Что влияет на КПД и эффективность работы солнечных батарей? От чего зависит кпд солнечных батарей и как увеличить этот показатель

Много путаницы сегодня существует вокруг понятия кпд гелиосистемы, что является важным критерием их стоимости. Понятие кпд солнечных батарей означает процент падающего на панель солнечного света, преобразованного в электричество, с дальнейшей возможностью использования. Разные материалы для солнечных панелей создают различный кпд, даже одинаковые компании – производители имеют различный показатель эффективности преобразования. Повышение кпд является лучшим способом снизить затраты на солнечную энергию.

КПД солнечной батареи зависит от чистоты пластин, которые используются в качестве сырья при изготовлении. Кроме того, очень важно, является ли панель монокристаллического или поликристаллического вида. Большинство крупных компаний концентрирует свои усилия именно на повышении эффективности, для сокращения расходов в беспощадном использовании солнечной энергетики.

Рассмотрим общий диапазон кпд солнечных батарей, исходя из разных типов элементов и различных технологий.

Бывают следующих - поликристаллического или монокристаллического кремния. Мульти-солнечные батареи имеют более низкую эффективность, чем батареи из монокристаллических элементов.

Кпд солнечной батареи может варьироваться от 12% до 20% для обычного монокристаллического кремния. В обычно устанавливаемых, расчетный кпд составляет 15% и зависит от вида исполнения самого кремния. Одни из мировых производителей постоянно повышают эффективность для того, чтобы снизить свои издержки и опередить соперников в этой конкурентной индустрии. Другие дают максимальную эффективность кристаллических солнечных элементов, используя крупные масштабы производства.

Поликристаллические фотоэлементы имеют более низкую стоимость, чем монокристаллические и кпд в диапазоне 14-17%.

Тонкопленочная технология, в отличие от углерод – кремниевых материалов, имеет ряд преимуществ.

Аморфные кремниевые технологии С-Si имеют самый низкий средний коэффициент эффективности, но они наиболее дешевые.

Наибольший потенциал в повышении эффективности имеют медь-индий-галлий-сульфидные (CIGS) и кадмий - теллур (Cd-Te). Многие изготовители продвигают вперед разработку этой технологии и представляют один из наиболее высоких показателей эффективности своих моделей, увеличив его на 19%. Они достигли этого значения, используя несколько методов, в том числе – применение отражающих покрытий, которые могут захватить больше света от угла.

Если обосновывать зависимость не от материала, а от габаритных размеров, то, чем выше эффективность, тем меньше необходимая площадь рабочей поверхности батарей.

Хотя средний процент может показаться немного низким, можно легко изменить оснащение, именно при установке, с достаточной мощностью, чтобы покрыть потребности в энергии.

Факторы, влияющие на кпд солнечных массивов, включают в себя:

Ориентация поверхности монтажа
Крыша в идеале должна смотреть на юг, но и качество дизайна зачастую может компенсировать другие направления.

Угол наклона
Высота и наклон поверхности может повлиять на количество часов солнечного света, полученных в среднем за день в течение года. Крупные коммерческие системы имеют системы солнечного слежения, которая автоматически изменяет угол падения луча солнца в течение дня. Обычно не используется для жилых установок.

Температура
Большинство панелей при эксплуатации нагреваются. Таким образом, обычно должны быть установлены несколько выше уровня крыши, для обеспечения достаточного потока охлаждаемого воздуха.

Тень
В принципе, тень - враг солнечной энергии.При выборе неудачного дизайна при монтировании, даже небольшое количество тени на одной панели может закрыть производство энергии на всех других элементах.Перед тем, как разработать систему, проводится детальный анализ затенения поверхности крепления, для выявления возможных форм тени и солнечного света в течение года. Затем проводится другой детальный анализ, проверяющий сделанные выводы.

Обычные солнечные батареи с высоким кпд гелиосистем промышленных масштабов устанавливаются на сваи над поверхностью земли на 80см, расположены по направления с востока на запад, вдоль движения солнца, под углом 25 градусов.

