ШИМ, PWM контроллер. Схема. Микросхема. Принцип работы. Описание, выводы. Опорное напряжение. Ограничение тока. Мягкий старт. Импульсный блок питания

:: Помощь

ШИМ (PWM) контроллер - принцип действия

Типичная микросхема контроллера широтно-импульсной модуляции имеет следующие выводы.

Общий вывод (GND) . Тут говорить нечего. Это ножка, которая подключается к общему проводу схемы питания контролера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех...


Обзор схем бестрансформаторных источников питания...

Прямоходовый однотактный импульсный преобразователь напряжения, источн...
Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о...


Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


В данной статье мы поговорим с вами о шим контроллерах : что это, для чего и где применяется.
ШИМ – широтно-импульсный модулятор.
Для преобразования напряжения в телевизионной аппаратуре и других электронных устройствах используются ШИМ контроллеры . С помощью прибора удалось внедрить в производство инновационные идеи и новые технологии. Основными преимуществами ШИМ-контроллеров являются скромные габариты, отличные показатели быстродействия и высокая надежность.

Наиболее востребованы ШИМ контроллеры при изготовлении модулей питания импульсного типа. Постоянное напряжение на входе устройства преобразуется в импульсы прямоугольной формы, формируемые с определенной частотой и скважностью. С помощью управляющих сигналов на выходе устройства удается осуществлять регулирование работы транзисторного модуля большой мощности. В результате разработчики получили блок управления напряжением регулируемого типа.

В телевизионной аппаратуре компактные ШИМ-контроллеры весьма востребованы. Кроме того, устройства используются в другой электронной аппаратуре, а также в качестве узлов системы управления скоростью электроприводов в бытовых приборах. В зависимости от параметров системы и управляющего сигнала, ШИМ-контроллеры меняют скорость движения силового агрегата. Обратная связь может быть выполнена как по значению силы тока, так и по уровню напряжения.

Типовая конструкция ШИМ-контроллера, используемого в телевизионной и другой электронной аппаратуре, характеризуется наличием нескольких выходов. Общий вывод соединен с аналогичным контактом схемы подачи питания модуля. Вывод контроля питания и вывод питания расположены рядом друг с другом. Первый из них отвечает за контроль напряжения на выходе схемы и отключает ее при снижении значения ниже пороговой величины. Второй вывод отвечает за энергоснабжение схемы .

Напряжение на выходе снимается с соответствующего вывода. Существуют двухплечевые и одноплечевые ШИМ-контроллеры. Первые из них применяются для управления стандартными транзисторами. При необходимости их закрытия, контроллер замыкает соответствующий контакт на общий кабель. При работе с транзистором биполярного типа применяется одноплечевой каскад, так как для регулировки требуется изменение силы тока. Для отключения транзистора необходимо запретить прохождение тока. Поэтому замыкание на общий контакт не используется.

ШИМ-контроллеры, используемые в телевизионной аппаратуре, характеризуются наличием следующих возможностей:
  • Устройства способны вырабатывать опорное напряжение с высокой степенью точности. Зачастую данный вывод коммутируется с общим проводом. При этом используется емкость значением 1 мФ и более, что позволяет повысить качество стабилизации выходного значения.
  • Ограничитель тока срабатывает при значительном превышении напряжения на соответствующем выводе над пороговым. В этом случае происходит автоматическое отключение силовых ключей.
  • Мягкий старт используется для постепенного увеличения величины импульсов на выходе до расчетных показателей. Наличие емкости между соответствующим выводом и общим проводом приводит к ее постепенной зарядке. В результате каждый импульс становится шире вплоть до достижения требуемой величины.

Современные источники питания для различной аппаратуры проектируются на основе ШИМ-контроллеров. От качества компонентов зависит срок жизни модуля. Основная цель, для которой ШИМ-контроллеры включаются в схемы источников напряжения, это обеспечение стабильной величины напряжения на выходе. Небольшие габариты контроллеров дают им преимущество перед стандартными схемами с использованием трансформаторов.

ШИМ-контроллеры, применяемые в источниках питания , кроме стабилизации выходного напряжения, реализуют еще несколько дополнительных возможностей. Использование широтно-импульсной модуляции позволяет осуществить контроль величины сигнала. При этом имеется возможность менять протяженность импульса и скважность.
ШИМ-контроллеры обладают высокими показателями КПД, что позволяет значительно расширить область их использования. Особенно это касается аппаратуры для воспроизведения звука. Кроме того, при использовании в источниках питания ШИМ-контроллеров, значительно расширяется диапазон доступных мощностей прибора.

Устройства на базе ШИМ-контроллеров являются универсальными и могут использоваться не только в телевизионной аппаратуре, но и во многих других приборах. Блоки питания различного электрооборудования реализуются на основе данных контроллеров. Использование устройств позволяет сократить затраты на эксплуатацию оборудования и повышает его качество работы. Высокий КПД делает разработку источников на ШИМ-контроллерах перспективным и востребованным направлением деятельности.

Вот приспичило вам сделать себе могучую светодиодную хреновину, чтобы моргала и переливалась. Да еще в RGB и плавненько так. Собрали вы это дело, поглядели на количество каналов которыми нужно рулить и призадумались…

▌А что не так с ШИМ?
Да все с ним хорошо, только аппаратных каналов обычно всего несколько штук. А программный ШИМ имеет ряд недостатков. Да, можно взять и на базе , используя всего один таймер собрать многоканальный ШИМ, но сколько у нас будет вызовов прерываний?

