Какой оперативной памяти отдать предпочтение: DDR3 или DDR4

Появление на рынке ОЗУ DDR4 пошатнуло незыблемые позиции ее предшественника. Она обладает более высокими техническими характеристиками и у многих пользователей возник закономерный вопрос, какая планка ОЗУ лучше? Многочисленные тесты и сравнения оперативной памяти четвертого поколения с DDR3 показывают, в чем заключается разница между ними. При выборе модуля памяти формата DDR3 следует учитывать, что у него отсутствует совместимость с DDR4.

Компьютера — один из компонентов, который отвечает за его производительность: скорость обработки информации и максимальный объем данных, обрабатываемых в данный момент. До 2015 года первые позиции прочно удерживало ОЗУ третьего поколения DDR3, но с появлением DDR4 ситуация начала меняться в сторону последней модификации. Появление оперативной памяти четвертого поколения вызвало большой ажиотаж на рынке компьютерной техники, одновременно с этим возник закономерный вопрос, что лучше DDR3 или DDR4 и не является ли появление последней модели обычным маркетинговым ходом?

История развития DDR4

Разработкой ОЗУ четвертого поколения компания JEDEK занялась еще в далеком 2005 году, когда самой современной модификацией была DDR2. Инженеры компании уже в то время осознали, что второе поколение оперативной памяти не сможет отвечать требованиям, стремительно развивающимся процессорам и остальным комплектующим ПК. Даже анонсированный выход ОЗУ третьего поколения не сможет в полной мере справиться с поставленной задачей. Для решения проблемы не достаточно простого увлечения скорости обработки данных как это было сделано в DDR3. Необходимо учитывать такие параметры как энергопотребление и объем, которые влияют на пропускную способность устройства.

Внимание! Для работы со специализированными программами: пакеты для объемного проектирования, редакторы фото или видео главным параметром выбора оперативной памяти является ее пропускная способность, т. е. скорость обработки информации.

В 2015 году с появлением на рынке платформ Socket LGA1151 пользователям ПК представилась возможность произвести сравнительный анализ ОЗУ третьего и четвертого поколения в одинаковых условиях.

Технические характеристики

Прежде чем говорить, что лучше DDR3 или DDR4 и проводить их сравнения следует подробно ознакомиться с их техническими характеристиками и возможностями, а также их преимуществами и недостатками. Данный подход позволит правильно и точно определить будущее модулей памяти и выявить перспективный образец.

DDR3

Основными характеристиками для оперативной памяти не зависимо от ее поколения являются следующие характеристики:

  • Частота. ОЗУ третьей модели выпускается с частотой 1066 МГц, 1333 МГц и 1600 МГц, а последняя модификация имеет 1866 МГц. При помощи разгона памяти ее частоту можно повысить до 2400 – 2666 МГц. Максимальное значение этого параметра при разгоне, которое было получено в лабораторных условиях, составляет 4620 МГц.
  • Напряжение. Энергопотребление варьируется в диапазоне 1,5 – 1,8 В. Последняя версия DDR3L способна работать при низком напряжении 1,25 – 1,35 В. Индекс L означает Low Power (с англ. – малая мощность).
  • Время простоя. Для определения производительности планки памяти одним из важных параметров являются тайминги или латентность (CL), т. е. задержка при передаче информации. DDR3 1600 МГц имеет задержку равную 9 тактам, для получения временного значения необходимо 1 сек. разделить на 1600 млн. тактов и получаем 0,625 мс на 1 такт. Результат умножаем на 9 тактов и получаем 5,625 нс. Далее умножаем на 2 (количество потоков передачи данных) и время задержки составляет 11,25 нс.

Совет. Значение латентности можно определить из маркировки оперативной памяти после букв CL. Соответственно, чем ее значение меньше, тем выше производительность устройства.

DDR4

ОЗУ четвертого поколения обладает более высокими параметрами технических характеристик, за счет которых оно обходит своего предшественника.


Сравнение DDR3 и DDR4

Исходя из технических характеристик видно, что время задержки у DDR4 выше, чем у ее предшественника. Однако при линейном чтении данных или их сохранении за счет практически не меняющихся таймингов эта разница компенсируется, и ОЗУ четвертой модели выигрывает. При работе в многопоточном режиме за счет меньшей латентности выигрывает DDR3 в пределах статистической погрешности. Выполняя сжатие файлов большого размера (объем от 1,5 ГБ и выше), потраченное время на операцию у DDR4 на 3 % меньше, чем у DDR3. Спецификация оперативной памяти третьего поколения предусматривает использование Vddr напряжение. При осуществлении энергозатратных операций оно повышается за счет встроенных преобразователей, тем самым происходит обильное излучение тепла. Модуль DDR4 получает необходимое напряжение от внешнего источника питания (Vpp).

