертифицированных Wi-Fi-устройствах (точки доступа, беспроводные маршрутизаторы, адаптеры).
Обращаем ваше внимание, что режим WMM должен быть включен как на точке доступа, так и на беспроводном адаптере.

Режим WMM в настройках различных адаптеров может называться по разному: WMM, Мультимедийная среда, WMM Capable и т.п.

6. Отключите использование канала 40 МГц.

Стандартом 802.11n предусмотрена возможность использования широкополосных каналов - 40 МГц для повышения пропускной способности.

Но в реальности при изменении ширины канала с 20 МГц на 40 МГц (или использовании режима автоматического выбора ширины канала "Auto 20/40" в некоторых устройствах) можно получить даже снижение, а не увеличение пропускной способности. Снижение пропускной способности и нестабильность соединения может происходить несмотря на цифры канальной скорости подключения, которая в 2 раза выше при использовании ширины канала 40 МГц.
Реальные преимущества использования канала шириной 40 МГц (в частности увеличение пропускной способности от 10 до 20 Мбит/с), как правило, можно получить только в условиях сильного сигнала. Если же уровень сигнала падает, то использование канала шириной 40 МГц становится гораздо менее эффективным и не обеспечивает повышение пропускной способности.
При использовании канала шириной 40 МГц и слабом уровне сигнала пропускная способность может снижаться до 80% и не привести к желаемому увеличению пропускной способности.

Если же вы решили использовать канал шириной 40 МГц и при этом заметили снижение скорости (не канальной скорости подключения, которая отображается в веб-конфигураторе в меню Системный монитор, а скорости загрузки веб-страниц или приёма/передачи файлов), рекомендуем использовать канал шириной 20 МГц. В этом случае вы сможете увеличить пропускную способность соединения.
Кроме того, с некоторыми устройствами соединение удается установить именно при использовании канала шириной 20 МГц (при использовании канала шириной 40 МГц соединение не устанавливается).

7. Используйте актуальный драйвер беспроводного адаптера.

Низкая скорость соединения может быть также следствием плохой совместимости драйверов различных производителей оборудования Wi-Fi. Нередки случаи, когда установив другую версию драйвера беспроводного адаптера от его производителя или от производителя используемого в нем чипсета, можно получить существенное увеличение скорости.

Увеличить скорость работы беспроводной сети Wi-Fi Keenetic с некоторыми устройствами компании Apple может смена страны на United States. Это можно сделать через веб-конфигуратор в меню Сеть Wi-Fi на вкладке Точка доступа 5 ГГц или Точка доступа 2.4 ГГц в поле Страна .

Не нужно забывать, что на работу беспроводных сетей Wi-Fi оказывают влияние и другие факторы (например, расположение устройств и расстояние между ними, направление антенн, наличие большого числа устройств Wi-Fi, работающих в радиусе действия вашего устройства и использующих тот же частотный диапазон, и др.).

4 пользователям понравился пост

Одна из самых важных настроек беспроводной сети, это "Режим работы", "Режим беспроводной сети", "Mode" и т. д. Название зависит от маршрутизатора, прошивки, или языка панели управления. Данный пункт в настройках маршрутизатора позволяет задать определенный режим работы Wi-Fi (802.11) . Чаще всего, это смешанный режим b/g/n. Ну и ac, если у вас двухдиапазонный маршрутизатор.

Чтобы определить, какой режим лучше выбрать в настройках маршрутизатора, нужно сначала разобраться, что это вообще такое и на что влияют эти настройки. Думаю, не лишним будет скриншот с этими настройками на примере роутера TP-Link. Для диапазона 2.4 и 5 GHz.

На данный момент можно выделить 4 основных режима: b/g/n/ac . Основное отличие – максимальная скорость соединения. Обратите внимание, что скорость, о которой я буду писать ниже, это максимально возможная скорость (в один канал) . Которую можно получить в идеальных условия. В реальных условиях скорость соединения намного ниже.

IEEE 802.11 – это набор стандартов, на котором работают все Wi-Fi сети. По сути, это и есть Wi-Fi.