Каждый отдельный фронт потребует своего прерывания на смену уровня. А представьте, что у нас этих каналов будет не 4, а 40? Или 400? Да контроллер из прерываний вылезать не будет. Прерывания будут налезать друг на друга, порождая джиттер. Не говоря уже о том, что все эти каналы надо будет при любом изменении скважности заново сортировать по длительности. В общем, тупилово будет еще то.

▌Нас спасет BAM
Но решение есть. Зовется этот метод BAM. Суть его в том, что мы включаем нагрузку импульсами, поразрядно, с длительностью равной весу разряда.


В результате мы имеем высокую дискретность, но при этом у нас всего 7 прерываний на любое число каналов. Соответственно разрядам.


Интегрируется все аналогично обычному ШИМу. Но есть ряд нюансов:

  1. Частота плавает и на малых разрядах она повышается. Для светодиода или грелки это наплевать. А вот двигатель или еще какую нагрузку с реактивными элементами вроде обмоток или емкостей я бы таким сигналом питать не стал.
  2. При переходе с малых весов к одному большому наблюдается мерцание. Но с этим можно бороться, подробности ниже.
  3. Выдавать вес лучше с большего к меньшему, так меньше заметно влияние второго пункта.

Микросхемы для импульсных источников питания. Справочник.
Издательство: Додэка.

Очень неплохой справочник. Замечателен тем, что является… самым обычным переводом даташитов. Один в один, картинка в картинку.
Переведенных даташитов там тьма, один только перечень в четыре колонки занимает десяток страниц. Все импульсные микросхемы которые знал там нашел! А что особенно радует, так это то, что есть документация на отечественную комплектуху. С коей вечно проблемы. Если аналог не подберешь, и не дернешь бумагу на него — пиши пропало.

DC-DC преобразование
Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ , она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ , то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.


То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.

Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.

Если не догнал, то я для простоты переложил это в понятное «канализационное русло» . Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль , он открывает и закрывает канал. Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.

Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу. Умные дядьки из Motorola, STM, Dallas и прочих Philips ’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер. Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский:)

Пока писал статью про UART пришла в голову одна извращенная идея — на базе UART же можно организовать самый натуральный низкодискретный ШИМ!

Достаточно только сделать где-нибудь в памяти переменную, куда мы будем совать число с заданной скважностью нулей и единиц, а по прерыванию опустошения буфера это число снова пихать в регистр UDRE. Таким образом, генерация ШИМ будет самопроизвольной, без лишних телодвижений. Правда можно получить всего 10 разных значений ШИМ, но зато нахаляву!!!

Для тех кто не понял как, приведу числа которые надо будет непрерывно слать через UART:
два дополнительных значения мы получим за счет старт и стоп битов.

00000000 — 1/10
00000001 — 2/10
00000011 — 3/10
00000111 — 4/10
00001111 — 5/10
00011111 — 6/10
00111111 — 7/10
01111111 — 8/10
11111111 — 9/10

Да и частоты там можно получить нефиговые!
Красота!=)))))

Вот уже несколько раз я ругался странным словом ШИМ . Пора бы внести ясность и разьяснить что же это такое. Вообще, я уже , но все же повторюсь в рамках своего курса.

Вкратце, Широтно Импульсная Модуляция (в буржуйской нотации этот режим зовется PWM Pulse Width Modulation ) это способ задания аналогового сигнала цифровым методом , то есть из цифрового выхода, дающего только нули и единицы получить какие то плавно меняющиеся величины. Звучит как бред, но тем не менее работает. А суть в чем:

Представь себе тяжеленный маховик который ты можешь вращать двигателем. Причем двигатель ты можешь либо включить, либо выключить. Если включить его постоянно, то маховик раскрутится до максимального значения и так и будет крутиться. Если выключить, то остановится за счет сил трения.

А вот если двигатель включать на десять секунд каждую минуту, то маховик раскрутится, но далеко не на полную скорость — большая инерция сгладит рывки от включающегося двигателя, а сопротивление от трения не даст ему крутится бесконечно долго.

Чем больше продолжительность включения двигателя в минуту, тем быстрей будет крутится маховик.
При ШИМ мы гоним на выход сигнал состоящий из высоких и низких уровней (применимо к нашей аналогии — включаем и выключаем двигатель), то есть нулей и единицы. А затем это все пропускается через интегрирующую цепочку (в аналогии — маховик). В результате интегрирования на выходе будет величина напряжения, равная площади под импульсами.
Пропорциональное управление – залог тишины!
Какая задача ставится перед нашей системой управления? Да чтобы пропеллеры зря не вращались, чтобы зависимость скорости вращения была от температуры. Чем горячее девайс — тем быстрей вращается вентилятор. Логично? Логично! На том и порешим.
Заморачиваться с микроконтроллерами конечно можно, в чем то будет даже проще, но совершенно не обязательно. На мой взгляд проще сделать аналоговую систему управления — не надо будет заморачиваться с программированием на ассемблере.

Будет и дешевле, и проще в наладке и настройке, а главное любой при желании сможет расширить и надстроить систему по своему вкусу, добавив каналов и датчиков. Всё что от тебя потребуется это лишь несколько резисторов, одна микросхема и термодатчик. Ну а также прямые руки и некоторый навык пайки.

В статье приводится обзор ШИМ-контроллеров компании ON Semiconductor, которые являются прекрасной основой для построения современных сетевых импульсных источников питания. Известный производитель и мировой эксперт в области электропитания и энергосбережения, компания ON Semiconductor предлагает широкую номенклатуру микросхем ШИМ-контроллеров для выбора. Микросхемы характеризует невысокая стоимость, высокая эффективность преобразования, экономичность за счет понижения энергопотребления в дежурном режиме, высокая надежность, обеспечиваемая наличием комплекса встроенных защит, а также низкий уровень ЭМИ.

