Методология и практика тестирования по. Методологии тестирования

Тестирование программного обеспечения - процесс исследования программного обеспечения (ПО) с целью получения информации о качестве продукта.

Введение

Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью выявить все дефекты и установить корректность функционирования анализируемой программы, поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки или верификации может доказать, что дефекты отсутствуют с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов - это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

С точки зрения ISO 9126, Качество (программных средств) можно определить как совокупную характеристику исследуемого ПО с учётом следующих составляющих:

· Надёжность

· Сопровождаемость

· Практичность

· Эффективность

· Мобильность

· Функциональность

Более полный список атрибутов и критериев можно найти в стандарте ISO 9126 Международной организации по стандартизации. Состав и содержание документации, сопутствующей процессу тестирования, определяется стандартом IEEE 829-1998 Standard for Software Test Documentation.

История развития тестирования программного обеспечения

Тестирование программного обеспечения

Существует несколько признаков, по которым принято производить классификацию видов тестирования. Обычно выделяют следующие:

По объекту тестирования:

· Функциональное тестирование (functional testing)

· Нагрузочное тестирование

· Тестирование производительности (perfomance/stress testing)

· Тестирование стабильности (stability/load testing)

· Тестирование удобства использования (usability testing)

· Тестирование интерфейса пользователя (UI testing)

· Тестирование безопасности (security testing)

· Тестирование локализации (localization testing)

· Тестирование совместимости (compatibility testing)

По знанию системы:

· Тестирование чёрного ящика (black box)

· Тестирование белого ящика (white box)

· Тестирование серого ящика (gray box)

По степени автоматизированности:

· Ручное тестирование (manual testing)

· Автоматизированное тестирование (automated testing)

· Полуавтоматизированное тестирование (semiautomated testing)

По степени изолированности компонентов:

· Компонентное (модульное) тестирование (component/unit testing)

· Интеграционное тестирование (integration testing)

· Системное тестирование (system/end-to-end testing)

По времени проведения тестирования:

· Альфа тестирование (alpha testing)

· Тестирование при приёмке (smoke testing)

· Тестирование новых функциональностей (new feature testing)

· Регрессионное тестирование (regression testing)

· Тестирование при сдаче (acceptance testing)

· Бета тестирование (beta testing)

По признаку позитивности сценариев:

· Позитивное тестирование (positive testing)

· Негативное тестирование (negative testing)

По степени подготовленности к тестированию:

· Тестирование по документации (formal testing)

· Эд Хок (интуитивное) тестирование (ad hoc testing)

Уровни тестирования

Модульное тестирование (юнит-тестирование) - тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто модульное тестирование осуществляется разработчиками ПО.

Интеграционное тестирование - тестируются интерфейсы между компонентами, подсистемами. При наличии резерва времени на данной стадии тестирование ведётся итерационно, с постепенным подключением последующих подсистем.

Системное тестирование - тестируется интегрированная система на её соответствие требованиям.

Альфа-тестирование - имитация реальной работы с системой штатными разработчиками, либо реальная работа с системой потенциальными пользователями/заказчиком. Чаще всего альфа-тестирование проводится на ранней стадии разработки продукта, но в некоторых случаях может применяться для законченного продукта в качестве внутреннего приёмочного тестирования. Иногда альфа-тестирование выполняется под отладчиком или с использованием окружения, которое помогает быстро выявлять найденные ошибки. Обнаруженные ошибки могут быть переданы тестировщикам для дополнительного исследования в окружении, подобном тому, в котором будет использоваться ПО.

Бета-тестирование - в некоторых случаях выполняется распространение версии с ограничениями (по функциональности или времени работы) для некоторой группы лиц, с тем чтобы убедиться, что продукт содержит достаточно мало ошибок. Иногда бета-тестирование выполняется для того, чтобы получить обратную связь о продукте от его будущих пользователей.

Часто для свободного/открытого ПО стадия Альфа-тестирования характеризует функциональное наполнение кода, а Бета тестирования - стадию исправления ошибок. При этом как правило на каждом этапе разработки промежуточные результаты работы доступны конечным пользователям.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования (программного и некоторого аппаратного обеспечения), фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании белого ящика (англ. white-box testing, также говорят - прозрачного ящика), разработчик теста имеет доступ к исходному коду программ и может писать код, который связан с библиотеками тестируемого ПО. Это типично для юнит-тестирования (англ. unit testing), при котором тестируются только отдельные части системы. Оно обеспечивает то, что компоненты конструкции - работоспособны и устойчивы, до определённой степени. При тестировании белого ящика используются метрики покрытия кода.

При тестировании чёрного ящика, тестировщик имеет доступ к ПО только через те же интерфейсы, что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Статическое и динамическое тестирование

Описанные выше техники - тестирование белого ящика и тестирование чёрного ящика - предполагают, что код исполняется, и разница состоит лишь в той информации, которой владеет тестировщик. В обоих случаях это динамическое тестирование.

При статическом тестировании программный код не выполняется - анализ программы происходит на основе исходного кода, который вычитывается вручную, либо анализируется специальными инструментами. В некоторых случаях, анализируется не исходный, а промежуточный код (такой как байт-код или код на MSIL).

Также к статическому тестированию относят тестирование требований, спецификаций, документации.

Регрессионное тестирование

Регрессио́нное тести́рование (англ. regression testing, от лат. regressio - движение назад) - собирательное название для всех видов тестирования программного обеспечения, направленных на обнаружение ошибок в уже протестированных участках исходного кода. Такие ошибки - когда после внесения изменений в программу перестает работать то, что должно было продолжать работать, - называют регрессионными ошибками (англ. regression bugs).

Обычно используемые методы регрессионного тестирования включают повторные прогоны предыдущих тестов, а также проверки, не попали ли регрессионные ошибки в очередную версию в результате слияния кода.

Из опыта разработки ПО известно, что повторное появление одних и тех же ошибок - случай достаточно частый. Иногда это происходит из-за слабой техники управления версиями или по причине человеческой ошибки при работе с системой управления версиями. Но настолько же часто решение проблемы бывает «недолго живущим»: после следующего изменения в программе решение перестаёт работать. И наконец, при переписывании какой-либо части кода часто всплывают те же ошибки, что были в предыдущей реализации.

Поэтому считается хорошей практикой при исправлении ошибки создать тест на неё и регулярно прогонять его при последующих изменениях программы. Хотя регрессионное тестирование может быть выполнено и вручную, но чаще всего это делается с помощью специализированных программ, позволяющих выполнять все регрессионные тесты автоматически. В некоторых проектах даже используются инструменты для автоматического прогона регрессионных тестов через заданный интервал времени. Обычно это выполняется после каждой удачной компиляции (в небольших проектах) либо каждую ночь или каждую неделю.

Регрессионное тестирование является неотъемлемой частью экстремального программирования. В этой методологии проектная документация заменяется на расширяемое, повторяемое и автоматизированное тестирование всего программного пакета на каждой стадии цикла разработки программного обеспечения.

Регрессионное тестирование может быть использовано не только для проверки корректности программы, часто оно также используется для оценки качества полученного результата. Так, при разработке компилятора, при прогоне регрессионных тестов рассматривается размер получаемого кода, скорость его выполнения и время компиляции каждого из тестовых примеров.

«Фундаментальная проблема при сопровождении программ состоит в том, что исправление одной ошибки с большой вероятностью (20-50%) влечет появление новой. Поэтому весь процесс идет по принципу "два шага вперед, шаг назад".

Почему не удается устранять ошибки более аккуратно? Во-первых, даже скрытый дефект проявляет себя как отказ в каком-то одном месте. В действительности же он часто имеет разветвления по всей системе, обычно неочевидные. Всякая попытка исправить его минимальными усилиями приведет к исправлению локального и очевидного, но если только структура не является очень ясной или документация очень хорошей, отдаленные последствия этого исправления останутся незамеченными. Во-вторых, ошибки обычно исправляет не автор программы, а зачастую младший программист или стажер.

Вследствие внесения новых ошибок сопровождение программы требует значительно больше системной отладки на каждый оператор, чем при любом другом виде программирования. Теоретически, после каждого исправления нужно прогнать весь набор контрольных примеров, по которым система проверялась раньше, чтобы убедиться, что она каким-нибудь непонятным образом не повредилась. На практике такое возвратное (регрессионное) тестирование действительно должно приближаться к этому теоретическому идеалу, и оно очень дорого стоит.»