В ОЗУ четвертой модели реализована технология Pseudo-Open Draid, она позволила полностью устранить утечки тока, что наблюдалось в предыдущей версии, где используется Series-Stub Terminated Logic. Применение данного интерфейса для ввода и вывода данных позволило снизить потребление энергии до 30 %. Что касается объема памяти планки DDR4, то минимальное значение составляет 4 ГБ, а для DDR3 оно является оптимальным т. к. максимальное равно 8 ГБ. Структура оперативной памяти третьего поколения позволяет разместить до 8 банков памяти с длиной строки 2048 байт. Последняя модификация ОЗУ имеет 16 банков и длину строки 512 байт, что увеличивает скорость переключения между строками и банками.

Из сравнения DDR3 и DDR4 можно сделать вывод, что последнее поколение ОЗУ обходит своего предшественника практически по всем параметрам, но эта разница мало заметна для обычного пользователя. DDR3L 1600 МГц в сочетании с Intel Core i5 практически не уступают DDR4. ОЗУ четвертого поколения рекомендуется устанавливать для современных игр или работы в специализированных программах, которые требуют большого объема памяти и высокой скорости обработки данных.

Сравнение оперативной памяти DDR 3 и DDR 4: видео

Это модуль, функцией которого является хранение данных и предоставление их по требованию устройству или программе - по сути это посредник между процессором и дисковыми накопителями. RAM является энергозависимым устройством, т.е. может работать лишь пока на него подается питание, при отключении которого все данные теряются. Разберемся более подробно в характеристиках этого важнейшего устройства, без которого ваш ПК, смартфон, ноутбук или планшет будет обычной грудой железа.

Типы ОЗУ

RAM бывают нескольких типов, кардинально отличающихся характеристиками и архитектурой.

– синхронная динамическая память с произвольным доступом. Раньше была довольно популярной и использовалась почти во всех компьютерах, благодаря наличию синхронизации с системным генератором, который, в свою очередь, позволял контроллеру очень точно определять время, когда данные будут готовы. В итоге значительно уменьшилось время задержек по циклам ожидания в связи с доступностью данных на каждом такте таймера. Сегодня вытеснена более современными типами памяти.

– это динамическая синхронизированная память, в ее основе лежит принцип случайного доступа и двойная скорость обмена данными. Такой модуль обладает рядом положительных характеристик относительно SDRAM, важнейшая из которых – за 1 такт системного генератора осуществляется 2 операции, то есть при неизменной частоте пропускная способность на пике увеличивается в 2 раза.

– это следующая разработка, работает так же, как и у ОЗУ типа DDR, отличительная особенность данной модели заключается в удвоенной по объему выборке данных на такт (4 бита вместо 2х). Кроме того второе поколение стало более энергоэффективным, уменьшилось тепловыделение, а частоты выросли.

– новое поколение RAM, важнейшая отличительная особенность от DDR2 – выросшие частоты и уменьшенное потребление энергии. Также совершенно изменена конструкция ключей (специальные прорези для точного вхождения в слот).

Существуют модификации DDR3, отличающиеся еще меньшим потреблением энергии - DDR3L и LPDDR3 (напряжение у первой модели уменьшено до 1.35 В, а у второй до 1.2 В, тогда как у простых DDR3 оно равно 1.5В).

DDR4 SDRAM - новейшее поколение оперативной памяти. Характеризуется выросшей до 3,2 Гбит/с скоростью обмена данными, увеличенной до 4266 МГц частотой и значительно улучшенной стабильностью.

RIMM (RDRAM, Rambus DRAM) – память, основанная на тех же принципах, что и DDR, но с повышенным уровнем тактовой частоты, что было достигнуто за счет меньшей разрядности шины. Также при адресации ячейки номера строки и столбца предаются одновременно.

Стоимость RIMM была намного выше, а производительность лишь немногим превышала DDR, в итоге RAM этого типа просуществовали на рынке недолго.

Выбирайте тип RAM не только исходя из потенциала и характеристик вашей материнской платы, но и учитывая совместимость с другими составляющими системы.

Варианты физического расположения чипов (упаковка)

Устанавливаемые на модули ОЗУ чипы памяти располагаются либо с одной стороны (одностороннее месторасположение), либо с двух (двустороннее). В последнем варианте модули получаются достаточно толстыми, что не позволяет установить их на отдельные ПК.