Введение

Сетевой источник питания - один из самых ответственных узлов в структуре электронной аппаратуры. Наиболее важные параметры сетевого преобразователя: рабочий диапазон входного напряжения, потребляемая мощность в дежурном режиме, габаритные размеры, надежность, электромагнитная совместимость и себестоимость. Подавляющее большинство современной аппаратуры с питанием от сети использует импульсные источники питания. Сетевой импульсный источник питания обеспечивает гальваническую развязку выходных цепей от сетевого напряжения. Развязка обеспечивается за счет использования импульсного трансформатора в силовой цепи и оптрона в цепи обратной связи.

Ключевым элементом импульсного сетевого источника питания является микросхема ШИМ-контроллера. Основная функция ШИМ-контроллера - управление силовым транзистором (транзисторами), стоящим в первичной цепи импульсного трансформатора, и поддержание выходного напряжения на заданном уровне, используя сигнал обратной связи. Структура современных ШИМ-контроллеров обеспечивает и дополнительные функции, повышающие эффективность и надежность источника питания:

  • ограничение тока и скважности импульсов в цепи управления силовыми транзисторами;
  • плавный запуск преобразователя после подачи питания (Soft Start);
  • встроенный динамический источник питания от высоковольтного входного напряжения;
  • контроль уровня входного напряжения с устранением «провалов» и «выбросов»;
  • защита от КЗ в цепи силового трансформатора и выходных цепей выходного выпрямителя;
  • температурная защита контроллера, а также ключевого элемента;
  • блокировка работы преобразователя при пониженном и повышенном входном напряжении;
  • оптимизация управления для дежурного режима и режима с пониженным током в нагрузке (пропуск циклов или переход на пониженную частоту преобразования);
  • оптимизация уровня ЭМИ.

Рассматриваемые в статье ШИМ-контроллеры не имеют встроенного силового транзистора, управляющего током в первичной цепи силового трансформатора.

Базовые параметры режима управления силовым каскадом

В зависимости от требований конкретного применения в контроллере могут использоваться разные схемы выходного каскада управления силовым ключом, тип управления по цепи обратной связи (по току или по напряжению), а также различный частотный режим преобразования. Тип выходного каскада ШИМ-контроллера определяет и топологию преобразователя.

Типы топологии сетевых преобразователей:

  • обратноходовой;
  • прямоходовой;
  • двухтактный;
  • полумостовой;
  • мостовой;
  • квазирезонансный.

В таблице 1 показаны характеристики базовых топологий схем, используемых при построении импульсных сетевых источников питания.

Таблица 1. Базовые топологии схем, применяемые при построении импульсных источников питания

Обратноходовой преобразователь

Основная схема, по который выполнены многие маломощные импульсные источники питания, - это обратноходовой преобразователь (рис. 1). Эта схема преобразует одно постоянное напряжение в другое, регулируя выходное напряжение посредством широтно-импульсной модуляции (ШИМ) либо частотно-импульсной модуляции (ЧИМ). Модуляция ширины импульса - это метод управления, основанный на изменении отношения длительности включенного состояния ключа к выключенному при постоянной частоте. В обратноходовом преобразователе длительность включенного состояния ключа больше длительности выключенного состояния для того, чтобы большее количество энергии было запасено в трансформаторе и передано в нагрузку.

Рис. 1. Типовая схема Flyback-преобразователя

Прямоходовой преобразователь

Другая популярная конфигурация импульсного источника питания известна как схема прямоходового преобразователя и показана на рис. 2. Хотя эта схема очень напоминает обратноходовую схему, имеются и некоторые фундаментальные различия. Прямоходовой преобразователь накапливает энергию не в трансформаторе, а в выходной катушке индуктивности (дросселе). Точки, обозначающие начало обмоток на трансформаторе, показывают, что, когда ключевой транзистор открыт, во вторичной обмотке появляется напряжение, и ток течет через диод VD1 в катушку индуктивности. У этой схемы большая продолжительность включенного состояния ключа относительно выключенного состояния, более высокое среднее напряжение во вторичной обмотке и более высокий выходной ток нагрузки.

Рис. 2. Прямоходовой преобразователь напряжения сети

Двухтактный прямоходовой преобразователь

На рис. 3 показан двухтактный преобразователь, который является разновидностью прямоходового преобразователя за исключением того, что оба ключа включены в цепь первичной обмотки трансформатора.

Рис. 3. Схема двухтактного прямоходового преобразователя

В номенклатуре ШИМ-контроллеров ON Semi представлены микросхемы, имеющие различную топологию выходного каскада, тип управления, частотный режим управления, а также дополнительные встроенные функции. В таблице 2 представлены основные параметры ШИМ-контроллеров ON Semi, выпускаемых в настоящее время.