Институт Fraunhofer по изучению систем солнечной энергии, Soitec, CEA-Leti и Берлинский центр Гельмгольца объявили, что достигли нового мирового рекорда эффективности преобразования энергии Солнца в электрическую энергию, использовав новую структуру солнечных элементов с четырьмя слоями. Как и некоторые другие многослойные фотоэлементы, эта микросхема предназначена для работы с концентратором, который концентрирует поток солнечных лучей в 297,3 раза, то есть площадь линз концентратора примерно в 300 раз больше площади фотоэлемента. КПД 44,7% относится к широкому спектру солнечного излучения: от ультрафиолета до инфракрасного. Энергия волн длиной 200-1800 нм забирается четырьмя слоями ячейки. Это важный шаг к удешевлению использования солнечной электроэнергии и приближение к важному рубежу в 50% эффективности.

Солнечные элементы, составленные из четырех слоев из соединенных прямым способом III-IV полупроводников, достигли эффективности в 44,7%.


В мае 2013 года немецко-французская команда из Fraunhofer ISE, Soitec, CEA-Leti и Helmholtz Center Berlin уже объявляла о создании солнечных элементов с эффективностью в 43,6%. На базе этого результата и благодаря дальнейшей интенсивной исследовательской работе и шагов по оптимизации и была получена эффективность 44,7%.
Эти солнечные элементы используются в фотоэлектрическом концентраторе (ФЭК), технологии, эффективность которой более чем вдвое превышает эффективность обычных фотоэлектрических станций в богатых солнечными лучами местах. Использование полупроводников III-V, которые изначально использовалась в космических технологиях, помогло реализовать высокую эффективность для преобразования солнечного света в электричество. При этом соединении солнечных элементов, ячейки, сделанные из полупроводников III-V, уложены друг на друга. Каждый слой поглощает волны различной длины из солнечного спектра.


Внешняя квантовая эффективность четырехэлементной солнечной батареи (для каждого из четырех слоев – свой цвет).



Вольтамперная характеристика для поставивших рекорд солнечных элементов.


"Мы невероятно гордимся нашей командой, которая уже в течение трех лет работает над этим солнечным элементом", – говорит Франк Димрот, заведующий отделом и руководитель проекта, отвечающий за развитие этого направления в Институте Fraunhofer. “Этот вид соединения солнечных элементов усовершенствовался на протяжении нескольких лет, в результате тщательной экспериментальной работы. Помимо улучшенных материалов и оптимизации структуры, важную роль играет и новая технология "пластинная связка". С помощью этой технологии мы имеем возможность соединить два полупроводниковых кристалла, которые нельзя вырастить один поверх другого, сохраняя при этом их высокое качество. Таким образом, мы можем создать оптимальное сочетание, чтобы достичь высокой эффективности солнечных элементов”.
"Этот мировой рекорд, увеличивший уровень эффективности более чем на 1% менее чем за 4 месяца, демонстрирует крайне высокий потенциал нового вида соединения солнечных элементов ячейки." – говорит Андре-Жак Обертон-Эрве, председатель и исполнительный директор Soitec. "Новое достижение подтверждает тенденцию к достижению более высокой эффективности, что играет ключевую роль в конкурентоспособности наших собственных систем солнечных элементов. Мы очень гордимся этим достижением, и оно демонстрирует успешность нашего сотрудничества".
"Новый рекорд укрепляет доверие к такому способу, как прямая связь полупроводников. Этот способ был разработан в рамках нашего сотрудничества с Soitec и Институтом Fraunhofer. Мы очень гордимся этим новым результатом, открывающим широкие перспективы для “солнечных” технологий, основанных на новом виде соединения элементов", – сказал генеральный директор Leti Лоран Малье.
Модули концентратора производятся Soitec (проект начинался в 2005 году под названием "Concentrix Solar" и был ответвлением похожего проекта Института Fraunhofer). Эта эффективная технология используется в электростанциях, расположенных в местах с высокой долей прямого солнечного излучения. На данный момент у Soitec есть установки в 18 странах, в том числе в Италии, Франции, Южной Африке и штате Калифорния.