Форм-фактор это

Специально разработанный стандарт в котором описаны размеры модуля ОЗУ, общее количество и месторасположение контактов. Существует несколько типов форм-факторов:

SIMM (Single in Line Memory Module) - 30 или 72 двухсторонних контакта;

RIMM – фирменный форм-фактор модулей RIMM (RDRAM). 184, 168 или 242 контакта;

DIMM (Dual in Line Memory Module) – 168, 184, 200 или 240 независимых, расположенных по обеим сторонам модуля, контактных площадок.

FB-DIMM (Fully Buffered DIMM) – исключительно серверные модули. Идентичны по форм-фактору DIMM с 240 контактами, но используют лишь 96, за счет последовательного интерфейса. Благодаря присутствующей на каждом модуле микросхеме AMB (Advanced Memory Buffer) обеспечивается высокоскоростная буферизация и конверсия всех сигналов, в том числе и адресации. Также значительно улучшены производительность и масштабируемость. Совместимы только с аналогичной полностью буферизованной памятью.

LRDIMM (Load Reduced Dual In-Line Memory Modules) – исключительно серверные модули. Оснащаются буфером iMB (Isolation Memory Buffer), снижающим нагрузку на шину памяти. Применяются для ускорения работы больших объемов памяти.

SODIMM (Small Outline Dual In-Line Memory Module) – подвид DIMM с меньшими размерами для установки в портативные устройства, в основном - ноутбуки. 144 и 200 контактов, в более редком варианте - 72 и 168.

MicroDIMM (Micro Dual In-Line Memory Module) - еще уменьшенный SODIMM. Обычно имеют 60 контактов. Возможные реализации контактов - 144 SDRAM, 172 DDR и 214 DDR2.

Отдельного упоминания заслуживает низкопрофильная (Low Profile) память - созданные специально для невысоких серверных корпусов модули с меньшей, по сравнению со стандартными, высотой.

Форм-фактор является основным параметром совместимости RAM с материнской платой, поскольку при его несовпадении модуль памяти элементарно не получится вставить в слот.

Что такое SPD?

На каждой планке форм-фактора DIMM имеется маленький чип SPD (Serial Presence Detect), в котором зашиты данные о параметрах физических чипов. Данная информация имеет критическое значение для бесперебойной работы и считывается BIOS на этапе теста для оптимизации параметров доступа к ОЗУ.

Ранки модуля памяти и их количество

Блок памяти шириной 64 бита (72 для модулей с ECC), образованный N физическими чипами. Каждый модуль может иметь от 1 до 4 ранков, причем свое ограничение на количество ранков существует и у материнских плат. Поясним - если на материнскую плату может быть установлено не более 8 ранков, то это значит что суммарное количество ранков модулей RAM не может превышать 8, например, в данном случае - 8 одноранковых или 4 двухранковых. В независимости от того остались ли еще свободные слоты - при исчерпанном лимите ранков дополнительные модули будет установить невозможно.

Определить ранк для конкретного ОЗУ довольно просто. У компании Kingston количество ранков определяется одной из 3-х букв в центре маркировочного списка: S – это одноранговая, D – друхранговая, Q – четырехранговая. Например:

  • KVR1333D3LS 4R9S/4GEC
  • KVR1333D3LD 4R9S/8GEC
  • KVR1333D3LQ 8R9S/8GEC

Прочие же производители указывают этот параметр как, например, 2Rx8, что означает:

2R - двухранковый модуль

x8 - ширина шины данных на каждом чипе

т.е. модуль 2Rx8 без ECC имеет 16 физических чипов (64х2/8).

Тайминги и латентность

Выполнение любой операции чипом памяти происходит за определенное число тактов системной шины. Требуемые для записи и считывания данных количества тактов и есть тайминги.

Латентность, если коротко - задержка обращения к страницам памяти, также измеряется в количестве циклов и записывается 3-я числовыми параметрами: CAS Latency, RAS to CAS Delay, RAS Precharge Time. Иногда добавляется четвертая цифра - «DRAM Cycle Time Tras/Trc», характеризующая общее быстродействие всей микросхемы памяти.

CAS Latency или CAS (CL) – ожидание от момента, когда данные были запрошены процессором и до начала их считывания с RAM. Одна из важнейших характеристик определяющих скорость работы ОЗУ. Маленькое CL говорит о высоком быстродействии RAM.