Таблица 2. Основные параметры ШИМ-контроллеров ON Semi для сетевых импульсных источников питания

Тип Топология Режим регулирования Частота, кГц Режим Stand-by Защита от пониженного входного напряжения UVLO, В Защита от КЗ на выходе Блокировка Режим Soft Start
NCL30000 Flyback По току До 300 - - - - -
NCL30001 Flyback По току До 150 - - - - -
NCP1237 Flyback По току 65 - - + + +
NCP1238 Flyback По току 65 - - + + +
NCP1288 Flyback По току 65 - 10 + + +
NCP1379 Flyback По току Варьируется + 9 + + +
NCP1380 Flyback По току Варьируется + 9 + + +
NCP1252 Forward По току До 500 + 9-10 + + +
CS51221 Forward По напряжению До 1000 - + - + +
CS5124 Flyback По току 400 - + - - +
MC33025 Push-Pull По току или по напряжению 1000 - + + - +
MC33060 Flyback По напряжению 200 - + - - +
MC33067 Flyback По напряжению 1000 - + + - +
MC33364 Flyback По току Варьируется + + - - -
MC34060 Мультирежимный По напряжению 200 - + - - -
MC34067 Резонансный По напряжению - - + + - -
MC44603 Flyback По току или по напряжению До 250 + 9 + + +
NCP1200 Flyback По току 100 + - + - -
NCP1203 Flyback По току 100 + + + - -
NCP1207 Flyback По току До 1000 + + + + +
NCP1216 Flyback По току 100 + - + - +
NCP1217 Flyback По току 100 + + + + +
NCP1219 Flyback По току 100 + 9,4 + + +
NCP1230 Flyback По току 100 + + + + +
NCP1252 Flyback/Forward По току До 500 + 9-10 + + +
NCP1271 Flyback По току 100 + + + + +
NCP1294 Flyback - До 1000 + + + + -
NCP1308 Flyback По току Варьируется + + + + +
NCP1337 Flyback По току Варьируется + + + + +
NCP1338 Flyback По току Варьируется + + + + +
NCP1351 Flyback По току Варьируется - - + + -
NCP1377 Flyback По току Варьируется + + - + +
NCP1379 Flyback По току Варьируется + 9 + + +
NCP1380 Flyback По току Варьируется + 9 + + +
NCP1381 Flyback По току Варьируется + + + + +
NCP1382 Flyback По току Варьируется + + + + +
NCP1392 Half-Bridge По току 250 - 9 - - +
NCP1393 Half-Bridge По току 250 - 9 - - +
NCP1395 Push-Pull По напряжению 1000 + + + + +
NCP1396 Push-Pull По напряжению До 500 + + + + +
NCP1397 А/В Half-Bridge По напряжению 50-500 - 9,5/10,5 + + +
NCP1562 Flyback По напряжению Дo 500 - + + + +
NCV3843, UC3843 Flyback По току 52 - + + - +
UC2842/43/44 Flyback По току 52 - + + - -
UC2843 /44/45 Flyback По току 52 - + + - -
UC3842 /44/45 Flyback По току 52 - + + - -
UC3845 Push-Pull По току 52 - + + - +

Следует отметить, что структура микросхем ШИМ-контроллеров последних разработок очень похожа. Основные различия определяются типом топологии, режимом регулирования (по току/напряжению), режимом частотного управления (частота постоянная или варьируемая), а также логикой работы при обнаружении критических ситуаций. Структура ШИМ-контроллера содержит логику, задающую автомат состояний. Схема автомата переходов реализована на компараторах, триггерах, таймерах и элементах логики. Основные состояния контроллера: начальный пуск частотного генератора, выход на рабочий режим, адаптивное слежение за током нагрузки и выбор оптимального режима, обнаружение критических ситуаций, переход в аварийный режим, автовосстановление после сбоев.

Защита и безопасность работы

Сетевые преобразователи должны обеспечивать достаточный уровень безопасности при работе без деградации характеристик силовых элементов в случае возникновения токовых перегрузок вследствие коротких замыканий в обмотках трансформатора или в нагрузке. КЗ обнаруживается в первую очередь по внезапному исчезновению сигнала обратной связи через оптрон. Нужно отключить драйвер выходного транзистора, чтобы предотвратить перегрев транзистора и насыщение трансформатора. Однако и в процессе запуска сигнал обратной связи также отсутствует некоторое время. Нужно идентифицировать эти две ситуации. В некоторых недорогих контроллерах защита от КЗ не реализована. В таких случаях возникновение КЗ приведет к неконтролируемым последствиям и может в считанные секунды привести к разрушению силовых элементов преобразователя. КЗ может быть нескольких типов - в самой нагрузке, в обмотках, в электролитическом конденсаторе выходного выпрямителя, выпрямительных диодах. Введение детерминируемых состояний увеличивает сложность автомата, но повышает надежность работы преобразователя.

Функция блокировки при аварийных ситуациях

При выборе подходящего для применения контроллера особое внимание разработчик должен обращать на логику автомата состояний, особенно на логику отработки аварийных ситуаций. Переход в аварийный режим при обнаружении критических ситуаций может предусматривать как принудительное ограничение тока, так и полную блокировку работы преобразователя. При блокировке останавливается задающий ШИМ-генератор и запрещается подача активного сигнала для силового транзистора. В зависимости от типа или модификаций микросхем возможны два сценария блокировки (Latch).

В первом случае после срабатывания блокировки преобразователь «защелкивается» в этом состоянии и не меняет его, даже если условие, вызвавшее это состояние, уже пропало. Восстановление работы преобразователя возможно лишь после выключения сетевого напряжения и повторного включения питания.

Во втором случае реализуются попытки автовосстановления (autorecovery) нормальной работы преобразователя. Для этого в структуре контроллера запускается таймер на время около 1,5 с. После истечения этого времени контроллер вновь проверяет наличие критических ситуаций, и если они сохраняются, блокировка остается. В этом случае светодиодный индикатор сетевого источника будет мигать с периодом 1,5 с. Автовосстановление происходит только при срабатывании по понижению напряжения.

Встроенный динамический источник питания

Встроенный динамический источник тока стартового питания (Dynamic Self-Supply, DSS) гарантирует надежный запуск преобразователя и в то же время - низкое потребление в выключенном состоянии. Встроенный динамический источник питания значительно упрощает дизайн импульсного трансформатора, потому что отпадает необходимость в использовании дополнительной обмотки для питания микросхемы.