Давайте подробно рассмотрим каждый стандарт (по сути, это версии Wi-Fi) :

  • 802.11a – я когда писал о четырех основных режимах, то его не рассматривал. Это один из первых стандартов, работает в диапазоне 5 ГГц. Максимальная скорость 54 Мбит/c. Не самый популярный стандарт. Ну и старый уже. Сейчас в диапазоне 5 ГГц уже "рулит" стандарт ac.
  • 802.11b – работает в диапазоне 2.4 ГГц. Скорость до 11 Мбит/с.
  • 802.11g – можно сказать, что это более современный и доработанный стандарт 802.11b. Работает так же в диапазоне 2.4 ГГц. Но скорость уже до 54 Мбит/с. Совместим с 802.11b. Например, если ваше устройство может работать в этом режиме, то оно без проблем будет подключаться к сетям, которые работают в режиме b (более старом) .
  • 802.11n – самый популярный стандарт на сегодняшний день. Скорость до 150 Мбит/c в диапазоне 2.4 ГГц и до 600 Мбит/c в диапазоне 5 ГГц. Совместимость с 802.11a/b/g.
  • 802.11ac – новый стандарт, который работает только в диапазоне 5 ГГц. Скорость передачи данных до 6,77 Гбит/с (при наличии 8 антенн и в режиме MU-MIMO) . Данный режим есть только на двухдиапазонных маршрутизаторах, которые могут транслировать сеть в диапазоне 2.4 ГГц и 5 ГГц.

Скорость соединения

Как показывает практика, чаще всего настройки b/g/n/ac меняют с целью повысить скорость подключения к интернету. Сейчас постараюсь пояснить, как это работает.

Возьмем самый популярный стандарт 802.11n в диапазоне 2.4 ГГц, когда максимальная скорость 150 Мбит/с. Именно эта цифра чаще всего указана на коробке с маршрутизатором. Так же там может быт написано 300 Мбит/с, или 450 Мбит/с. Это зависит от количества антенн на маршрутизаторе. Если одна антенна, то роутер работает в один поток и скорость до 150 Мбит/с. Если две антенны, то два потока и скорость умножается на два – получаем уже до 300 Мбит/с и т. д.

Все это просто цифры. В реальных условиях скорость по Wi-Fi при подключении в режиме 802.11n будет 70-80 Мбит/с. Скорость зависит от огромного количества самых разных факторов: помехи, уровень сигнала, производительность и нагрузка на маршрутизатор, настройки и т. д.

Так как у них есть много версий веб-интерфейса, то рассмотрим несколько из них. Если в вашем случае светлый веб-интерфейс как на скриншоте ниже, то откройте раздел "Wi-Fi". Там будет пункт "Беспроводной режим" с четырьмя вариантами: 802.11 B/G/N mixed, и отдельно N/B/G.

Или даже так:

Настройка "802.11 Mode".

Диапазон радиочастот на роутере Netis

Откройте страницу с настройками в браузере по адресу http://netis.cc. Затем перейдите в раздел "Беспроводной режим".

Там будет меню "Диапаз. радиочастот". В нем можно сменить стандарт Wi-Fi сети. По умолчанию установлено "802.11 b+g+n".

Ничего сложного. Только настройки не забудьте сохранить.

Настройка сетевого режима Wi-Fi на роутере Tenda

Настройки находятся в разделе "Беспроводной режим" – "Основные настройки WIFI".

Пункт "Сетевой режим".

Можно поставить как смешанный режим (11b/g/n), так и отдельно. Например, только 11n.

Если у вас другой маршрутизатор, или настройки

Дать конкретные инструкции для всех устройств и версий программного обеспечения просто невозможно. Поэтому, если вам нужно сменить стандарт беспроводной сети, и вы не нашли своего устройства выше в статье, то смотрите настройки в разделе с названием "Беспроводная сеть", "WiFi", "Wireless".

Если не найдете, то напишите модель своего роутера в комментариях. И желательно прикрепить еще скриншот с панели управления. Подскажу вам где искать эти настройки.

Стандарты беспроводных сетей

Сегодня мы рассмотрим все существующие стандарты IEEE 802.11 , которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые - на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень).
Стандарт IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE.
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д..
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы.

Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;
  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;
  • высокая скорость передачи;
  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;
  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;
  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM .

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь* . Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е, разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol) , который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с .
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные -1;2;5,5;6; 11; 12 и 24 Мбит/с;
  • возможные - 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM , а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов (интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) - алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;
  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;
  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) - алгоритм шифрования данных;
  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) - алгоритм шифрования данных;
  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) - алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.

На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

IEEE 802.11n

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Расширение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация.

При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей.

Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн.

Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Стандарт IEEE 802.11ac

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac подтвердили рабочей группой (TGac) в прошлом году. В то время как ратификация Wi-Fi Alliance ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE . Мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi 802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса
  • Высокая плотность модуляции до 256 QAM.
  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.
  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:

802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac. Потребуется тестирование оборудования, способного обрабатывать 80 или 160 MHz для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz , в широком диапазоне генератор волновых сигналов произвольной формы (AWG). Такие как Agilent 81180A, 8190A можно использовать для создания аналоговых I/Q сигналов.

Эти сигналы можно применить к внешнему I/Q. Как входы векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz в отдельных MCG или ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:

MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны. Которые торчат из них, — эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов можно использовать для представления о производительности устройств MIMO. И оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:

Усилитель Линейности является характеристикой и усилителем. С помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение. Которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями

Хотя стандарт 802.11n используется уже в течение многих лет. Но до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов. Таких как 802.11b и 802.11g, правда их реально мало. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в,

Протокол беспроводной связи Wi-Fi (Wireless Fidelity – беспроводная точность) был разработан еще в 1996 году. Изначально он предназначался для построения локальных сетей, но наибольшую популярность приобрел, как эффективный метод соединения с интернетом смартфонов и других портативных устройств.

За 20 лет одноименный альянс разработал несколько поколений соединения, внедряя с каждым годом более скоростные и функциональные его обновления. Они описываются стандартами 802.11, издаваемыми IEEE (Институт инженеров электротехники и электроники). В группу входит несколько версий протокола, отличающихся скоростью передачи данных и поддержкой дополнительных функций.

Самый первый стандарт Wi-Fi не имел буквенного обозначения. Поддерживающие его устройства обмениваются данными на частоте 2,4 ГГц. Скорость передачи информации составляла всего 1 Мбит/с. Также существовали девайсы с поддержкой скорости до 2 Мбит/с. Он активно использовался всего 3 года, после чего был усовершенствован. Каждый последующий стандарт Wi-Fi обозначается буквой после общего номера (802.11a/b/g/n и т.д.).

Одно из первых обновлений стандарта Wi-Fi, вышедшее в 1999 году. Благодаря удвоению частоты (до 5 ГГц) инженерам удалось добиться теоретических скоростей до 54 Мбит/с. Широкого распространения он не получил, так как сам по себе несовместим с другими версиями. Устройства, поддерживающие его, для работы в сетях на 2,4 ГГц должны иметь двойной приемопередатчик. Смартфоны с Wi-Fi 802.11a распространены слабо.

Стандарт Wi-Fi IEEE 802.11b

Второе раннее обновление интерфейса, вышедшее параллельно с версией a. Частота осталась прежней (2,4 ГГц), но скорость увеличили до 5,5 или 11 Мбит/с (в зависимости от устройства). До конца первого десятилетия 2000-х годов это был наиболее распространенный стандарт для беспроводных сетей. Совместимость с более старой версией, а также достаточно большой радиус покрытия, обеспечили ему популярность. Несмотря на вытеснение новыми версиями, 802.11b поддерживается практически всеми современными смартфонами.

Стандарт Wi-Fi IEEE 802.11g

Новое поколение протокола Wi-Fi было представлено в 2003 году. Разработчики оставили частоты передачи данных прежними, благодаря чему стандарт оказался полностью совместимым с предшествующим (старые устройства работали со скоростью до 11 Мбит/с). Скорость передачи информации возросла до 54 Мбит/с, что было достаточно вплоть до недавнего времени. Все современные смартфоны работают с 802.11g.

Стандарт Wi-Fi IEEE 802.11n

В 2009 году вышло масштабное обновление стандарта Wi-Fi. Новая версия интерфейса получила существенное увеличение скорости (до 600 Мбит/с), сохранив совместимость с предшествующими. Для возможности работы с оборудованием 802.11a, а также борьбы с перегруженностью диапазона 2,4 ГГц, была возвращена поддержка частот 5 ГГц (параллельно 2,4 ГГц).