RAS to CAS Delay (tRCD) - задержка между передачей сигнала RAS (Row Address Strobe) и CAS (Column Address Strobe), необходимая для четкого отделения этих сигналов контроллером памяти. Проще говоря - запрос на чтение данных включает в себя номера строки и столбца страницы памяти и эти сигналы должны быть отчетливыми, в противном случае будут возникать множественные ошибки данных.

RAS Precharge Time (tRP) - определяет время задержки между деактивацией текущей строки данных и активацией новой. Иначе говоря – интервал, спустя который контроллер может снова подать сигналы RAS и CAS.

Тактовая частота, частота передачи данных (Data rate)

Частота передачи данных (Иначе - скорость передачи данных) - максимально возможное число циклов передачи данных в секунду. Измеряется в гигатрансферах (GT/s) или мегатрансферах (MT/s).

Тактовая же частота определяет максимальную частоту системного генератора. Надо помнить, что DDR расшифровывается как Double Data Rate, что означает удвоенную частоту обмена данными относительно тактовой. Так, например для модуля DDD2-800 тактовая частота будет 400.

Пропускная способность (пиковая скорость передачи данных)

В упрощенном варианте рассчитывается как частота системной шины умноженная на передаваемый за такт объем данных.

Пиковая же скорость является произведением частоты и разрядности шины на количество каналов памяти (Ч×Р×К). На модуле памяти указывается как, например, PC3200, что, очевидно, означает - пиковая скорость передачи данных для этого модуля равна 3200 Мбайт/с.

Для оптимальной работы системы суммарное значение ПСПД планок памяти не должно превышать ПС шины процессора, исключением является двухканальный режим, когда планки будут занимать шину по очереди.

Что такое поддержка ЕСС (Error Correct Code)

Память с поддержкой ECC позволяет находить и исправлять спонтанные ошибки во время передачи данных. Физически ECC исполнена в виде дополнительного 8-разрядного чипа памяти на каждые 8 основных и представляет собой значительно улучшенный "контроль четности". Суть данной технологии состоит в отслеживании одного произвольно измененного в процессе записи/считывания 64-битного машинного слова бита с последующим его исправлением.

Буферизованная (регистровая) память

Характеризуется наличием на модуле RAM специальных регистров (буферов), обрабатывающих сигналы управления и адресации от контроллера. Несмотря на возникающий благодаря буферу дополнительный такт задержки, регистровая память тем не менее широко используется в профессиональных системах из-за пониженной нагрузки на систему синхронизации и значительно повышенной надежности.

Надо помнить, что буферизированная и небуферизированная память являются несовместимыми и не могут работать в одном устройстве.

Память DDR3 постепенно сдает свои позиции как наиболее массовая и для сборки новых систем уже не рекомендуется. Другое дело, если стоит задача модернизировать слегка устаревший компьютер, причем в рамках ограниченного бюджета. Понятное дело, подобные условия исключают из перечня вариантов максимально разогнанные комплекты памяти, и в нашем обзоре они не рассматриваются.

Примечательно, что в рамках платформы Intel гонка за мегагерцами особого смысла также не имеет. Исключением здесь являются достаточно специфические задачи, которые для большинства пользователей интереса не представляют. С другой стороны, разница в цене комплектов памяти одного объема, но с разной тактовой частотой исчезающе мала (в диапазоне от 2133 до 3000 МГц, разумеется). Так почему бы и не выбрать набор оперативной памяти пошустрее, на перспективу?

Совершенно иначе обстоит дело с новейшей платформой AMD . Из-за особенностей своей внутренней архитектуры, производительность процессоров Ryzen напрямую зависит от рабочей частоты шины памяти Infinity Fabric, следовательно, и ее контроллера. В свою очередь, частота последнего «привязана» к характеристикам установленных модулей и может быть увеличена за счет разгона.

Крайне неприятный нюанс выбора модулей памяти для Ryzen заключается в том, что далеко не любой комплект заработает в такой системе даже на своей номинальной тактовой частоте. Здесь уже проблема в особенностях архитектуры самих модулей. Кратко, рекомендации можно свести к двум советам: ориентируйтесь на одноранговые планки памяти и на самую свежую ревизию BIOS для материнской платы. Чем новее в ней протокол AGESA — тем лучше. Имейте в виду, двухранговая память с Ryzen всегда будет работать на пониженных частотах, а ранние версии указанного протокола «дружелюбно» воспринимают только модули, построенные на основе чипов Samsung. Причем не любых, а исключительно поколения B-Die.

Удачного апгрейда!