Источник динамического питания обеспечивает питание контроллера при старте преобразователя, а также питает схему контроллера в тех случаях, когда напряжение питания на обмотке питания контроллера кратковременно пропадает, например при перегрузках. Стартовый генератор тока микросхемы обеспечивает плавный запуск преобразователя. После запуска преобразователя питание производится от питающей обмотки трансформатора. Есть модификации микросхем, в которых нет источника динамического питания и питание производится всегда только от линии высокого напряжения. С одной стороны, это приводит к повышению потребления, а с другой - не требует наличия дополнительной питающей обмотки трансформатора. Вход высоковольтного питания имеет детектор пониженного питания, который позволяет выключить контроллер (brown-out condition) или слишком высокое напряжение (line overvoltage). Эта защита работает как с переменным, так и выпрямленным входным напряжением и не зависит от пульсаций напряжения. В DSS используется синхронный пиковый детектор.

Режим пониженной частоты

В контроллерах последних разработок применяется режим с переходом на пониженную частоту (Frequency foldback). Переход на пониженную частоту происходит, когда сигнал обратной связи становится ниже порога. Снижение частоты преобразования позволяет уменьшить потребление в дежурном режиме.

Режим Soft-Skip

Режим пропуска частотных циклов позволяет уменьшить потребление в дежурном режиме. Режим активизируется по уменьшении уровня амплитуды сигнала обратной связи ниже установленного порога. Soft-Skip и Frequency foldback реализуются в одном структурном модуле контроллера.

Уменьшение ЭМИ за счет джиттера внутреннего генератора (Internal frequency jittering)

Для контроллеров, работающих на фиксированной частоте, может использоваться прием введения малой частотной модуляции около центральной частоты (джиттер). Наличие джиттера не влияет на работу преобразователя, однако позволяет «размыть» спектр ЭМИ и таким образом уменьшить амплитуду электромагнитного излучения, индуцируемого в цепи трансформатора и других силовых цепей преобразователя.

Ramp compensation - компенсация пилообразности сигнала обратной связи

В последних разработках ШИМ-контрол-леров используется компенсация пилообраз-ности сигнала обратной связи. Это позволяет улучшить режим стабилизации в процессе регулирования.

Dual level OCP - двухуровневая защита от токовой перегрузки

Защита от повышенного тока (Overcurrent Protection) в нагрузке и силовых цепях имеет два различных уровня. На низком уровне контроллер сохраняет способность к регулированию, но имеет долгий старт. На высоком уровне при потере сигнала регулирования запускается обычный таймер. Это позволяет источнику питания кратковременно работать в режиме критической мощности. Токовая защита зависит только от сигнала в цепи обратной связи.

Приведенные выше функции в полной мере реализованы в последних разработках микросхем ШИМ-контроллеров ON Semi - сериях микросхем NCP1237/38/88 и NCP1379/80.

Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288

Микросхемы этих типов практически идентичны по цоколевке и схеме включения. В них используется режим управления по току с фиксированной частотой преобразования. Микросхемы предназначены для применения в обратноходовых преобразователях (Flyback) c гальванической развязкой (трансформатор, управление - обратная связь по напряжению через оптрон, по току - через дополнительную обмотку силового трансформатора). На рис. 4 показана структурная схема ШИМ-контроллера NCP1237.

Рис. 4. Структурная схема ШИМ-контроллера NCP1237

Встроенная схема Dynamic Self-Supply (DSS) упрощает проектирование и обеспечивает уменьшение дополнительных элементов. Наличие режима Soft-Skip с пропуском циклов обеспечивает повышение эффективности преобразования при малых нагрузках с сохранением низкого потребления в дежурном режиме. Также поддерживается и понижение частоты преобразования до 31 кГц (frequency foldback) с гистерезисом. Порог включения режима - 1,5 В, обратный переход в рабочий режим происходит при превышении порога 1 В. При понижении напряжения сигнала обратной связи ниже порога 0,7 В активизируется режим пропуска циклов Soft-Skip, который позволяет уменьшить потребление дополнительно, а также уменьшить возникновение акустического шума на трансформаторе и конденсаторах, использовать более дешевые трансформаторы. Встроенный двухпороговый защитный таймер служит для защиты при сбоях и нарушениях работы схемы управления вследствие скачков тока. Встроенная схема формирования джиттера частоты обеспечивает «размывание» спектра и уменьшение пиковых уровней ЭМИ. Контроллер также включает новую схему высоковольтного каскада, которая совместно со схемой старта позволяет оценивать уровень сигнала с токового датчика как в цепи переменного напряжения, так и в цепи постоянного выпрямленного напряжения. ON Semiconductor использует высоковольтную технологию входных цепей контроллера, поэтому NCP1288 может подключаться по питающим цепям непосредственно к шине высокого напряжения питания.

Режим блокировки для NCP1237 (рис. 5) может активизироваться по одному из двух условий: при повышении уровня напряжения выше порогового на входе Latch за счет перенапряжения или при уменьшении напряжения ниже другого заданного порога за счет терморезистора с отрицательным температурным коэффициентом, стоящего на силовом транзисторе.

Рис. 5. Типовая схема включения ШИМ-контроллера NCP1237

Токовый источник HV startup обеспечивает заряд конденсатора VCC до порогового напряжения VCC (on) и работает, пока входное напряжение более VHV (start), обеспечивая режим включения. Затем контроллер производит плавный пуск Soft-Start, во время которого ток потребления линейно возрастает перед включением режима регулирования. Во время периода плавного старта блокировка игнорируется, а ток блокировки удваивается, обеспечивая быстрый предзаряд конденсатора на входе вывода блокировки.