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования.

Тестовые скрипты

Тестировщики используют тестовые скрипты на разных уровнях: как в модульном, так и в интеграционном и системном тестировании. Тестовые скрипты, как правило, пишутся для проверки компонентов, в которых наиболее высока вероятность появления отказов или вовремя не найденная ошибка может быть дорогостоящей.

Покрытие кода

Покрытие кода - мера, используемая при тестировании программного обеспечения. Она показывает процент, насколько исходный код программы был протестирован. Техника покрытия кода была одной из первых методик, изобретённых для систематического тестирования ПО. Первое упоминание покрытия кода в публикациях появилось в 1963 году.

Критерии

Существует несколько различных способов измерения покрытия, основные из них:

· Покрытие операторов - каждая ли строка исходного кода была выполнена и протестирована?

· Покрытие условий - каждая ли точка решения (вычисления истинно ли или ложно выражение) была выполнена и протестирована?

· Покрытие путей - все ли возможные пути через заданную часть кода были выполнены и протестированы?

· Покрытие функций - каждая ли функция программы была выполнена

· Покрытие вход/выход - все ли вызовы функций и возвраты из них были выполнены

Для программ с особыми требованиями к безопасности часто требуется продемонстрировать, что тестами достигается 100 % покрытие для одного из критериев. Некоторые из приведённых критериев покрытия связаны между собой; например, покрытие путей включает в себя и покрытие условий и покрытие операторов. Покрытие операторов не включает покрытие условий, как показывает этот код на Си:

printf("this is ");

printf("a positive integer");

Если здесь bar = −1, то покрытие операторов будет полным, а покрытие условий - нет, так как случай несоблюдения условия в операторе if - не покрыт. Полное покрытие путей обычно невозможно. Фрагмент кода, имеющий n условий содержит 2n путей; конструкция цикла порождает бесконечное количество путей. Некоторые пути в программе могут быть не достигнуты из-за того, что в тестовых данных отсутствовали такие, которые могли привести к выполнению этих путей. Не существует универсального алгоритма, который решал бы проблему недостижимых путей (этот алгоритм можно было бы использовать для решения проблемы останова). На практике для достижения покрытия путей используется следующий подход: выделяются классы путей (например, к одному классу можно отнести пути отличающиеся только количеством итераций в одном и том же цикле), 100 % покрытие достигнуто, если покрыты все классы путей (класс считается покрытым, если покрыт хотя бы один путь из него).

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Практическое применение

Обычно исходный код снабжается тестами, которые регулярно выполняются. Полученный отчёт анализируется с целью выявить невыполнявшиеся области кода, набор тестов обновляется, пишутся тесты для непокрытых областей. Цель состоит в том, чтобы получить набор тестов для регрессионного тестирования, тщательно проверяющих весь исходный код.

Степень покрытия кода обычно выражают в виде процента. Например, «мы протестировали 67 % кода». Смысл этой фразы зависит от того какой критерий был использован. Например, 67 % покрытия путей - это лучший результат чем 67 % покрытия операторов. Вопрос о связи значения покрытия кода и качеством тестового набора ещё до конца не решён.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях.

Введение

В среднем тестирование отнимает 50% времени и 50% стоимости от общей сметы проекта (обязательно учитывайте это, закладывая бюджет). В больших компаниях (Intel, IBM, Microsoft) за каждым разработчиком закреплен личный тестировщик. Прошло то время, когда эту работу выполнял второсортный программист, которого еще не подпускали к самостоятельному кодированию (мол, прежде чем допускать свои ошибки, сначала пусть учатся на чужих). Сегодня тестировщик - это высококвалифицированный и хорошо оплачиваемый специалист, в услугах которого нуждаются тысячи фирм и который никогда не сидит без работы.

Когда вам скажут, что жизненный цикл продукта состоит из проектирования, реализации, тестирования и поддержки - не верьте! Тестирование сопровождает проект всю его жизнь - от момента рождения до самой смерти. Проектировщик закладывает механизмы самодиагностики и вывода "телеметрической" информации. Разработчик тестирует каждую запрограммированную им функцию (тестирование на микроуровне). Бета-тестеры проверяют работоспособность всего продукта в целом. У каждого из них должен быть четкий план действий, в противном случае тестирование провалится, еще не начавшись.

В идеале для каждой функции исходного кода разрабатывается набор автоматизированных тестов, предназначенных для проверки ее работоспособности. Лучше всего поручить эту работу отдельной группе программистов, поставив перед ними задачу: разработать такой пример, на котором функция провалится. Вот, например, функция сортировки. Простейший тест выглядит так. Генерируем произвольные данные, прогоняем через нее и если для каждого элемента N условие N <= N + 1 (N >= N + 1 для сортировки по убыванию) истинно, считаем, что тест пройдет правильно. Но ведь этот тест неправильный! Необходимо убедиться, что на выходе функции присутствуют все исходные данные и нет ничего лишнего! Многие функции нормально сортируют десять или даже тысячу элементов, но спотыкаются на одном или двух (обычно это происходит при сортировке методом деления напополам). А если будет ноль сортируемых элементов? А если одна из вызываемых функций (например, malloc), возвратит ошибку - сможет ли тестируемая функция корректно ее обработать? Сколько времени (системных ресурсов) потребуется на сортировку максимально возможного числа элементов? Неоправданно низкая производительность - тоже ошибка!

Существует два основных подхода к тестированию - черный и белый ящики. "Черный ящик" - это функция с закрытым кодом, проверка которого сводится к тупому перебору всех комбинаций аргументов. Очевидно, что подавляющее большинство функций не могут быть протестированы за разумное время (количество комбинаций слишком велико). Код белого ящика известен и тестировщик может сосредоточить свое внимание на пограничных областях. Допустим, в функции есть ограничение на предельно допустимую длину строки в MAX_LEN символов. Тогда следует тщательно исследовать строки в MAX_LEN - 1, MAX_LEN и MAX_LEN + 1 символов, поскольку ошибка "в плюс-минус один байт" - одна из самых популярных.

Тест должен задействовать все ветви программы, чтобы после его выполнения не осталось ни одной незадействованной строчки кода. Соотношение кода, который хотя бы раз получил выполнение, к общему коду программы, называется покрытием (coverage) и для его измерения придумано множество инструментов - от профилировщиков, входящих в штатный комплект поставки компиляторов, до самостоятельных пакетов, лучшим из которых является NuMega True Coverage.

Разработка тестовых примеров - серьезная инженерная задача, зачастую даже более сложная, чем разработка самой "подопытной" функции. Неудивительно, что в реальной жизни к ней прибегают лишь в наиболее ответственных случаях. Функции с простой логикой тестируются "визуально". Вот потому у нас все глючит и падает.

Всегда транслируйте программу с максимальным уровнем предупреждений (для Microsoft Visual C++ это ключ /W4), обращая внимание на все сообщения компилятора. Некоторые, наиболее очевидные ошибки обнаруживаются уже на этом этапе. Сторонние верификаторы кода (lint, smatch) еще мощнее и распознают ошибки, с которыми трансляторы уже не справляются.

Регистрация ошибок

Завалить программу - проще всего. Зафиксировать обстоятельства сбоя намного сложнее. Типичная ситуация: тестировщик прогоняет программу через серию тестов. Непройденные тесты отправляются разработчику, чтобы тот локализовал ошибку и исправил баги. Но у разработчика эти же самые тесты проходят успешно! А, он уже все переделал, перекомпилировал с другими ключами и т.д. Чтобы этого не происходило, используйте системы управления версиями - Microsoft Source Safe или никсовый CVS.

Сначала тестируется отладочный вариант программы, а затем точно так же - финальный. Оптимизация - коварная штука и дефекты могут появиться в самых неожиданных местах, особенно при работе с вещественной арифметикой. Иногда в этом виноват транслятор, но гораздо чаще - сам программист.

Самыми коварными являются "плавающие" ошибки, проявляющиеся с той или иной степенью вероятности - девятьсот прогонов программа проходит нормально, а затем неожиданно падает без всяких видимых причин. Эй, кто там орет, что такого не бывает? Машина, дескать, детерминирована, и если железо исправно, то баг либо есть, либо нет. Ага, разбежались! Многопоточные приложения и код, управляющий устройствами ввода/вывода, порождают особый класс невоспроизводимых ошибок, некоторые из которых могут проявляться лишь раз в несколько лет! Вот типичный пример:

f1() {int x = strlen(s); s[x] = "*"; s = 0;} // поток 1

f2() {printf("%s\n", s);} // поток 2

Листинг 1. Пример плавающей ошибки.