Модуль памяти DDR со 184 контактами

DDR SDRAM (отангл. Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) - типоперативной памяти , используемой вкомпьютерах . При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в обыкновеннойSDRAM , за счёт считывания команд и данных не только по фронту, как вSDRAM , но и по срезу тактового сигнала. За счёт этого удваивается скорость передачи данных, без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200МГц (при сравнении с аналогом SDR SDRAM). В спецификацииJEDEC есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: тактовая частота шины памяти x2 (передача данных дважды за такт) x8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по переднему фронту тактового сигнала, а затем вторая половина шины данных по срезу.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания. Использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC ) их количество кратно 8, для модулей с ECC - кратно 9.

Спецификация чипов памяти

    DDR200: память типа DDR SDRAM, работающая на частоте 100 МГц

    DDR266: память типа DDR SDRAM, работающая на частоте 133 МГц

    DDR333: память типа DDR SDRAM, работающая на частоте 166 МГц

    DDR400: память типа DDR SDRAM, работающая на частоте 200 МГц

    DDR533: память типа DDR SDRAM, работающая на частоте 266 МГц

    DDR666: память типа DDR SDRAM, работающая на частоте 333 МГц

    DDR800: память типа DDR SDRAM, работающая на частоте 400 МГц

Характеристики чипов

    Объём чипа (DRAM density ). Записывается в мегабитах, например 256 Мбит - чип объёмом 32 мегабайта.

    Организация (DRAM organization ). Записывается в виде 64M x 4, где 64M - это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») - разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт объёма, но не позволяют использовать функцииChipkill , memory scrubbing иIntel SDDC .

Модули памяти

Модули DDR SDRAM выполнены в форм-факторе DIMM . На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чипSPD . На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей

    Объём. Указывается в мегабайтах или гигабайтах.

    Количество чипов (# of DRAM Devices ). Кратно 8 для модулей безECC , для модулей с ECC - кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество - 36 (9x4).

    Количество строк (ранков) (# of DRAM rows (ranks) ). Перед обращением к ячейке памяти DDR должна быть активирована строка, в которой находится эта ячейка, причём в модуле может быть активна только одна строка за раз. Чем больше строк в модуле, тем чаще в среднем придётся закрывать одну строку и активировать другую, что вызовет дополнительные задержки. С другой стороны, контроллер памяти некоторыхчипсетов имеют ограничение на общее число ранков в установленных модулях памяти. Например чипсетIntel E7520/E7320 при использовании памяти PC2700 ограничен 8 ранками. Чтобы установить вматеринскую плату на его основе с 8 слотами DIMM максимум памяти (2 Гб x 8 = 16 Гб), необходимо использовать только одноранковые (Single Rank) модули. Типичное число ранков - 1, 2 или 4. Разрядность строки равна разрядности шины памяти и составляет 64 бита для памяти без ECC и 72 бита для памяти с ECC.

    Задержки (тайминги ): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 8/9, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа ранков на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа ранков модуля.

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранковую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти

Спецификация модулей памяти

Спецификация

Тактовая частота шины памяти

Максимальная теоретическая пропускная способность памяти

в одноканальном режиме

в двухканальном режиме

PC1600* (DDR200)

1600 Мбайт/сек

3200 Мбайт/сек

PC2100* (DDR266)

2133 Мбайт/сек

4267 Мбайт/сек

2400 Мбайт/сек

4800 Мбайт/сек

PC2700* (DDR333)

2667 Мбайт/сек

5333 Мбайт/сек

PC3200* (DDR400)

3200 Мбайт/сек

6400 Мбайт/сек

3467 Мбайт/сек

6933 Мбайт/сек

3733 Мбайт/сек

7467 Мбайт/сек

4000 Мбайт/сек

8000 Мбайт/сек

4267 Мбайт/сек

8533 Мбайт/сек

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее времяматеринских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену.

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например между PC1600 (работает на частоте 100МГц) и PC2100 (работает на частоте 133МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль. Следовательно, любой модуль можно запускать как на более низкой тактовой частоте (такое действие носит название «андерклокинг » - «underclocking»), так и на более высокой частоте по сравнению с той, на которой работает данный модуль памяти (оверклокинг - overclocking).

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) - у SDRAM два, у DDR - один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные - при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном , а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуется 2(или 4) модуля памяти, рекомендуется использовать модули работающие на одной частоте и имеющие одинаковый объём итайминги (ещё лучше использовать абсолютно одинаковые модули).

Сейчас модули DDR практически вытеснены модулями типов DDR2 иDDR3 , которые в результате некоторых изменений в архитектуре позволяют получить бóльшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типаRDRAM (Rambus ), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

    Официальный сайт JEDEC (англ.)

    Описание и иллюстрация почти всех параметров памяти DDR (рус.)