В микросхемах реализована защита от короткого замыкания на выходе.

Частота преобразования - 65/100/133 кГц и определяется модификацией микросхем. Микросхемы рассчитаны на использование в расширенном температурном диапазоне от -40 до +125 °С, что особенно актуально для промышленных приложений. Типовые применения контроллеров:

  • сетевые источники питания принтеров, мониторов;
  • зарядные устройства для аккумуляторов;
  • встроенные сетевые источники бытовой аппаратуры.

Функциональные отличия микросхем

Для модификаций микросхем NCP1238B и NCP1288B есть функции поддержки автовосстановления (autorecovery). NCP1237 имеет схему двухпороговой OCP, в то время как NCP1238 его не имеет. Базовые различия между микросхемами серии показаны в таблице 3.

Таблица 3. Базовые различия модификаций ШИМ-контроллеров серии NCP12xx

Модификация DSS Dual OCP Latch Auto Recovery
NCP1237A + + + -
NCP1237B + + - +
NCP1238A + - + -
NCP1238B + - - +
NCP1287A Только HV + + -
NCP1287B Только HV + - +
NCP1288A Только HV - + -
NCP1288B Только HV - - +

ШИм-контроллеры серии NCP1379/80

Микросхемы в первую очередь ориентированы для применения в сетевых адаптерах с высокой мощностью (AC/DC Wall Adapters). Основное отличие от серии NCP12xx - квазирезонансный режим, который и обеспечивает высокую токовую нагрузочную способность. При регулировании используется обратная связь по напряжению. На рис. 6 показана структурная схема микросхемы ШИМ-контроллера NCP1379.

Рис. 6. Структура микросхемы NCP1379

Динамическое питание для фазы запуска в микросхемах этой серии не используется. Питание подается постоянно через резистор от входной шины входного напряжения и через диод - с питающей обмотки трансформатора. NCP1379 и NCP1380 обеспечивают ультранизкое потребление в дежурном режиме, а также высокую эффективность работы с пониженной токовой нагрузкой за счет переключения на пониженную частоту.

Блокировка для микросхем серии NCP1379/80, в отличие от микросхем серии NCP1237/38/87/88, происходит по другим условиям. Реализована защита от превышения мощности в нагрузке Over Power Protection (OPP), или повышенного тока. В качестве токового датчика используется дополнительная обмотка трансформатора. Сигнал с обмотки подается на вывод 1 микросхем NCP1379/80. По сигналу на входе вывода 1 контролируется не только условие начального пуска по точке пересечения нуля (Zero Crossing Detection), но и оценивается превышение тока в нагрузке выше критического порога. На рис. 7 показана типовая схема включения ШИМ-контроллера NCP1379.

Рис. 7. Типовая схема включения ШИМ-контроллера NCP1379

В микросхемах NCP1379/80 реализована внутренняя термозащита (Internal Shutdown).

Таблица 4. Базовые различия модификаций ШИМ-контроллеров серии NCP1379/80

модификация Режим блокировки работы (Latch) Режим с пуском таймера автовосстановления после блокировки (autorecovery) Защита от перенапряжения (OVP) и термозащита (OTP) Защита от понижения питания (Brown Out) + защита от перенапряжения (OVP)
NCP1379 - + - +
NCP1380A + - + -
NCP1380B - + + -
NCP1380C + - - +
NCP1380D - + - +

Различия между модификациями микросхем NCP1380 определяются логикой схем начального запуска и работой цепей защиты.

В модификациях или реализуется блокировка (Latch), или разрешается автовосстановление после сбоя (AutoRecovery). Блокировка срабатывает при обнаружении повышенного тока в цепи нагрузки, например при коротком замыкании. Условие короткого замыкания определяется таймером длительностью 80 мс. Если повышенный ток детектируется более 80 мс, то ситуация оценивается как аварийная и работа преобразователя блокируется.

Защита от перенапряжения, пониженного напряжения на входе, а также защита от перегрева выходного транзистора реализуется посредством двухпорогового детектора, стоящего на входе вывода 7 микросхем NCP1379/80. Следует только учесть, что не все типы защит реализуются сразу в одной микросхеме, а только определенные комбинации. Четыре модификации микросхемы NCP1380 позволяют выбрать набор определенных защит.

Соответственно, немного отличаются и типовые схемы включения для модификаций NCP1380 (рис. 8, 9).

Рис. 8. Типовая схема включения модификаций микросхем NCP1380A/B

Рис. 9. Типовая схема включения модификаций микросхем NCP1380C/D

Рассмотренные ШИМ-контроллеры предназначены для тех приложений, где устойчивость к жестким условиям эксплуатации и стоимость устройства - ключевые факторы выбора.

Литература

  1. AND8344/D Implementing an LCD TV Power Supply with the NCP1392B, NCP1606 and NCP1351B Prepared by: Jaromir Uherek ON Semiconductor.
  2. Ромадина И. Контроллеры ON Semiconductor для сетевых источников питания с экономичным дежурным режимом // Компоненты и технологии. 2009. № 7.
  3. Datasheet NCP1237 Fixed Frequency Current Mode Controller for Flyback Converters.
  4. Datasheet NCP1288 Fixed Frequency Current Mode Controller for Flyback Converters.
  5. Datasheet NCP1379 Quasi-Resonant Current-Mode Controller for High-Power Universal Off-line Supplies.
  6. Datasheet NCP1380 Quasi-Resonant Current-Mode Controller for High-Power Universal Off-Line Supplies.