В последнее время солнечная энергетика развивается столь бурными темпами

В последнее время солнечная энергетика развивается столь бурными темпами, что за 10 лет доля солнечного электричества в мировой годовой выработке электроэнергии увеличилась с 0.02% в 2006 году до почти одного процента в 2016 году.


Dam Solar Park - самая большая СЭС в мире. Мощность 850 мегаватт.

Основным материалом для солнечных электростанций является кремний, запасы которого на Земле практически неистощимы. Одна беда – эффективность кремниевых солнечных батарей оставляет желать лучшего. Самые эффективные солнечные батареи имеют коэффициент полезного действия, не превышающий 23%. А средний показатель эффективности колеблется от 16% до 18%. Поэтому исследователи всего мира, занятые в области солнечной фотовольтаики, работают на тем, чтобы освободить солнечные фотопреобразователи от имиджа поставщика дорогого электричества.

Развернулась настоящая борьба за создание солнечной суперячейки. Основные критерии – высокая эффективность и низкая стоимость. Национальная лаборатория возобновляемых источников энергии (NREL) в США даже выпускает периодически бюллетень, в котором отражаются промежуточные результаты этой борьбы. И в каждом выпуске показываются победители и проигравшие, аутсайдеры и выскочки, случайно ввязавшиеся в эту гонку.

Лидер: солнечная многослойная ячейка

Эти гелиевые преобразователи напоминают сэндвич из разных материалов, в том числе из перовскита, кремния и тонких пленок. При этом каждый слой поглощает свет только определенной длины волны. В результате эти при равной площади рабочей поверхности многослойные гелиевые ячейки вырабатывают значительно больше энергии, чем другие.

Рекордное значение эффективности многослойных фотопреобразователей было достигнуто в конце 2014 года совместной немецко-французской группой исследователей под руководством доктора Франка Димрота во Фраунгоферовском институте систем солнечной энергии. Была достигнута эффективность в 46%. Такое фантастическое значение эффективности было подтверждено независимым исследованием в NMIJ/AIST - крупнейшем метрологическом центре Японии.


Многослойная солнечная ячейка. Эффективность – 46%

Эти ячейки состоят из четырех слоев и линзы, которая концентрирует на них солнечный свет. К недостаткам следует отнести наличие в структуре субстрата германия, который несколько увеличивает стоимость солнечного модуля. Но все недостатки многослойных ячеек в конечном счете устранимы, и исследователи уверены, что в самом ближайшем будущем их разработка выйдет из стен лабораторий в большой мир.

Новичок года - перовскит

Совершенно неожиданно в гонку лидеров вмешался новичок – перовскит. Перовскит – это общее название всех материалов, имеющих определенную кубическую структуру кристаллов. Хотя перовскиты известны давно, исследование солнечных ячеек, изготовленных из этих материалов, началось только в период с 2006 по 2008 годы. Первоначальные результаты были разочаровывающими: эффективность перовскитных фотопреобразователей не превышала 2%. При этом расчеты показывали, что этот показатель может быть на порядок выше. И действительно, после ряда успешных экспериментов корейские исследователи в марте 2016 года получили подтвержденную эффективность 22%, что само по себе уже стало сенсацией.


Перовскитный солнечный элемент

Преимуществом перовскитных элементов является то, что с ними более удобно работать, их легче производить, чем аналогичные кремниевые элементы. При массовом производстве перовскитных фотопреобразователей цена одного ватта электроэнергии могла бы достигнуть $0.10. Но специалисты считают, что до тех пор, пока перовскитные гелиевые ячейки достигнут максимальной эффективности и начнут выпускаться в промышленном количестве, стоимость «кремниевого» ватта электричества может быть существенно снижена и достигнуть того же уровня в $0.10.

Экспериментально: квантовые точки и органические солнечные ячейки

Эта разновидность солнечных фотопреобразователей пока находится на ранней стадии развития и пока не может рассматриваться как серьезный конкурент существующим гелиевым ячейкам. Тем не менее разработчик – Университет Торонто – утверждает, что согласно теоретическим расчетам, эффективность солнечных батарей на базе наночастиц – квантовых точек ‒ будет выше 40%. Суть изобретения канадских ученых состоит в том, что наночастицы – квантовые точки ‒ могут поглощать свет в различных диапазонах спектра. Изменяя размеры этих квантовых точек, можно будет выбрать оптимальный диапазон работы фотопреобразователя.