    Intel® Server Board SE7501CW2 Memory List Test Report Summary (PDF, 246,834 bytes) (англ.)- небольшой список возможных конфигураций модуля памяти.

    Kingston’s Literature Page (англ.)- несколько справочных документов, описывающих организацию модулей памяти.

Как работает динамическая память (DRAM).

В данной статье приведено небольшое описание DDR SDRAM на основе официальной спецификации. Описаны и проиллюстрированы почти все параметры памяти, влияющие на производительность. Более подробно рассмотрен параметр tRAS. Это достаточно базовая информация, которой должен владеть каждый уважающий себя любитель разгона.

Начнём с самого начала, с основ работы динамической памяти. Конечно, такой информации нет в спецификации, но будет полезно напомнить. Носителем информации в динамической памяти является электрическая ёмкость или конденсатор. Ячейки памяти, в основе которых лежит конденсатор, объединяются в массив. Чтобы считать информацию из ячейки, подаётся адресный сигнал в соответствующую строку (по-английски Row). Данные считываются из соответствующей колонки (по-английски Column) массива. Для "перевода" аналогового сигнала электрической ёмкости используются специальные усилители. Кроме того, существуют специальные цепи для подзарядки конденсаторов и записи данных. Обычно на блок-схемах всё это объединяется и обозначается как "Sense Amplifiers".

При считывании информации происходят следующие операции:

    Подаётся адресный сигнал в соответствующую строку. Данные целой строки попадают на усилители и через некоторое время могут быть считаны. Такая операция называется активацией строки (по-английски Activate).

    Данные считываются из соответствующей колонки. Для этого подаётся команда на чтение (по-английски Read). Данные появляются на выходе с некоторой задержкой. В современной памяти используется чтение пакета данных (по-английски Burst), представляющего собой несколько последовательно расположенных данных. Обычно размер пакета равен 8.

    Пока строка остаётся активной, возможно считывание или запись других ячеек памяти (текущей строки).

    Так как при чтении заряд ёмкостей ячеек памяти теряется, то производится подзарядка этих ёмкостей или закрытие строки (по-английски Precharge). После закрытия строки дальнейшее считывание данных невозможно без повторной активации.

    Со временем конденсаторы ячеек разражаются и их необходимо подзаряжать. Операция подзарядки называется регенерацией (по-английски Refresh) и выполняется каждые 64 мс для каждой строки массива памяти.

При записи данных всё происходит точно так же, только чтение меняется на запись и при закрытии строки происходит непосредственная запись в массив памяти.

Ячейка памяти может хранить только один бит информации. Чтобы хранить один байт, используется 8 элементарных ячеек памяти. При этом они адресуются одинаково и организованы с использованием шины данных шириной в 8 линий. Такие объединённые ячейки образуют слово. Обычно чипы памяти имеют размер слова 4, 8, 16 бит. Ширина шины данных при этом равна 4, 8, 16 линий (или разрядность 4, 8. 16 бит). Простой модуль памяти DIMM имеет ширину шины данных 64 линий.

Банки памяти.

Чтобы обеспечить возможность быстрой работы одновременно с разными участками памяти используется архитектура с несколькими массивами памяти или банками (по-английски Bank). Банки памяти работают полностью независимо. Например, данные можно считывать из памяти банка 1, обрабатывать и записывать в память банка 2. При этом будут отсутствовать задержки на активацию и закрытие строк данных в массиве памяти, что было бы в случае одного банка.

Возможна различная организация использования банков. При этом по-разному выполняется трансляция адреса памяти, который использует процессор, в последовательность: номер банка, номер строки массива памяти, номер колонки массива памяти. В простейшем случае банки памяти идут последовательно. Соответственно преимущества от наличия нескольких банков будут, только если обращения к памяти сильно разнесены в адресном пространстве. Обычно программы работают с небольшим локальным участком памяти и не будут иметь ускорения. Возможна организация с чередованием банков (по-английски Interleaving). Сначала идёт строка первого банка, потом второго, потом опять первого, и так далее до конца памяти. Вероятность, что будут использоваться участки памяти, принадлежащие разным банкам, значительно увеличивается. Но всегда возможны "неудобные" случаи, когда рабочие участки памяти разбросаны так, что принадлежат одному банку. Тем не менее, наличие нескольких банков повышает производительность. Чем больше банков, тем лучше. В спецификации чётко написано, что DDR SDRAM имеет 4 банка памяти.

Как работает DDR.