Один поток модифицирует строку, а другой выводит ее на экран. Какое-то время программа будет работать нормально, пока поток 1 не прервется в тот момент, когда звездочка уже уничтожила завершающий символ нуля, а новый ноль еще не был дописан. Легко доказать, что существуют такие аппаратные конфигурации, на которых эта ошибка не проявится никогда (для этого достаточно взять однопроцессорную машину, гарантированно успевающую выполнить весь код функции f1 за один квант). По закону подлости этой машиной обычно оказывается компьютер тестировщика и у него все работает. А у пользователей - падает.

Чтобы локализовать ошибку, разработчику недостаточно знать, что "программа упала", необходимо сохранить и затем тщательно проанализировать ее состояние на момент обрушения. Как правило, для этого используется аварийный дамп памяти, создаваемый утилитами типа Доктора Ватсона (входит в штатный комплект поставки операционной системы) или на худой конец значение регистров процессора и содержимое стека. Поскольку не все ошибки приводят к аварийному завершению программы, разработчик должен заблаговременно предусмотреть возможность создания дампов самостоятельно - по нажатию специальной комбинации клавиш или при срабатывании внутренней системы контроля.

Вот к чему приводят ошибки проектирования при загрузке системы реальными данными

Рисунок 1. Вот к чему приводят ошибки проектирования при загрузке системы реальными данными.

Бета-тестирование

Собрав все протестированные модули воедино, мы получаем минимально работоспособный продукт. Если он запускается и не падает - это уже хорошо. Говорят: посадите за компьютер неграмотного человека, пусть давит на все клавиши, пока программа не упадет. Ну да, как же! Тестирование программы - это серьезная операция и такой пионерский подход здесь неуместен. Необходимо проверить каждое действие, каждый пункт меню, на всех типах данных и операций. Программистом бета-тестер может и не быть, но квалификацию продвинутого пользователя иметь обязан.

Уронив программу (или добившись от нее выдачи неверных данных), бета-тестер должен суметь воспроизвести сбой, т.е. выявить наиболее короткую последовательность операций, приводящую к ошибке. А сделать это ой как непросто! Попробуй-ка вспомнить, какие клавиши были нажаты! Что? Не получается?! Су... Используйте клавиатурные шпионы. На любом хакерском сайте их навалом. Пусть поработают на благо народа (не вечно же пароли похищать). Шпионить за мышью намного сложнее - приходится сохранять не только позицию курсора, но координаты всех окон или задействовать встроенные макросредства (по типу Visual Basic"a в Word"е). В общем, мышь - это саксь и маст дай. Нормальные бета-тестеры обходятся одной клавиатурой. Полный протокол нажатий сокращает круг поиска ошибки, однако с первого раза воспроизвести сбой удается не всегда и не всем.

В процессе тестирования приходится многократно выполнять одни и те же операции. Это раздражает, ненадежно и непроизводительно. В штатную поставку Windows 3.x входил клавиатурный проигрыватель, позволяющий автоматизировать такие операции. Теперь же его приходится приобретать отдельно. Впрочем, такую утилиту можно написать и самостоятельно. В этом помогут функции FindWindow и SendMessage.

Тестируйте программу на всей линейке операционных систем: Windows 98, Windows 2000, Windows 2003 и т.д. Различия между ними очень значительны. Что стабильно работает под одной осью, может падать под другой, особенно если она перегружена кучей конфликтующих приложений. Ладно, если это кривая программа Васи Пупкина (тут на пользователя можно и наехать), но если ваша программа не уживается в MS Office или другими продуктами крупных фирм, бить будут вас. Никогда не меняйте конфигурацию системы в процессе тестирования! Тогда будет трудно установить, чей это баг. Хорошая штука - виртуальные машины (VM Ware, Microsoft Virtual PC). На одном компьютере можно держать множество версий операционных систем с различной комбинацией установленных приложений - от стерильной до полностью захламленной. При возникновении ошибки состояние системы легко сохранить на жесткий диск, обращаясь к нему впоследствии столько раз, сколько потребуется.

— процесс выявления ошибок в программном обеспечении (ПО). Существующие на сегодняшний день методы тестирования ПО не позволяют однозначно и полностью устранить все дефекты и ошибки и установить корректность функционирования анализируемой программы особенно в закрытых частных программах. Поэтому все существующие методы тестирования действуют в рамках формального процесса проверки исследуемого или разрабатываемого ПО.

Такой процесс формальной проверки или верификации может доказать, что дефекты отсутствуют, с точки зрения используемого метода. (То есть нет никакой возможности точно установить или гарантировать отсутствие дефектов в программном продукте с учётом человеческого фактора, присутствующего на всех этапах жизненного цикла ПО).

Существует множество подходов к решению задачи тестирования и верификации ПО, но эффективное тестирование сложных программных продуктов — это процесс в высшей степени творческий, не сводящийся к следованию строгим и чётким процедурам или созданию таковых.

Тестирование ПО — попытка определить, выполняет ли программа то, что от неё ожидают. Как правило, никакое тестирование не может дать абсолютной гарантии работоспособности программы в будущем.

Для наглядности: почти все производители коммерческого ПО исправляют ошибки в своих продуктах.

Например: Корпорация Microsoft выпускает пакеты обновлений («Service Pack»), для своих операционных систем. Разработчики игр регулярно выпускают «патчи» для своих продуктов. Большинство разработчиков ПО после устранения ошибок выпускают обновлённую (новую) версию своей программы.

Тестирование программного обеспечения

Существует несколько признаков по которым принято производить классификацию видов тестирования. Обычно выделяют следующие признаки:

По объекту тестирования:

  • Функциональное тестирование (functional testing)
  • Нагрузочное тестирование
    • Тестирование производительности (perfomance/stress testing)
    • Тестирование стабильности (stability/load testing)
  • Тестирование удобства использования (usability testing)
  • Тестирование интерфейса пользователя (UI testing)
  • Тестирование безопасности (security testing)
  • Тестирование локализации (localization testing)
  • Тестирование совместимости (compatibility testing)

По знанию системы:

  • Тестирование чёрного ящика (black box)
  • Тестирование белого ящика (white box)
  • Тестирование серого ящика (gray box)

По степени автоматизированности:

  • Ручное тестирование (manual testing)
  • Автоматизированное тестирование (automated testing)
  • Полуавтоматизированное тестирование (semiautomated testing)

По степени изолированности компонентов:

  • Компонентное (модульное) тестирование (component/unit testing)
  • Интеграционное тестирование (integration testing)
  • Системное тестирование (system/end-to-end testing)

По времени проведения тестирования:

  • Альфа тестирование (alpha testing)
    • Тестирование при приёмке (smoke testing)
    • Тестирование новых функциональностей (new feature testing)
    • Регрессионное тестирование (regression testing)
    • Тестирование при сдаче (acceptance testing)
  • Бета тестирование (beta testing)

По признаку позитивности сценариев:

  • Позитивное тестирование (positive testing)
  • Негативное тестирование (negative testing)

По степени подготовленности к тестированию:

  • Тестирование по документации (formal testing)
  • Эд Хок (интуитивное) тестирование (ad hoc testing)

Уровни тестирования

  • Модульное тестирование (юнит-тестирование) — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто модульное тестирование осуществляется разработчиками ПО.
  • Интеграционное тестирование — тестируются интерфейсы между компонентами, подсистемами. При наличии резерва времени на данной стадии тестирование ведётся итерационно, с постепенным подключением последующих подсистем.
  • Системное тестирование — тестируется интегрированная система на её соответствие требованиям.
    • Альфа-тестирование — имитация реальной работы с системой штатными разработчиками, либо реальная работа с системой потенциальными пользователями/заказчиком. Чаще всего альфа-тестирование проводится на ранней стадии разработки продукта, но в некоторых случаях может применяться для законченного продукта в качестве внутреннего приёмочного тестирования. Иногда альфа-тестирование выполняется под отладчиком или с использованием окружения, которое помогает быстро выявлять найденные ошибки. Обнаруженные ошибки могут быть переданы тестировщикам для дополнительного исследования в окружении, подобном тому, в котором будет использоваться ПО.
    • Бета-тестирование — в некоторых случаях выполняется распространение версии с ограничениями (по функциональности или времени работы) для некоторой группы лиц, с тем чтобы убедиться, что продукт содержит достаточно мало ошибок. Иногда бета-тестирование выполняется для того, чтобы получить обратную связь о продукте от его будущих пользователей.