Были расширены возможности конфигурирования сети и увеличено количество поддерживаемых одновременно соединений. Появились возможность связи в многопоточном режиме MIMO (параллельная передача нескольких потоков данных на одной частоте) и объединение двух каналов для связи с одним устройством. Первые смартфоны с поддержкой этого протокола вышли в 2010 году.

Стандарт Wi-Fi IEEE 802.11ac

В 2014 году был утвержден новый стандарт Wi-Fi IEEE 802.11ac. Он стал логичным продолжением 802.11n, предоставляющим десятикратный рост скорости. Благодаря возможности объединения до 8 каналов (по 20 МГц каждый) одновременно – теоретический потолок увеличился до 6,93 Гбит/с. что в 24 раза быстрее, чем 802.11n.

От частоты 2,4 ГГц было решено отказаться, в силу загруженности диапазона и невозможности объединения более 2 каналов. Стандарт Wi-Fi IEEE 802.11ac работает в диапазоне 5 ГГц и обратно совместим с устройствами 802.11n (с частотой 2,4 ГГц), но работа с более ранними версиями не гарантируется. Сегодня еще не все смартфоны поддерживают его (к примеру, поддержки нет у многих бюджетников на MediaTek).

Другие стандарты

Существуют версии IEEE 802.11, маркированные другими буквами. Но они или вносят небольшие поправки и дополнения к перечисленным выше стандартам, или добавляют специфические функции (вроде возможности взаимодействия с другими радиосетями или безопасность). Выделить стоит 802.11y, использующий нестандартную частоту 3,6 ГГц, а также 802.11ad, рассчитанный на диапазон 60 ГГц. Первый создан для обеспечения дальности связи до 5 км, за счет использования чистого диапазона. Второй (он также известен как WiGig) – предназначен для обеспечения максимальной (до 7 Гбит/с) скорости связи на сверхмалых расстояниях (в пределах комнаты).

Какой стандарт Wi-Fi для смартфона лучше

Все современные смартфоны оборудованы модулем Wi-Fi, рассчитанным на работу с несколькими версиями 802.11. Как правило, поддерживаются все взаимно совместимые стандарты: b, g и n. Однако работа с последним нередко может быть реализована только на частоте 2,4 ГГц. Устройства, которые способны работать в сетях 802.11n 5 ГГц, также отличаются поддержкой 802.11a, как обратно совместимого.

Рост частоты способствует увеличению скорости обмена данными. Но, вместе с тем, уменьшается длина волны, ей сложнее проходить сквозь препятствия. Из-за этого теоретическая дальность связи 2,4 ГГц будет выше, чем у 5 ГГц. Однако на практике ситуация обстоит немного иначе.

Частота 2,4 ГГц оказалась свободной, поэтому бытовая электроника использует именно ее. Помимо Wi-Fi, в этом диапазоне работают Bluetooth-устройства, приемопередатчики беспроводных клавиатур и мышек, в нем же излучают магнетроны СВЧ-печей. Поэтому в местах, где функционирует несколько сетей Wi-Fi, количество помех нивелирует преимущество в дальности. Сигнал будет ловиться и за сотню метров, но скорость окажется минимальной, а потери пакетов данных – большими.

Диапазон 5 ГГц более широк (от 5170 до 5905 МГц), меньше загружен. Поэтому волны хуже преодолевают препятствия (стена, мебель, тело человека), зато в условиях прямой видимости обеспечивают более устойчивую связь. Неспособность эффективно преодолевать стены оборачивается преимуществом: вы не сможете поймать соседский Wi-Fi, зато и вашему роутеру или смартфону он мешать не будет.

Однако, следует помнить, что для достижения максимальной скорости – необходим и роутер, работающий с таким же стандартом. В остальных случаях получить больше 150 Мбит/с все равно не выйдет.

Многое зависит от роутера и его типа антенны. Антенны адаптивного типа разработаны так, что они определяют местонахождение смартфона и подают на него направленный сигнал, достающий дальше, чем у других типов антенн.



Просмотров