Сокращение DDR расшифровывается как Double Data Rate или удвоенная скорость передачи данных. Число, следующее за "DDR", указывает на скорость передачи данных. Например, у DDR 400 скорость передачи 400 МГц. При этом использовать термин "МГц" некорректно. Правильно указывать скорость в "миллионах передач в секунду через один вывод данных". Такое замечание есть в спецификации. Память DDR 400 работает на частоте 200 МГц или на частоте в 2 раза меньше скорости передачи данных (вернее, скорость передачи данных в 2 раза больше тактовой частоты). Все управляющие сигналы синхронизируются частотой 200 МГц. Внутри чипа все работает классически по переднему фронту сигналов тактового генератора с частотой 200 МГц (есть правда исключение). Официальная частота DDR333 равна 167.0 МГц.

Чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура "2n Prefetch". Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по переднему фронту тактового сигнала, а затем вторая половина шины данных по заднему фронту.

Для возможности работы на высоких частотах вместо одного тактового сигнала используется два (Differential Clock). Дополнительный тактовый сигнал инвертирован относительно основного. Поэтому на самом деле синхронизация происходит не по заднему фронту. В документации написано, что синхронизация происходит при пересечении этих двух тактовых сигналов. Но, насколько я понимаю, вместо пересечения просто используется передний фронт дополнительного тактового сигнала. Хотя это только предположение.

Кроме передачи двух данных за такт, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания. Использование QDS успешно это решает.

Пару слов можно сказать о стандарте DDR2. Как и для обычной памяти DDR, число после "DDR2" указывает на скорость передачи данных. Поэтому DDR2 400 и DDR 400 имеют абсолютно одинаковую скорость передачи данных. Массив памяти DDR2 работает на частоте в 4 раза меньше скорости передачи (вернее скорость передачи данных в 4 раза больше частоты работы массива). Для того чтобы обеспечить передачу данных 4 раза за такт используется архитектура "4n Prefetch". При этом внутренняя шина данных имеет ширину в 4 раза больше внешней шины. Тем не менее, вся управляющая логика ввода/вывода работает на частоте в 2 раза меньше скорости передачи, то есть на 200 МГц для DDR2 400. Непосредственно на сам чип памяти подаётся только эта частота.

Внутренняя организация DDR2 осталась в основном прежней, но есть и некоторые изменения. Задержка чтения (CL - CAS Latency) уже не может быть дробной. Это сделано для упрощения внутренней логики. Задержка записи изменена с фиксированного 1 такта до RL-1, где RL (Read Latency) – задержка чтения с учетом добавочной задержки (AL – Additive Latency) или другими словами, RL=AL+CL. Задержка записи стала как минимум 2 такта (CL=3, AL=0). Это сделано для уменьшения пропусков в передаче из-за разных задержек чтения и записи и, соответственно, для лучшего использования шины данных.

Была добавлена возможность отложенного выполнения команд при помощи добавочной задержки (AL - Additive Latency). Это приводит к отсутствию перерывов в передаче данных при конфликтных ситуациях на линии команд. Например, когда необходимо подать команду на чтение и команду активации строки другого банка памяти, подаётся только одна команда, хотя память может "обработать" две команды одновременно. Использование AL позволяет избежать таких ситуаций. С одной стороны, AL уменьшает задержки на получение информации при доступе к разным строкам массива памяти и позволяет более полно нагрузить шину данных при работе с несколькими банками памяти. С другой стороны, при работе с данными, находящимися в пределах одной строки, задержки увеличиваются. Для повышения производительности в DDR2 количество банков памяти было увеличено с 4 до 8, правда, только для чипов ёмкостью 1 Гбит и выше, и с некоторыми ограничениями. Основное отрицательное влияние на скорость работы оказывает массив памяти, который работает на частоте в 2 раза меньшей, чем массив DDR, и имеет большие внутренние задержки. Собственно точные причины повышения задержек выяснить не удалось. Такая информация является "внутренней" для производителей памяти.

Подведя небольшой итог, можно сказать, что при одинаковом рейтинге память DDR2 и DDR имеют одинаковую скорость передачи данных. Главным преимуществом DDR2 является возможность функционирования на значительно более высоких частотах. Становятся доступными большие скорости передачи данных. Массив памяти DDR2 работает в 2 раза медленнее, чем массив DDR, и обладает большими задержками. Кроме того изменения в протоколе работы в среднем так же увеличили задержки.

Протоколы работы с DDR SDRAM.