Часто для свободного/открытого ПО стадия Альфа-тестирования характеризует функциональное наполнение кода, а Бета тестирования — стадию исправления ошибок. При этом как правило на каждом этапе разработки промежуточные результаты работы доступны конечным пользователям.

Тестирование «белого ящика» и «чёрного ящика»

В терминологии профессионалов тестирования (программного и некоторого аппаратного обеспечения), фразы «тестирование белого ящика» и «тестирование чёрного ящика» относятся к тому, имеет ли разработчик тестов доступ к исходному коду тестируемого ПО, или же тестирование выполняется через пользовательский интерфейс либо прикладной программный интерфейс, предоставленный тестируемым модулем.

При тестировании белого ящика (англ. white-box testing , также говорят — прозрачного ящика ), разработчик теста имеет доступ к исходному коду программ и может писать код, который связан с библиотеками тестируемого ПО. Это типично для юнит-тестирования (англ. unit testing ), при котором тестируются только отдельные части системы. Оно обеспечивает то, что компоненты конструкции — работоспособны и устойчивы, до определённой степени. При тестировании белого ящика используются метрики покрытия кода.

При тестировании чёрного ящика, тестировщик имеет доступ к ПО только через те же интерфейсы, что и заказчик или пользователь, либо через внешние интерфейсы, позволяющие другому компьютеру либо другому процессу подключиться к системе для тестирования. Например, тестирующий модуль может виртуально нажимать клавиши или кнопки мыши в тестируемой программе с помощью механизма взаимодействия процессов, с уверенностью в том, все ли идёт правильно, что эти события вызывают тот же отклик, что и реальные нажатия клавиш и кнопок мыши. Как правило, тестирование чёрного ящика ведётся с использованием спецификаций или иных документов, описывающих требования к системе. Как правило, в данном виде тестирования критерий покрытия складывается из покрытия структуры входных данных, покрытия требований и покрытия модели (в тестировании на основе моделей).

Если «альфа-» и «бета-тестирование» относятся к стадиям до выпуска продукта (а также, неявно, к объёму тестирующего сообщества и ограничениям на методы тестирования), тестирование «белого ящика» и «чёрного ящика» имеет отношение к способам, которыми тестировщик достигает цели.

Бета-тестирование в целом ограничено техникой чёрного ящика (хотя постоянная часть тестировщиков обычно продолжает тестирование белого ящика параллельно бета-тестированию). Таким образом, термин «бета-тестирование» может указывать на состояние программы (ближе к выпуску чем «альфа»), или может указывать на некоторую группу тестировщиков и процесс, выполняемый этой группой. Итак, тестировщик может продолжать работу по тестированию белого ящика, хотя ПО уже «в бете» (стадия), но в этом случае он не является частью «бета-тестирования» (группы/процесса).

Статическое и динамическое тестирование

Описанные выше техники — тестирование белого ящика и тестирование чёрного ящика — предполагают, что код исполняется, и разница состоит лишь в той информации, которой владеет тестировщик. В обоих случаях это динамическое тестирование .

При статическом тестировании программный код не выполняется — анализ программы происходит на основе исходного кода, который вычитывается вручную, либо анализируется специальными инструментами. В некоторых случаях, анализируется не исходный, а промежуточный код (такой как байт-код или код на MSIL).

Также к статическому тестированию относят тестирование требований, спецификаций, документации.

Регрессионное тестирование

После внесения изменений в очередную версию программы, регрессионные тесты подтверждают, что сделанные изменения не повлияли на работоспособность остальной функциональности приложения. Регрессионное тестирование может выполняться как вручную, так и средствами автоматизации тестирования.

Тестовые скрипты

Тестировщики пишут и используют тестовые скрипты в юнит-, системном и регрессионном тестировании. Тестовые скрипты нужно писать для модулей с наивысшим риском появления отказов и наибольшей вероятностью того что этот риск станет проблемой.

Покрытие кода

Покрытие кода, по своей сути, является тестированием методом белого ящика. Тестируемое ПО собирается со специальными настройками или библиотеками и/или запускается в особом окружении, в результате чего для каждой используемой (выполняемой) функции программы определяется местонахождение этой функции в исходном коде. Этот процесс позволяет разработчикам и специалистам по обеспечению качества определить части системы, которые, при нормальной работе, используются очень редко или никогда не используются (такие как код обработки ошибок и т.п.). Это позволяет сориентировать тестировщиков на тестирование наиболее важных режимов.

Тестировщики могут использовать результаты теста покрытия кода для разработки тестов или тестовых данных, которые расширят покрытие кода на важные функции.

Как правило, инструменты и библиотеки, используемые для получения покрытия кода, требуют значительных затрат производительности и/или памяти, недопустимых при нормальном функционировании ПО. Поэтому они могут использоваться только в лабораторных условиях.

Разработка через тестирование (test-driven development)

(англ. test-driven development) — техника программирования, при которой модульные тесты для программы или её фрагмента пишутся до самой программы (англ. test-first development) и, по существу, управляют её разработкой. Является одной из основных практик экстремального программирования.

Ни один программист не считает работу над некоторым фрагментом кода завершенной, не проверив перед этим его работоспособность. Однако, если вы тестируете свой код, это не означает, что у вас есть тесты.

Тест - это процедура, которая позволяет либо подтвердить, либо опровергнуть работоспособность кода. Когда программист проверяет работоспособность разработанного им кода, он выполняет тестирование вручную. В данном контексте тест состоит из двух этапов: стимулирование кода и проверки результатов его работы. Автоматический тест выполняется иначе: вместо программиста стимулированием кода и проверкой результатов занимается компьютер, который отображает на экране результат выполнения теста: код работоспособен или код неработоспособен.

Методика разработки через тестирование(Test-Driven Development, TDD) позволяет получить ответы на вопросы об организации автоматических тестов и выработке определенных навыков тестирования.

«Чистый код, который работает» - в этой короткой, но содержательной фразе, кроется весь смысл методики разработки приложений через тестирование. Чистый код, который работает, - это цель, к которой стоит стремиться, и этому есть причины:

    У разработчика появляется шанс усвоить уроки, которые преподносит ему код. Если он воспользуется первой же идеей, которая пришла ему в голову, у него не будет шанса реализовать вторую, лучшую идею.

    Коллеги по команде могут рассчитывать на разработчика, а он, в, свою очередь, на них.

    Разработчику приятнее писать такой код.

Однако как мы можем получить чистый код, который работает? Очень многие силы мешают нам добиться этого, а иногда нам не удается получить даже код, который работает. Чтобы избавиться от множества проблем, мы будем разрабатывать код, исходя из автоматических тестов. Такой стиль программирования называется разработкой через тестирование. В рамках этой методики мы:

    Пишем новый код только тогда, когда автоматический код не сработал.

    Удаляем дублирование.

Два столь простых правила на самом деле генерируют сложное индивидуальное и групповое поведение со множеством технических последствий:

    Проектируя код, мы постоянно запускаем его и получаем представление о том, как он работает, это помогает нам принимать правильные решения.

    Мы самостоятельно пишем свои собственные тесты, так как мы не можем ждать, что кто-то другой напишет тесты для нас.

    Наша среда разработки должна быстро реагировать на небольшие модификации кода.

    Архитектура программы должна базироваться на использовании множества сильно связанных компонентов, которые слабо сцеплены друг с другом, благодаря чему тестирование кода упрощается.

Два упомянутых правила TDD определяют порядок этапов программирования:

    Красный - напишите небольшой тест, который не работает, а возможно, даже не компилируется.

    Зеленый - заставьте тест работать как можно быстрее, при этом не думайте о правильности дизайна и чистоте кода. Напишите ровно столько кода, чтобы тест сработал.

    Рефакторинг - удалите из написанного вами кода любое дублирование.

Освоив TDD, разработчики обнаруживают, что они пишут значительно больше тестов, чем раньше, и двигаются вперед маленькими шагами, которые раньше могли показаться бессмысленными.