Солнечная ячейка на базе квантовых точек

А учитывая, что этот нанослой может наноситься методом распыления на любую, в том числе и прозрачную основу, то в практическом применении этого открытия просматриваются многообещающие перспективы. И хотя на сегодняшний день в лабораториях при работе с квантовыми точками достигнут показатель эффективности, равный всего11.5%, сомнений в перспективности этого направления нет ни у кого. И работы продолжаются.

Solar Window – новые солнечные ячейки с эффективностью 50%

Компания Solar Window из штата Мэриленд (США) представила революционную технологию «солнечного стекла», которая в корне меняет традиционные представления о солнечных батареях.

Ранее уже были сообщения о прозрачных гелиевых технологиях, а также о том, что эта компания обещает увеличить в разы эффективность солнечных модулей. И, как показали последние события, это были не просто обещания, а эффективность 50% - уже не только теоретические изыски исследователей компании. В то время как другие производители только выходят на рынок с более скромными результатами, Solar Window уже представила свои поистине революционные высокотехнологичные разработки в области гелиевой фотовольтаики.

Эти разработки открывают дорогу к выпуску прозрачных солнечных батарей, имеющих значительно более высокую эффективность по сравнению с традиционными. Но это не единственный плюс новых солнечных модулей из Мэриленда. Новые гелиевые элементы могут легко крепиться к любым прозрачным поверхностям (например, к окнам), могут работать в тени или при искусственном освещении. Благодаря своей дешевизне инвестиции в оснащение здания такими модулями могут окупиться в течение года. Для сравнения следует отметить, что срок окупаемости традиционных солнечных батарей колеблется от пяти до десяти лет, а это – огромная разница.



Солнечные ячейки от компании Solar Window

Компания Solar Window озвучила некоторые детали новой технологии получения солнечных батарей, имеющих столь высокую эффективность. Разумеется, главные know how остались за скобками. Все гелиевые элементы изготовлены, в основном, из органического материала. Слои элементов состоят из прозрачных проводников, углерода, водорода, азота и кислорода. По данным компании, производство этих солнечных модулей настолько безвредно, что оно оказывает в 12 раз меньшее воздействие на окружающую среду, чем производство традиционных гелиевых модулей. В течение ближайших 28 месяцев первые прозрачные солнечные батареи будут установлены в некоторых зданиях, школах, офисах, а также в небоскребах.

Если говорить о перспективах развития гелиевой фотовольтаики, то очень похоже, что традиционные кремниевые солнечные батареи могут отойти в прошлое, уступив место высокоэффективным, легким, многофункциональным элементам, открывающим самые широкие горизонты гелиевой энергетике. опубликовано

Что влияет на КПД и эффективность работы солнечных батарей?

Сегодня идёт много разговоров вокруг такого понятия, как КПД гелиосистем. Это один из ключевых критериев при оценке эффективности работы солнечных батарей. Увеличение этого показателя является главной задачей на пути снижения затрат на преобразование солнечной энергии и расширения использования гелиосистем. Низкий КПД солнечных батарей является их основным недостатком. Квадратный метр современных фотоэлементов обеспечивает выработку 15─20 процентов от мощности солнечного излучения, попадающего на него. И это при самых благоприятных условиях эксплуатации. В результате для обеспечения необходимого энергоснабжения требуется установка множества солнечных панелей большой площади. Насколько эффективно такое оборудование и от чего зависит его КПД, постараемся разобраться в этой статье. А также поговорим о сроке службы и окупаемости солнечных панелей.

В основе функционирования солнечных панелей лежат свойства полупроводниковых элементов. Падающий на фотоэлектрические панели солнечный свет фотонами выбивает с внешней орбиты атомов электроны. Образовавшееся большое количество электронов обеспечивает электрический ток в замкнутой цепи. Одной или двух панелей для нормальной мощности недостаточно. Поэтому несколько штук объединяют в солнечные батареи. Для получения необходимого напряжения и мощности их подключают параллельно и последовательно. Большее число фотоэлементов дают большую площадь поглощения солнечной энергии и выдают большую мощность.