Когда в какой-нибудь литературе мы встречаем незнакомое слово или понятие, мы хотим скорее узнать его определение. Зная точное определение можно дальше проследить сферу использования и методы применения главного действующего лица того или иного понятия. Сегодня мы ближе познакомимся с таким понятием как шим - контроллер.

Понятие шима

Прежде чем дать определение упомянутому словосочетанию, следует узнать или кому-то просто напомнить себе принцип нагревания силовых компонентов радиосхемы. Их сущность заключается в действии нескольких переключательных режимах. Все электросиловые компоненты в подобных радиосхемах всегда пребывают в двух состояниях. Первое - это открытое, а второе раскрытое. В чём разница между этими двумя состояниями? В первом случае компонент обладает нулевым током. Во втором же у компонента нулевое значение напряжения. Конечным результатом взаимодействия электросиловых компонентов с необходимой напряжённостью можно считать получения сигнала той формы, которая нужна согласно установленным правилам.

Шимом же называют специальный модулятор, предназначенный для контролирования времени открытия силового ключа. Время для открытия ключа устанавливается с учётом получаемого напряжения. Получить идеальный вариант сигнала возможно лишь в том случае, если перед преобразованием сигнал без затруднений прошёл все необходимые этапы. Какие это этапы из чего состоит формирование такого сигнала.

Особенности шим - контроллера

Сам процесс создания шим - сигналов очень непростой. Чтобы облегчить этот процесс, были придуманные специальные микросхемы. Именно микросхемы, участвующие в формировании шим - сигналов называют шим - контролёрами. Их существование в большинстве случаев помогает полностью решить проблему с формированием широко — импульсных сигналов. Чтобы легче понять миссию и значимость шим - контролёра, необходимо познакомиться с особенностями его строения. На сегодняшний день известно, что любой шим - контролёр, активно использующийся в электронике, обладает следующими составляющими:

  • Вывод питания. Несёт большую ответственность за электрическое питание всех существующих схем. Нередко вывод питания путают с выводом контроля питания . Важно знать, что несмотря на похожие слова в названии, эти два понятия имеют совершенно разную характеристику. Это ещё раз наглядно докажет знакомство с выводом контроля питания.
  • Вывод контроля питания. Эта составляющая часть микросхемы следит за состоянием показателей напряжения прямо на выводе микросхемы. Главная задача вывода контроля питания - это не допустить превышение расчётной отметки. Существует одна серьёзная опасность, а именно снижения напряжения на выходе. Если напряжения снижено, транзисторы начинают открываться наполовину. Из-за неполного открытия они быстро нагреваются и в конечном счёте могут быстро выйти из строя. Поэтому умеренное напряжение - это залог долгой работы транзисторов микросхемы шим — контроллеров.
  • общий выход. Третий главный элемент схемы имеет форму ножки. Эта ножка, в свою очередь, подключена к общему проводу схемы, которые отвечает за питания всей системы.

Все три составляющих очень важны. Если хотя бы один из элементов по какой-то причине выходит из строя, работа всей микросхемы заметно ухудшается или совершенно прекращается.

Системы управления микросхемами

Важно знать не только из чего состоят микросхемы шим - контроллеров, но и какие существуют виды самих систем. В настоящее время доступно две основных системы широко — импульсной модуляции в которых шим - контроль принимает активное участие. Вот их некоторые особенности:

А вот получить на выходе нужный сигнал можно как с программным, так и аппаратным методом.

Аппаратный метод. Получение сигнала этим способом происходит с помощью специального таймера, который изначально встроен в цифровую систему. Такой таймер генерирует или способствует включению импульсов на определённых этапах вывода сигнала.

Программный метод. В этом случае получения сигналов происходит посредством выполнения специальных программных команд. У программного способа больше возможностей , нежели у аппаратного. В то же время использования этого метода получения сигналов может занять много памяти.

А что можно сказать о «сердце системы». У шима - контролёра, который активно применяется в цифровых модуляторах есть свои преимущества. Стоит помнить о следующих:

  • Низкая стоимость.
  • Стабильная работа.
  • Высокая надёжность.
  • Возможность экономить энергию.
  • высокая эффективность преобразования сигналов.

Все перечисленные преимущества делают цифровую систему более востребованной среди потребителей.

  • Аналоговый модулятор. Принцип работы аналогового модулятора в корне отличается от принципа работы цифрового Вся суть работы такого модулятора состоит в сравнении двух сигналов. Эти сигналы отличаются между собой порядком частоты. Операционный усилитель - это главный элемент аналогового модулятора, который отвечает за сравнение сигналов. Сравнение сигналов осуществляется на выходе. В качестве сравнения усилитель используется два сигнала. Первый - пилообразное напряжение высокой частоты. Второй сигнал - низкочастотное напряжение. После сравнения на свет появляются импульсы прямоугольной формы. Длительность импульсов напрямую зависят от модулирующего сигнала .

Шим - контроллер в импульсных блоках питания

Многие электрические приборы сегодня оснащены специальными блоками питания. Эти блоки помогают преобразить один вид напряжения в другой. В процессе преобразования энергии принимают участия два устройства:

  • Импульсный блок питания.
  • аналоговые трансформаторные устройства.

В этой статье мы больше внимания обратим на первое устройство, так как именно в нём используется шим - контролёр.