Заставив тест работать, мы знаем, что теперь тест работает, отныне и навеки. Мы стали на шаг ближе к завершению работы, чем мы были до того, как тест сработал. После этого мы заставляем второй тест работать, затем третий, четвертый и т.д. Чем сложнее проблема, стоящая перед программистом, тем меньшую область функциональности должен покрывать каждый тест.

Определенно существуют задачи, которые невозможно(по крайней мере, на текущий момент) решить только при помощи тестов. В частности, TDD не позволяет механически продемонстрировать адекватность разработанного кода в области безопасности данных и взаимодействия между процессами. Безусловно, безопасность основана на коде, в котором не должно быть дефектов, однако она основана также на участии человека в процедурах защиты данных. Тонкие проблемы, возникающие в области взаимодействия между процессами, невозможно с уверенностью воспроизвести, просто запустив некоторый код.

Терминология, связанная с модульными тестами

  • Разработка через тестирование - процесс разработки программного обеспечения, который предусматривает написание и автоматизацию модульных тестов еще до момента написания соответствующих классов или модулей. Это гарантирует, что все обязанности любого элемента программного обеспечения определяются еще до того, как они будут закодированы.
  • Модульные тесты - Unit Tests, Programming Tests, Developer Tests - тесты, проверяющие функциональность отдельных классов, компонентов, модулей приложения. Эти тесты не видны конечному заказчику или доменному эксперту. Обычно их начинают писать после оформления функциональных тестов.
  • Зеленая/Красная полоса - многие графические среды для выполнения модульных тестов отображают результат выполнения тестов в виде линии, которая окрашена в зеленый цвет, если все тесты выполнились удачно, и красной, если были ошибки.
  • Моки, Мок-объекты (MockObjects) - автоматически генерируемые заглушки, которые могу выступат в роли реальных объектов. Поведением моков можно управлять непосредственно в тесте. Моки могут выполнять дополнительные проверки, что тестируемый код их использовал, как ожидалось.
  • Модульный тест - тест, который проверяет поведение небольшой части приложения. Эта часть может быть одним классом, одним методом или набором классов, который реализуют какое-то архитектурное решение, и это решение необходимо проверить на работоспособность.
  • Тест - TestCase - набор тестовых методов, предназначенных для тестирования одного класса (в среде xUnit). Обычно TestCase состоит из методов, чье имя начинается с приставки test. Каждый такой метод тестирует какой-либо один момент тестируемого класса. В приемочном тестировании TestCase - это набор команд, которые тестируют одну значимую для заказчика функциональность.
  • Фикстура - Fixture - состояние среды тестирования, которое требуется для успешного выполнения тестового метода. Это может быть набор каких-либо объектов, состояние базы данных, наличие определенных файлов и т.д. Фикстура создается в методе setUp() перед каждым вызовом метода вида testSomething теста (TestCase) и удаляется в tearDown() после окончания выполнения тестового метода.
  • Проверка - Assert - метод класса TestCase, который предназначен для сверки реального состояния тестируемого кода с ожидаемым.

Терминология, связанная с наборами тестов

  • Набор тестов - TestSuite - набор тестов, предназначенный для тестирования какой-либо укрупненной сущности программной системы. В SimpleTest есть понятие TestGroup, которые практически эквивалентно понятию TestSuite. Иногда TestSuite употребляют в значении «все тесты, которые есть для приложения».

Терминология, связанная с приемочными тестами

  • Приемочные (функциональные) тесты - Customer tests, Acceptance tests - тесты, проверяющие функциональность приложения на соответствие требованиям заказчика. Приемочные тесты не должны ничего знать о деталях реализации приложения. Приемочные тесты заменяют ТЗ при использовании методики экстремального программирования (XP).
  • Регрессионный тесты - тесты, которые проверяют, что поведение системы не изменилось. На самом деле, большинство регрессионных тестов являются или модульными или функциональными тестами, которые включаются в определенный набор тестов (RegressionTestSuite), который гарантирует, что функциональность системы не будет случайно изменена.

Тестирование – это исследовательский метод, который позволяет выявить уровень знаний, умений и навыков, способностей и других качеств личности, а также их соответствие определенным нормам путем анализа способов выполнения испытуемым ряда специальных заданий. Такие задания принято называть тестами. Тест – это стандартизированное задание или особым образом связанные между собой задания, которые позволяют исследователю диагностировать меру выраженности исследуемого свойства у испытуемого, его психологические характеристики, а также отношение к тем или иным объектам. В результате тестирования обычно получают некоторую количественную характеристику, показывающую меру выраженности исследуемой особенности у личности. Она должна быть соотносима с установленными для данной категории испытуемых нормами.

Значит, с помощью тестирования можно определить имеющийся уровень развития некоторого свойства в объекте исследования и сравнить его с эталоном или с развитием этого качества у испытуемого в более ранний период.

Существуют определенные правила проведения тестирования и интерпретации полученных результатов. Эти правила достаточно четко проработаны, и основные из них имеют следующий смысл:

1) информирование испытуемого о целях проведения тестирования;

2) ознакомление испытуемого с инструкцией по выполнению тестовых заданий и достижение уверенности исследователя в том, что инструкция понята правильно;

3) обеспечение ситуации спокойного и самостоятельного выполнения заданий испытуемыми; сохранение нейтрального отношения к тестируемым, уход от подсказок и помощи;

4) соблюдение исследователем методических указаний по обработке полученных данных и интерпретации результатов, которыми сопровождается каждый тест или соответствующее задание;

5) предупреждение распространения полученной в результате тестирования психодиагностической информации, обеспечение ее конфиденциальности;

6) ознакомление испытуемого с результатами тестирования, сообщение ему или ответственному лицу соответствующей информации с учетом принципа «Не навреди!»; в этом случае возникает необходимость решения серии этических и нравственных задач;

7) накопление исследователем сведений, полученных другими исследовательскими методами и методиками, их соотнесение друг с другом и определение согласованности между ними; обогащение своего опыта работы с тестом и знаний об особенностях его применения.

Выделяют также несколько типов тестов, каждому из которых сопутствуют соответствующие процедуры тестирования.

Тесты способностей позволяют выявить и измерить уровень развития тех или иных психических функций, познавательных процессов. Такие тесты чаще всего связаны с диагностикой познавательной сферы личности, особенностей мышления и обычно называются также интеллектуальными.

К ним относятся, например, тест Равена, тест Амтхауэра, соответствующие субтесты теста Векслера и т.д., а также тесты-задания на обобщение, классификацию и множество других тестов исследовательского характера.

Тесты достижений ориентированы на выявление уровня сформированности конкретных знаний, умений и навыков и как меры успешности выполнения, и как меры готовности к выполнению некоторой деятельности. В качестве примеров могут служить все случаи тестовых экзаменационных испытаний. На практике обычно применяются «батареи» тестов достижений.

Личностные тесты предназначены для выявления свойств личности испытуемых. Они многочисленны и разнообразны: существуют опросники состояний и эмоционального склада личности (например, тесты тревожности), опросники мотивации деятельности и предпочтений, определения черт характера личности и отношений.

Имеется группа тестов, называемых проективными, которые позволяют выявить установки, неосознаваемые потребности и побуждения, тревоги и состояние страха.

Применение тестов всегда связано с измерением проявления того или иного психологического свойства и оценкой уровня его развития или сформированности. Поэтому важное значение имеет качество теста. Качество теста характеризуется критериями его точности, т.е. надежностью и валидностью.

Надежность теста определяется тем, насколько получаемые показатели являются стабильными и насколько они не зависят от случайных факторов. Разумеется, речь идет о сравнении показаний одних и тех же испытуемых. Это значит, что надежному тесту должна быть свойственна согласованность показателей тестирования, полученных при повторном тестировании, и можно быть уверенным в том, что тест выявляет одно и то же

свойство. Применяются разные способы проверки надежности тестов.

Один способ – это только что упомянутое повторное тестирование: если результаты первого и через определенное время проводимого повторного тестирования покажут наличие достаточного уровня корреляции, то это будет свидетельствовать о надежности теста. Второй способ связан с применением другой эквивалентной формы теста и наличием высокой корреляции между ними. Возможно и применение третьего способа оценки надежности, когда тест допускает его расщепление на две части и одна

и та же группа испытуемых обследуется с применением обеих частей теста. Надежность теста показывает, насколько точно измеряются психологические параметры и насколько высокой может быть мера доверия исследователя к полученным результатам.