"Общение" системы с памятью происходит при помощи передачи сигналов по линиям ввода/вывода. При помощи этих сигналов подаются команды, передаются и считываются данные. Форма и задержки между этими сигналами жёстко описывается в спецификации. Для понимания параметров памяти и того, как система с ней работает, можно ограничиться упрощенным представлением протокола работы. Далее будут представлены диаграммы основных операций.

На диаграмме хорошо видно, что данные начинают поступать на выход только через tRCD+CL тактов после начала операции единичного чтения. Другими словами, параметры tRCD и CL имеют одинаковое значение. Однако если запустить обычные тесты латентности памяти (ScienceMark 2.0, CPU-Z 1.20a, CacheMem 2.6), то CL будет влиять на результаты больше. Это происходит из-за того, что тесты измеряют время не случайного произвольного чтения, а последовательного чтения с некоторым шагом. При этом происходит несколько чтений в пределах активной строки. Размер строки массива памяти может быть разным, от 512 ячеек до 4096 ячеек. Соответственно, tRCD оказывает влияние на результаты реже, только при активации строки, а CL – при каждом чтении.

Проведённое исследование в статье "" показало, что в реальных приложениях изменение tRCD на 1 имеет чуть большее значение, чем изменение CL на 0.5. Ещё одним интересным моментом на диаграмме является подача команды на закрытие строки, когда передача данных не закончилась. То есть строка может быть закрытой, а данные всё ещё передаваться.

Вот определение некоторых параметров памяти, проиллюстрированных на диаграмме. Приводятся сокращённые и развернутые (не расшифровка) названия параметров, как они указаны в спецификации. Значения параметров задаются либо в абсолютном выражении в наносекундах или в циклах (тактах) тактового генератора.

tRCD (ACTIVE to READ or WRITE delay) – время необходимое на активацию строки банка памяти или минимальное время между командой активации и командой чтения/записи.

CL (CAS Latency) – время между командой чтения и началом передачи данных.

tRAS (ACTIVE to PRECHARGE command) – время необходимое на накопление заряда для операции закрытия строки банка или минимальное время между командой активации и командой закрытия (для одного и того же банка).

tRP (PRECHARGE command period) – время необходимое на закрытие строки банка памяти или минимальное время между командой закрытия и повторной активации (для одного и того же банка).

По ходу можно дать ещё пару определений параметров, не отображённых на диаграмме.

tRRD (ACTIVE bank A to ACTIVE bank B command) – минимальное время между командами активации для разных банков.

tRC (ACTIVE to ACTIVE/Auto Refresh command period) – минимальное время между командами активации одного и того же банка. Собственно это время состоит из tRAS+tRP.

При последовательном чтении следующая команда подаётся, когда данные предыдущей ещё не закончили передаваться. Это и есть конвейеризация. При этом CL абсолютно не влияет на пропускную способность памяти. Если предвыборка данных контроллером памяти организована хорошо, то CL имеет совсем небольшое влияние на производительность.

tWR (Write recovery time) – минимальное время между окончанием передачи данных при записи (по переднему фронту) и командой закрытия строки банка памяти (для одного и того же банка).

Как видно, в случае операции чтение-запись, конвейеризация не работает. Получается бесполезный пропуск 1 такта.

При операции запись-чтение, конвейеризация тоже не работает. Пропуск равен tWTR+CL тактов.

tWTR (Internal Write to Read Command Delay) – минимальное время между окончанием передачи данных при записи (по переднему фронту) и командой чтения (для любого банка памяти).

Собственно это все параметры памяти, влияющие на производительность, за исключением параметров, относящихся к регенерации. Пару слов можно сказать про наилучшие значения параметров памяти. Все параметры, за исключением CL, определяют минимальное время. Параметр CL жестко фиксирован и программируется в чипе памяти при инициализации (кстати, это объясняет невозможность изменения CL на платах nForce2 без перезагрузки, в то время как tRAS и другие параметры менять можно). Для любого параметра меньшее значение обеспечивает более высокую скорость. Влияние на производительность некоторых параметров приведено в статье "Зависимость производительности от частоты шины и параметров памяти на ASUS A7N8X-X (nForce2 400) ".

Чипы памяти, модули памяти.

Под понятием DDR SDRAM подразумеваются собственно чипы или микросхемы памяти. В обычных современных компьютерах в качестве основной памяти используются модули памяти DIMM (Dual In-Line Memory Modules). Модуль памяти представляет собой "сборку" на печатной плате, состоящую из нескольких чипов памяти. Кроме того, на модуле расположена небольшая энергонезависимая память для хранения конфигурационной информации (SPD). Это маленькая микросхема с небольшим числом выводов. В случае буферизированных модулей, имеются чипы буферов.

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.



Просмотров