Схема работы импульсного блока питания

Это устройство появилось на свет всего лишь несколько десятилетий назад. Однако уже успело стать популярным и востребованным. Импульсный блок питания состоит из следующих деталей:

  1. Фильтрующего конденсата.
  2. Ключевого силового транзистора.
  3. Сетевого выпрямителя, состоящего из нескольких элементов.
  4. Выпрямительных диодов выходной системы.
  5. Силовой дроссели. Дроссель помогает корректировать возникающее напряжение.
  6. Импульсивного источника питания. Именно отсюда напряжение преобразовывается в силовую цепь.
  7. Цепей управления выходного напряжения.
  8. Накопительной фильтрующей ёмкости;
  9. Оптопара;
  10. Задающего генератора.
  11. схемы обратной связи.

Зная состав импульсного блока, следует ознакомиться с принципом его работы.

Принцип работы импульсного блока

Принцип работы импульсного блока заключается в выдаче стабилизированного питающего напряжения на основе принципа взаимодействия элементов инертной системы. Вот поэтапные шаги, наглядно демонстрирующие всю суть деятельности такого блока питания:

  • Передача сетевого напряжения на выпрямитель (осуществляется при помощи специальных проводов).
  • С помощью фильтра выпрямителя происходит сглаживание напряжения. В этом процессе принимают участие и конденсаторы.
  • с помощь диодного входного моста выпрямляются синусоиды. Далее при участии транзисторной системы проходящие синусоиды должны преобразоваться в высокочастотные импульсы. Зачастую импульсы имеют прямоугольную форму.

Но возникает вопрос, какую роль в импульсном блоке играют шим - контролёры. Мы постараемся дать ответ на него в следующем подзаголовке.

Роль шима - контроллера в работе импульсного блока

Шим - контроллеры играют важную роль в импульсном блоке. Он отвечает за процессы, связанные с широтно — импульсной модуляцией. Шим - контролёр способствует выработке импульсов, у которых одинаковая частота, но в то же время разная длительность включения. Все подаваемые импульсы соответствуют определённой логической единице. У импульсов одинаковая не только частота, но и одинаковая величина амплитуды. Продолжительность функционирования логической единицы может меняться в процессе её работы. Такие перемены помогают наилучшим образом управлять работой электронной системы.

Таким образом, шим - контролёр - одна из важных цепочек, участвующих в работе импульсного блока. В некоторых видах помимо шим - контролёра благополучное функционирование блока питания обеспечивает импульсный трансформатор и специальный каскад силовых ключей.

А в каких сферах используются импульсные блоки питания? В первую очередь, в электронике. Об этом речь пойдёт далее.

Особенности работы микросхемы или как может работать ноутбук

Компьютерный блок питания и роль шим - контролёра в нём Все современные компьютеры, в том числе и ноутбуки, оснащены импульсными блоками питания. Установленные в ноутбуке или в обычном компьютере блоки содержат индивидуальную микросхему шим - контролёра. Стандартной микросхемой считают микросхему TL494CN.

Прежде всего стоит сказать о главной задаче микросхемы TL494CN. Итак, главной задачей схемы является широтно — импульсная модуляция. Другими словами микросхема вырабатывает импульсы напряжения. Одни импульсы регулируемы, другие нет. В микросхеме предусмотренно примерно 6 способов выводов сигналов. Упомянем некоторые интересные подробности каждого вывода микросхемы ноутбука.

Первый вывод. Считается положительным входом усилителя сигнала ошибки. Уровень напряжения на первом выводе оказывает значительное влияние на функционирование последующих выводов. При низком напряжении при втором выводе у выхода усилителя ошибки будут низкие показатели. И напротив, при повышенном напряжении показатели усилителя ошибки повысятся .

Второй вывод. Второй же вывод является напротив отрицательным выходом для усилителя. Здесь показатели напряжения немного по-иному оказывают своё влияние на усилитель. Так, при высоком напряжении (выше чем на первом выводе) у выхода усилителя низкие показатели. В случае низкого напряжения усилитель обладает высокими данными.

Третий вывод. Служит неким контактным звеном. Перемены в уровне напряжения зависят от двух диодов, которыми наделен внутренний усилитель. Во время изменения уровня сигнала хотя бы на одном диоде меняется уровень напряжения всего усилителя. В некоторых случаях третий вывод обеспечивает скорость изменения ширины импульсов.

Четвёртый вывод. Способен управлять диапазон скважности всех выходных импульсов. Уровень поступаемого напряжения в четвёртом выводе влияет на ширину импульсов в микросхеме шим - контролёра.

Пятый вывод. Перед пятым выводом стоит немного другая задача. Он присоединяет врямязадующий конденсатор к заданной микросхеме. Ёмкость присоединённого конденсата оказывает значительное влияние на частоту выходных импульсов шим - контролёра.

Шестой вывод. Служит для подключения времязадающего регистра, который также влияет на частоту.

Все эти шесть выводов способствуют выполнению главной задачи, которая поставлена перед микросхемой шим - контролёра - выход импульсов с широкой модуляцией. А это действие, в свою очередь, влияет на работу импульсного блока, а значит и на работу ноутбука.

Если шим - контролёр выходит из строя

Временами шим - контролёры их схемы и источник питания (в том числе и встроенные в ноутбук) могут ломаться и выходить из строя. В таких случаях понадобится выявить неисправности (в одних случаях проверять необходимо источник питания, в других проверять стоит саму схему). Для этой цели были разработаны мультиметры . Мультиметры тщательно исследуют работоспособность шим - контролёров и при необходимости помогают устранить неисправности. Самыми распространёнными причинами, почему следует проверять эти устройства, считают нестабильную работу платы и изменения показателей напряжения. Если их устранить, техника будет работать.



Просмотров