Валидность теста отвечает на вопрос о том, что именно выявляет тест, насколько он пригоден для выявления того, для чего он предназначен. Например, тесты способностей нередко выявляют несколько иное: натренированность, наличие соответствующего опыта или, наоборот, его отсутствие. В таком случае тест не отвечает требованиям валидности.

В психодиагностике выделяют разные виды валидности. В простейшем случаеь валидность теста обычно определяется путем сопоставления полученных в результате тестирования показателей с экспертными оценками о наличии данного свойства у исследуемых (текущая валидность или валидность «по одновременности»), а также путем анализа данных, полученных в результате наблюдения за обследуемыми в различных ситуациях их жизни и деятельности, и их достижений в соответствующей области.

Вопрос о валидности теста может быть решен еще и сравнением его данных с показателями, полученными с помощью методики, связанной с данной методикой, валидность которой считается установленной.

Изучение продуктов деятельности – это исследовательский метод, который позволяет опосредованно изучать сформированность знаний и навыков, интересов и способностей человека на основе анализа продуктов его деятельности. Особенность этого метода заключается в том, что исследователь не вступает в контакт с самим человеком, а имеет дело с продуктами его предшествующей деятельности или размышлениями о том, какие

изменения произошли в самом испытуемом в процессе и в результате его включенности в некоторую систему взаимодействий и отношений.

Существуют различные методологии динамического тестирования ПО. В зависимости от наличия у тестировщика доступа к исходному коду программы, выделяют следующие методы тестирования:

  • · Метод черного ящика
  • · Метод белого ящика
  • · Метод серого ящика

Метод черного ящика.

Впервые термин «черный ящик» упоминается психиатром У. Р. Эшби в книге "Введение в кибернетику" в 1959 г. Он писал, что метод черного ящика позволяет изучать поведение системы абстрагируясь от ее внутреннего устройства.

В области тестирования метод черного ящика - это техника тестирования, которая основана на работе с внешними интерфейсами программного обеспечения, без знания внутреннего устройства системы .

Данный метод назван “Черным ящиком”, поскольку в этом методе тестируемое программное обеспечение для тестировщика выглядит как черный ящик, внутри которого происходят некоторые процессы, однако тестировщику о них принципиально ничего не известно. Данная техника позволяет обнаружить ошибки в следующих категориях:

  • · Ошибки интерфейса.
  • · Недостающие или неправильно реализованные функции.
  • · Недостаточная производительность или ошибки поведения системы.
  • · Некорректные структуры данных или плохая организация доступа к внешним базам данных.

Таким образом, поскольку тестировщик не имеет никакого представления о внутреннем устройстве и структуре системы, ему необходимо сконцентрироваться на том, что делает программа, а не на том, как она это делает.

Метод белого ящика.

Как можно догадаться из названия, этот метод тестирования противоположен методу черного ящика. Данный метод тестирования основан на анализе внутренней структуры системы .

То есть в данном случае тестировщику известны все аспекты реализации тестируемого программного обеспечения. Этот метод позволяет протестировать не только корректность реакции программы на определенный ввод (как в случае с черным ящиком), но и правильную работу отдельных модулей и функций, основываясь на знании кода, который будет обрабатывать этот ввод. Знание особенностей реализации тестируемой программы - обязательное требование к тестировщику для успешного применения этой техники. Тестирование методом белого ящика позволяет углубиться во внутренне устройство ПО, за пределы его внешних интерфейсов.

Метод серого ящика.

Этот метод тестирования системы предполагает комбинацию подходов Белого и Черного ящиков. Таким образом, тестировщику лишь частично известно внутреннее устройство программы. Например, предполагается, наличие доступа к внутренней структуре программного обеспечения для разработки максимально эффективных тест-кейсов, в то время как само тестирование будет проводится методом черного ящика. Или тестировщики могут во всем следовать методу черного ящика, однако для того что бы убедиться в корректной работе отдельных алгоритмов могут смотреть информацию в логах или анализировать записи программы в базе данных.

  • Tutorial

Доброго времени суток!

Хочу собрать всю самую необходимую теорию по тестирвоанию, которую спрашивают на собеседованиях у trainee, junior и немножко middle. Собственно, я собрал уже не мало. Цель сего поста в том, чтобы сообща добавить упущенное и исправить/перефразировать/добавить/сделатьЧтоТоЕщё с тем, что уже есть, чтобы стало хорошо и можно было взять всё это и повторить перед очередным собеседованием про всяк случай. Вообщем, коллеги, прошу под кат, кому почерпнуть что-то новое, кому систематизировать старое, а кому внести свою лепту.

В итоге должна получиться исчерпывающая шпаргалка, которую нужно перечитать по дороге на собеседование.

Всё ниже перечисленное не выдумано мной лично, а взято с разных источников, где мне лично формулировка и определение понравилось больше. В конце список источников.

В теме: определение тестирования, качество, верификация / валидация, цели, этапы, тест план, пункты тест плана, тест дизайн, техники тест дизайна, traceability matrix, tets case, чек-лист, дефект, error/deffect/failure, баг репорт, severity vs priority, уровни тестирования, виды / типы, подходы к интеграционному тестированию, принципы тестирования, статическое и динамическое тестирование, исследовательское / ad-hoc тестирование, требования, жизненный цикл бага, стадии разработки ПО, decision table, qa/qc/test engineer, диаграмма связей.

Поехали!

Тестирование программного обеспечения - проверка соответствия между реальным и ожидаемым поведением программы, осуществляемая на конечном наборе тестов, выбранном определенным образом. В более широком смысле, тестирование - это одна из техник контроля качества, включающая в себя активности по планированию работ (Test Management), проектированию тестов (Test Design), выполнению тестирования (Test Execution) и анализу полученных результатов (Test Analysis).

Качество программного обеспечения (Software Quality) - это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Верификация (verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе .
Также можно встретить иную интерпритацию:
Процесс оценки соответствия продукта явным требованиям (спецификациям) и есть верификация (verification), в то же время оценка соответствия продукта ожиданиям и требованиям пользователей - есть валидация (validation). Также часто можно встретить следующее определение этих понятий:
Validation - ’is this the right specification?’.
Verification - ’is the system correct to specification?’.

Цели тестирвоания
Повысить вероятность того, что приложение, предназначенное для тестирования, будет работать правильно при любых обстоятельствах.
Повысить вероятность того, что приложение, предназначенное для тестирования, будет соответствовать всем описанным требованиям.
Предоставление актуальной информации о состоянии продукта на данный момент.

Этапы тестирования:
1. Анализ
2. Разработка стратегии тестирования
и планирование процедур контроля качества
3. Работа с требованиями
4. Создание тестовой документации
5. Тестирование прототипа
6. Основное тестирование
7. Стабилизация
8. Эксплуатация

Тест план (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Отвечает на вопросы:
Что надо тестировать?
Что будете тестировать?
Как будете тестировать?
Когда будете тестировать?
Критерии начала тестирования.
Критерии окончания тестирования.

Основные пункты тест плана
В стандарте IEEE 829 перечислены пункты, из которых должен (пусть - может) состоять тест-план:
a) Test plan identifier;
b) Introduction;
c) Test items;
d) Features to be tested;
e) Features not to be tested;
f) Approach;
g) Item pass/fail criteria;
h) Suspension criteria and resumption requirements;
i) Test deliverables;
j) Testing tasks;
k) Environmental needs;
l) Responsibilities;
m) StafÞng and training needs;
n) Schedule;
o) Risks and contingencies;
p) Approvals.

Тест дизайн - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Роли, ответственные за тест дизайн:
Тест аналитик - определяет «ЧТО тестировать?»
Тест дизайнер - определяет «КАК тестировать?»

Техники тест дизайна

Эквивалентное Разделение (Equivalence Partitioning - EP) . Как пример, у вас есть диапазон допустимых значений от 1 до 10, вы должны выбрать одно верное значение внутри интервала, скажем, 5, и одно неверное значение вне интервала - 0.

Анализ Граничных Значений (Boundary Value Analysis - BVA) . Если взять пример выше, в качестве значений для позитивного тестирования выберем минимальную и максимальную границы (1 и 10), и значения больше и меньше границ (0 и 11). Анализ Граничный значений может быть применен к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.