Теперь непосредственно о самом КПД. Эта величина вычисляется делением мощности электроэнергии на мощность солнечной энергии, попадающей на панель. У современных солнечных батарей эта величина лежит в интервале 12─25 процентов (на практике не выше 15%). Теоретически можно поднять КПД до 80─85 процентов. Такая разница существует из-за материалов для изготовления панелей. В основе лежит кремний, который не поглощает ультрафиолет, а лишь инфракрасный спектр. Получается, что энергия ультрафиолетового излучения уходит впустую.

Одним из направлений повышения КПД является создание многослойных панелей. Такие конструкции состоят из набора материалов, расположенных слоями. Подбор материалов осуществляется так, чтобы улавливались кванты различной энергии. Слой с одним материалом поглощает один вид энергии, со вторым – другой и так далее. В результате можно создавать солнечные батареи с высоким КПД. Теоретически такие многослойные панели могут обеспечить КПД до 87 процентов. Но это в теории, а на практике изготовление подобных модулей проблематично. К тому же они получаются очень дорогие.

На КПД гелиосистем также влияет тип кремния, используемого в фотоэлементах. В зависимости от получения атома кремния их можно разделить на 3 типа:

  • Монокристаллические;
  • Поликристаллические;
  • Панели из аморфного кремния.

Фотоэлементы из монокристаллического кремния имеют КПД 10─15 процентов. Они являются самыми эффективными и имеют стоимость выше остальных. Модели из поликристаллического кремния имеют самый дешевый ватт электроэнергии. Многое зависит от чистоты материалов и в некоторых случаях поликристаллические элементы могут оказаться эффективнее монокристаллов.



Существуют также фотоэлементы из аморфного кремния, на базе которых изготавливают тонкопленочные гибкие панели. Их производство проще, а цена ниже. Но КПД значительно ниже и составляет 5─6 процентов. Элементы из аморфного кремния с течением времени теряют свои характеристики. Для увеличения их производительности добавляют частицы селена, меди, галлия, индия.

От чего зависит эффективность работы солнечных батарей?

На эффективность работы солнечных батарей оказывают влияние несколько факторов:

  • Температура;
  • Угол падения солнечных лучей;
  • Чистота поверхности;
  • Отсутствие тени;
  • Погода.

В идеале угол падения солнечных лучей на поверхность фотоэлемента должен быть прямым. При прочих равных в этом случае будет максимальная эффективность. В некоторых моделях для увеличения КПД в солнечных батареях устанавливается система слежения за солнцем. Она автоматически меняет угол наклона панелей в зависимости от положения солнца. Но это удовольствие не из дешёвых и поэтому встречается редко.

При работе фотоэлементы нагреваются, и это отрицательно сказывается на эффективности их работы. Чтобы избежать потерь при преобразовании энергии следует оставлять пространство панелями и поверхностью, где они закреплены. Тогда под ними будет проходить поток воздуха и охлаждать их.



Несколько раз в год обязательно нужно мыть и протирать панели. Ведь КПД фотоэлектрических панелей прямо зависит от падающего света, а значит, от чистоты поверхности. Если на поверхности есть загрязнения, то эффективность солнечных батарей будет снижаться.

Важно сделать правильную установку батарей. Это означает, что на них не должна падать тень. Иначе эффективность системы в целом будет сильно снижаться. Крайне желательно устанавливать фотоэлементы на южной стороне.

Что касается погоды, то от неё также зависит очень многое. Чем ближе ваш регион к экватору, тем большая плотность излучения будет попадать солнечного излучения на панели. В нашем регионе зимой эффективность может упасть в 2─8 раз. Причины как в уменьшении солнечных дней так и в снеге, попадающим на панели.

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.


А срок окупаемости существенно меньше, чем срок службы. Но многих останавливает первоначальная стоимость батарей. Вкупе с низким КПД у многих людей это вызывает сомнения в выгодности приобретения гелиосистем. Поэтому решение здесь нужно принимать с учётом погоды и климата в вашем регионе, условий использования и т. п.

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.


Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Наука и технологии не стоят на месте в сфере использования альтернативной энергетики, а использование солнечной энергии в быту и промышленности будет дальше развиваться и совершенствоваться, пытаясь вытеснить традиционные источники энергии. К сожалению, до глобального доминирования гелиоэнергетики пока далеко и виной тому низкий КПД солнечных батарей.

Факторы влияющие на эффективность солнечных батарей

На эффективность работы солнечных батарей влияют объективные и субъективные факторы, такие как:

  • материалы, используемые в изготовлении,
  • технологии,
  • место использования (широта),
  • угол падения солнечных лучей,
  • запыленность и повреждения.

Причем все эти факторы связаны и зависимы между собой по влиянию на КПД солнечных батарей. Но начальным фактором, который определяет КПД является себестоимость изготовления элемента солнечной батареи.

Лидеры энергоэффективности солнечных батарей

Рассмотрим лидеров в изготовлении наиболее эффективных компонентов солнечных панелей и отсортируем по их эффективности:

  • 44,7% КПД от первого из неуниверситетских научно-исследовательских институтов Германии. Результат получен для концентраторов тройного перехода слоев сложного состава полупроводника (Ga 0,35 В 0,65 P / Ga 0,83 В 0,17 As / Ge). Такие солнечные элементы сложны, не используются в жилых или коммерческих целях, потому что они очень дороги. Они используются в космической технике таких производителей, как NASA, где мало пространства.
  • 37,9% эффективности получено из однослойного модуля полупроводникового перехода (InGaP / GaAs / InGaAs). При этом результат получен исключительно для 90° нормали к Солнцу. Эти солнечные элементы также сложны и трудоемки в изготовлении, но их промышленное производство видится более перспективным.
  • 32,6% добились испанские исследователи с института (IES) и университета (UPM). Они использовали мульти-модули из концентраторов с двумя переходами полупроводников. Опять же, эти элементы еще далеки от широкого использования для коммерческих или жилых объектов.

Баланс эффективности солнечных батарей

Есть около десятка крупнейших производителей, выпускающих солнечные батареи со сравнительно неплохим КПД и умеренной стоимостью. Ведущие компании производящие солнечные батареи при самых современных технологиях могут промышленно изготавливать солнечные элементы с эффективностью близкой к 25%. При этом хорошо налажено массовое производство модулей с КПД солнечных батарей, как правило, не превышающих показатель 14-17%. Главной причиной этой разницы в эффективности является то, что методы исследования, используемые в лабораториях, не подходят для коммерческого производства фотоэлектрической продукции и, следовательно, более доступные технологии имеют сравнительно низкие затраты в производстве, что и приводит к понижению показателя КПД в использовании.

Для этого покажем на графике зависимость стоимости готового модуля к стоимости произведенной электроэнергии для технологических серий солнечных батарей с характерными для них показателями КПД.

На сравнительном графике хорошо видна экономическая эффективность солнечных батарей с начальными лабораторными показателями КПД, изготовленных по разным технологиям, в отношении оптимальной стоимости произведенной электроэнергии в 6 центов за кВт-час (3,4 руб/кВт-ч).

Таким образом, самые доступные и недорогие в изготовлении солнечные элементы из аморфного кремния в виде тонкой гнущейся пленки окупают себя при сравнительно небольших размерах, но экономически не эффективны при больших потребностях в электроэнергии. Они широко применяются для переносных зарядок телефонов, светильников и т. д.

Батареи из поликристаллического кремния уже становятся эффективны при применении для жилых домов и небольших теплиц.

Элементы опытных солнечных электростанции изготовлены на основе монокристаллов кремния высокой степени очистки (99,999). Обладают оптимальными показателями эффективности и имеют экономически обоснованный срок окупаемости.

Новейшие научные разработки фотоэлементов, имеющие, самый высокий КПД применяются исключительно в тех отраслях науки и промышленности, где стоимость не является основным критерием выбора.

Применение солнечных батарей все больше входит в различные сферы нашей жизни, но к сожалению, из-за несовершенства технологии производства (и как следствие достаточного низкого КПД) при значительной стоимости не имеет широко применения.



Просмотров