Причина / Следствие (Cause/Effect - CE) . Это, как правило, ввод комбинаций условий (причин), для получения ответа от системы (Следствие). Например, вы проверяете возможность добавлять клиента, используя определенную экранную форму. Для этого вам необходимо будет ввести несколько полей, таких как «Имя», «Адрес», «Номер Телефона» а затем, нажать кнопку «Добавить» - эта «Причина». После нажатия кнопки «Добавить», система добавляет клиента в базу данных и показывает его номер на экране - это «Следствие».

Исчерпывающее тестирование (Exhaustive Testing - ET) - это крайний случай. В пределах этой техники вы должны проверить все возможные комбинации входных значений, и в принципе, это должно найти все проблемы. На практике применение этого метода не представляется возможным, из-за огромного количества входных значений.

Traceability matrix - Матрица соответствия требований - это двумерная таблица, содержащая соответсвие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк - тестовые сценарии. На пересечении - отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки.
Матрица соответсвия требований используется QA-инженерами для валидации покрытия продукта тестами. МСТ является неотъемлемой частью тест-плана.

Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Пример:
Action Expected Result Test Result
(passed/failed/blocked)
Open page «login» Login page is opened Passed

Каждый тест кейс должен иметь 3 части:
PreConditions Список действий, которые приводят систему к состоянию пригодному для проведения основной проверки. Либо список условий, выполнение которых говорит о том, что система находится в пригодном для проведения основного теста состояния.
Test Case Description Список действий, переводящих систему из одного состояния в другое, для получения результата, на основании которого можно сделать вывод о удовлетворении реализации, поставленным требованиям
PostConditions Список действий, переводящих систему в первоначальное состояние (состояние до проведения теста - initial state)
Виды Тестовых Случаев:
Тест кейсы разделяются по ожидаемому результату на позитивные и негативные:
Позитивный тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативный тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций (срабатывание валидаторов), а также проверяет, что вызываемая приложением функция не выполняется при срабатывании валидатора.

Чек-лист (check list) - это документ, описывающий что должно быть протестировано. При этом чек-лист может быть абсолютно разного уровня детализации. На сколько детальным будет чек-лист зависит от требований к отчетности, уровня знания продукта сотрудниками и сложности продукта.
Как правило, чек-лист содержит только действия (шаги), без ожидаемого результата. Чек-лист менее формализован чем тестовый сценарий. Его уместно использовать тогда, когда тестовые сценарии будут избыточны. Также чек-лист ассоциируются с гибкими подходами в тестировании.

Дефект (он же баг) - это несоответствие фактического результата выполнения программы ожидаемому результату. Дефекты обнаруживаются на этапе тестирования программного обеспечения (ПО), когда тестировщик проводит сравнение полученных результатов работы программы (компонента или дизайна) с ожидаемым результатом, описанным в спецификации требований.

Error - ошибка пользователя, то есть он пытается использовать программу иным способом.
Пример - вводит буквы в поля, где требуется вводить цифры (возраст, количество товара и т.п.).
В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message), с красным крестиком которые.
Bug (defect) - ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так как планировалось и программа выходит из-под контроля. Например, когда никак не контроллируется ввод пользователя, в результате неверные данные вызывают краши или иные «радости» в работе программы. Либо внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure - сбой (причём не обязательно аппаратный) в работе компонента, всей программы или системы. То есть, существуют такие дефекты, которые приводят к сбоям (A defect caused the failure) и существуют такие, которые не приводят. UI-дефекты например. Но аппаратный сбой, никак не связанный с software, тоже является failure.

Баг Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Шапка
Короткое описание (Summary) Короткое описание проблемы, явно указывающее на причину и тип ошибочной ситуации.
Проект (Project) Название тестируемого проекта
Компонент приложения (Component) Название части или функции тестируемого продукта
Номер версии (Version) Версия на которой была найдена ошибка
Серьезность (Severity) Наиболее распространена пятиуровневая система градации серьезности дефекта:
S1 Блокирующий (Blocker)
S2 Критический (Critical)
S3 Значительный (Major)
S4 Незначительный (Minor)
S5 Тривиальный (Trivial)
Приоритет (Priority) Приоритет дефекта:
P1 Высокий (High)
P2 Средний (Medium)
P3 Низкий (Low)
Статус (Status) Статус бага. Зависит от используемой процедуры и жизненного цикла бага (bug workflow and life cycle)

Автор (Author) Создатель баг репорта
Назначен на (Assigned To) Имя сотрудника, назначенного на решение проблемы
Окружение
ОС / Сервис Пак и т.д. / Браузера + версия /… Информация об окружении, на котором был найден баг: операционная система, сервис пак, для WEB тестирования - имя и версия браузера и т.д.

Описание
Шаги воспроизведения (Steps to Reproduce) Шаги, по которым можно легко воспроизвести ситуацию, приведшую к ошибке.
Фактический Результат (Result) Результат, полученный после прохождения шагов к воспроизведению
Ожидаемый результат (Expected Result) Ожидаемый правильный результат
Дополнения
Прикрепленный файл (Attachment) Файл с логами, скриншот или любой другой документ, который может помочь прояснить причину ошибки или указать на способ решения проблемы.

Severity vs Priority
Серьезность (Severity) - это атрибут, характеризующий влияние дефекта на работоспособность приложения.
Приоритет (Priority) - это атрибут, указывающий на очередность выполнения задачи или устранения дефекта. Можно сказать, что это инструмент менеджера по планированию работ. Чем выше приоритет, тем быстрее нужно исправить дефект.
Severity выставляется тестировщиком
Priority - менеджером, тимлидом или заказчиком

Градация Серьезности дефекта (Severity)

S1 Блокирующая (Blocker)
Блокирующая ошибка, приводящая приложение в нерабочее состояние, в результате которого дальнейшая работа с тестируемой системой или ее ключевыми функциями становится невозможна. Решение проблемы необходимо для дальнейшего функционирования системы.

S2 Критическая (Critical)
Критическая ошибка, неправильно работающая ключевая бизнес логика, дыра в системе безопасности, проблема, приведшая к временному падению сервера или приводящая в нерабочее состояние некоторую часть системы, без возможности решения проблемы, используя другие входные точки. Решение проблемы необходимо для дальнейшей работы с ключевыми функциями тестируемой системой.

S3 Значительная (Major)
Значительная ошибка, часть основной бизнес логики работает некорректно. Ошибка не критична или есть возможность для работы с тестируемой функцией, используя другие входные точки.

S4 Незначительная (Minor)
Незначительная ошибка, не нарушающая бизнес логику тестируемой части приложения, очевидная проблема пользовательского интерфейса.

S5 Тривиальная (Trivial)
Тривиальная ошибка, не касающаяся бизнес логики приложения, плохо воспроизводимая проблема, малозаметная посредствам пользовательского интерфейса, проблема сторонних библиотек или сервисов, проблема, не оказывающая никакого влияния на общее качество продукта.

Градация Приоритета дефекта (Priority)
P1 Высокий (High)
Ошибка должна быть исправлена как можно быстрее, т.к. ее наличие является критической для проекта.
P2 Средний (Medium)
Ошибка должна быть исправлена, ее наличие не является критичной, но требует обязательного решения.
P3 Низкий (Low)
Ошибка должна быть исправлена, ее наличие не является критичной, и не требует срочного решения.

Уровни Тестирования

1. Модульное тестирование (Unit Testing)
Компонентное (модульное) тестирование проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).

2. Интеграционное тестирование (Integration Testing)
Проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.

3. Системное тестирование (System Testing)
Основной задачей системного тестирования является проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования, отсутствующая или неверная функциональность, неудобство использования и т.д.

4. Операционное тестирование (Release Testing).
Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации, как это было определено в бизнес моделе системы. Следует учесть, что и бизнес модель может содержать ошибки. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях; недостаточная производительность системы в среде эксплуатации и др. Очевидно, что нахождение подобных вещей на стадии внедрения - критичная и дорогостоящая проблема. Поэтому так важно проведение не только верификации, но и валидации, с самых ранних этапов разработки ПО.

5. Приемочное тестирование (Acceptance Testing)
Формальный процесс тестирования, который проверяет соответствие системы требованиям и проводится с целью:
определения удовлетворяет ли система приемочным критериям;
вынесения решения заказчиком или другим уполномоченным лицом принимается приложение или нет.

Виды / типы тестирования

Функциональные виды тестирования
Функциональное тестирование (Functional testing)
Тестирование безопасности (Security and Access Control Testing)
Тестирование взаимодействия (Interoperability Testing)

Нефункциональные виды тестирования
Все виды тестирования производительности:
o нагрузочное тестирование (Performance and Load Testing)
o стрессовое тестирование (Stress Testing)
o тестирование стабильности или надежности (Stability / Reliability Testing)
o объемное тестирование (Volume Testing)
Тестирование установки (Installation testing)
Тестирование удобства пользования (Usability Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing)
Конфигурационное тестирование (Configuration Testing)

Связанные с изменениями виды тестирования
Дымовое тестирование (Smoke Testing)
Регрессионное тестирование (Regression Testing)
Повторное тестирование (Re-testing)
Тестирование сборки (Build Verification Test)
Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)

Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функциональности компонента или системы в целом.

Тестирование безопасности - это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.

Тестирование взаимодействия (Interoperability Testing) - это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование

Нагрузочное тестирование - это автоматизированное тестирование, имитирующее работу определенного количества бизнес пользователей на каком-либо общем (разделяемом ими) ресурсе.

Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса. Стрессом в данном контексте может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также одной из задач при стрессовом тестировании может быть оценка деградации производительности, таким образом цели стрессового тестирования могут пересекаться с целями тестирования производительности.

Объемное тестирование (Volume Testing) . Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения

Тестирование стабильности или надежности (Stability / Reliability Testing) . Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.

Тестирование установки направленно на проверку успешной инсталляции и настройки, а также обновления или удаления программного обеспечения.

Тестирование удобства пользования - это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Сюда также входит:
Тестирование пользовательского интерфейса (англ. UI Testing) - это вид тестирования исследования, выполняемого с целью определения, удобен ли некоторый искусственный объект (такой как веб-страница, пользовательский интерфейс или устройство) для его предполагаемого применения.
User eXperience (UX) - ощущение, испытываемое пользователем во время использования цифрового продукта, в то время как User interface - это инструмент, позволяющий осуществлять интеракцию «пользователь - веб-ресурс».

Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети). Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.

Конфигурационное тестирование (Configuration Testing) - специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)

Дымовое (Smoke) тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что после сборки кода (нового или исправленного) устанавливаемое приложение, стартует и выполняет основные функции.

Регрессионное тестирование - это вид тестирования направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.

Повторное тестирование - тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок.
В чем разница между regression testing и re-testing?
Re-testing - проверяется исправление багов
Regression testing - проверяется то, что исправление багов не повлияло на другие модули ПО и не вызвало новых багов.

Тестирование сборки или Build Verification Test - тестирование направленное на определение соответствия, выпущенной версии, критериям качества для начала тестирования. По своим целям является аналогом Дымового Тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.

Санитарное тестирование - это узконаправленное тестирование достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.

Предугадывание ошибки (Error Guessing - EG) . Это когда тест аналитик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку. Например, спецификация говорит: «пользователь должен ввести код». Тест аналитик, будет думать: «Что, если я не введу код?», «Что, если я введу неправильный код? », и так далее. Это и есть предугадывание ошибки.

Подходы к интеграционному тестированию:

Снизу вверх (Bottom Up Integration)
Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.

Сверху вниз (Top Down Integration)
Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами. Таким образом мы проводим тестирование сверху вниз.

Большой взрыв («Big Bang» Integration)
Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.

Принципы тестирования

Принцип 1 - Тестирование демонстрирует наличие дефектов (Testing shows presence of defects)
Тестирование может показать, что дефекты присутствуют, но не может доказать, что их нет. Тестирование снижает вероятность наличия дефектов, находящихся в программном обеспечении, но, даже если дефекты не были обнаружены, это не доказывает его корректности.

Принцип 2 - Исчерпывающее тестирование недостижимо (Exhaustive testing is impossible)
Полное тестирование с использованием всех комбинаций вводов и предусловий физически невыполнимо, за исключением тривиальных случаев. Вместо исчерпывающего тестирования должны использоваться анализ рисков и расстановка приоритетов, чтобы более точно сфокусировать усилия по тестированию.

Принцип 3 - Раннее тестирование (Early testing)
Чтобы найти дефекты как можно раньше, активности по тестированию должны быть начаты как можно раньше в жизненном цикле разработки программного обеспечения или системы, и должны быть сфокусированы на определенных целях.

Принцип 4 - Скопление дефектов (Defects clustering)
Усилия тестирования должны быть сосредоточены пропорционально ожидаемой, а позже реальной плотности дефектов по модулям. Как правило, большая часть дефектов, обнаруженных при тестировании или повлекших за собой основное количество сбоев системы, содержится в небольшом количестве модулей.

Принцип 5 - Парадокс пестицида (Pesticide paradox)
Если одни и те же тесты будут прогоняться много раз, в конечном счете этот набор тестовых сценариев больше не будет находить новых дефектов. Чтобы преодолеть этот «парадокс пестицида», тестовые сценарии должны регулярно рецензироваться и корректироваться, новые тесты должны быть разносторонними, чтобы охватить все компоненты программного обеспечения, или системы, и найти как можно больше дефектов.

Принцип 6 - Тестирование зависит от контекста (Testing is concept depending)
Тестирование выполняется по-разному в зависимости от контекста. Например, программное обеспечение, в котором критически важна безопасность, тестируется иначе, чем сайт электронной коммерции.

Принцип 7 - Заблуждение об отсутствии ошибок (Absence-of-errors fallacy)
Обнаружение и исправление дефектов не помогут, если созданная система не подходит пользователю и не удовлетворяет его ожиданиям и потребностям.

Cтатическое и динамическое тестирование
Статическое тестирование отличается от динамического тем, что производится без запуска программного кода продукта. Тестирование осуществляется путем анализа программного кода (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к статическому тестирвоанию относится тестирования спецификации и прочей документации.

Исследовательское / ad-hoc тестирование
Простейшее определение исследовательского тестирования - это разработка и выполнения тестов в одно и то же время. Что является противоположностью сценарного подхода (с его предопределенными процедурами тестирования, неважно ручными или автоматизированными). Исследовательские тесты, в отличие от сценарных тестов, не определены заранее и не выполняются в точном соответствии с планом.

Разница между ad hoc и exploratory testing в том, что теоретически, ad hoc может провести кто угодно, а для проведения exploratory необходимо мастерство и владение определенными техниками. Обратите внимание, что определенные техники это не только техники тестирования.

Требования - это спецификация (описание) того, что должно быть реализовано.
Требования описывают то, что необходимо реализовать, без детализации технической стороны решения. Что, а не как.

Требования к требованиям:
Корректность
Недвусмысленность
Полнота набора требований
Непротиворечивость набора требований
Проверяемость (тестопригодность)
Трассируемость
Понимаемость

Жизненный цикл бага

Стадии разработки ПО - это этапы, которые проходят команды разработчиков ПО, прежде чем программа станет доступной для широко круга пользователей. Разработка ПО начинается с первоначального этапа разработки (стадия «пре-альфа») и продолжается стадиями, на которых продукт дорабатывается и модернизируется. Финальным этапом этого процесса становится выпуск на рынок окончательной версии программного обеспечения («общедоступного релиза»).

Программный продукт проходит следующие стадии:
анализ требований к проекту;
проектирование;
реализация;
тестирование продукта;
внедрение и поддержка.

Каждой стадии разработки ПО присваивается определенный порядковый номер. Также каждый этап имеет свое собственное название, которое характеризует готовность продукта на этой стадии.

Жизненный цикл разработки ПО:
Пре-альфа
Альфа
Бета
Релиз-кандидат
Релиз
Пост-релиз

Таблица принятия решений (decision table) - великолепный инструмент для упорядочения сложных бизнес требований, которые должны быть реализованы в продукте. В таблицах решений представлен набор условий, одновременное выполнение которых должно привести к определенному действию.

QA/QC/Test Engineer


Таким образом, мы можем построить модель иерархии процессов обеспечения качества: Тестирование - часть QC. QC - часть QA.

Диаграмма связей - это инструмент управления качеством, основанный на определении логических взаимосвязей между различными данными. Применяется этот инструмент для сопоставления причин и следствий по исследуемой проблеме.



Просмотров