Характеристика, виды и принцип работы металлодетекторов. Принцип действия металлоискателя

От величины электрического сопротивления катушки с проводом зависит время затухания этого электрического импульса. Полное отсутствие сопротивления, или напротив очень высокая его величина заставит импульс колебаться. Это похоже на бросание резинового мячика на очень твердую поверхность, на которой он отскакивает многократно, прежде чем успокоится окончательно. При достаточном электрическом сопротивлении время затухания импульса укорачивается и отраженный импульс «сглаживается». Это аналогично бросанию резинового мячика в подушку. Про катушку детектора с импульсной индукцией говорят, что она критично заглушена, когда отраженный импульс быстро затухает до нуля без колебаний. Чрезмерное или недостаточное подавление будет вносить нестабильность в работу и маскировать сигналы от хорошо проводящих металлов таких, как золото и уменьшать глубину обнаружения. Когда металлический предмет находится поблизости от поисковой катушки, он запасает в себе некоторую часть энергии импульса, что приводит к затягиванию процесса затухания этого импульса до нуля. Изменение в ширине отраженного импульса измеряется и сигнализирует о присутствии металлического объекта. Для того чтобы выделить сигнал такого объекта, мы должны измерить ту часть импульса, где он спадает к нулю (хвост). На входе приемника катушки стоит резистор и ограничивающий диодная схема, которые обрезают напряжение входного импульса до величины 1 вольт, чтобы не перегружать вход схемы. Сигнал в приемнике состоит из импульса от передатчика и отраженного импульса. Обычно усиление приемника составляет 60 децибел. Это означает, что область, где отраженный сигнал спадает до нуля можно увеличить в 1000 раз.

Схема стробирования.
Усиленный сигнал от приемника поступает в схему, измеряющую время падения напряжения до нуля. Отраженный импульс преобразуется в последовательность импульсов. Когда металлический предмет приближается к катушке, форма импульса передатчика не изменится, а вот отраженный импульс станет немного длиннее. Увеличение длительности «хвоста» импульса всего на несколько миллионных долей секунды (микросекунды) достаточно для того, чтобы определить наличие металла под катушкой. На этот отраженный импульс накладываются импульсы (стробы), синхронизованные с началом импульса передатчика, и на выходе электронной схемы получается серия стробов, количество которых пропорционально длине «хвоста» импульса. Наиболее чувствительный импульс расположен максимально близко к концу хвоста там, где напряжение совсем близко к нулю. Обычно это временная область около 20-ти микросекунд после выключения передатчика и начала отраженного импульса. К сожалению, это так же область где работа металлодетектора с импульсной индукцией становится неустойчивой. По этой причине большинство моделей металлодетекторов с импульсной индукцией продолжают вырабатывать стробирующие импульсы еще 30-40 микросекунд после полного затухания отраженного импульса.

Интегратор.
Далее стробированный сигнал должен быть преобразован в напряжение постоянного тока. Это выполнятся схемой – интегратором, который усредняет последовательность импульсов и преобразует их в соответствующее напряжение, которое возрастает, когда объект близко от рамки и уменьшается, когда объект удаляется. Напряжение дополнительно усиливается и управляет схемой звукового контроля.
Период времени, в течение которого интегратор собирает входящие стробы, называется постоянной времени интегратора - (ПВИ). Она определяет то, насколько быстро металлодетектор реагирует на металлический объект. Длительная ПВИ (порядка секунд) имеет преимущество в уменьшении шума и упрощении настройки детектора, но при этом требует очень медленного перемещения поисковой катушки, поскольку объект может быть пропущен при быстром движении. Короткая ПВИ (порядка десятых долей секунды) быстрее реагирует на цель, что позволяет быстрее перемещать катушку, но помехоустойчивость и стабильности работы ухудшаются.

ДИСКРИМИНАЦИЯ (распознавание).
Металлодетектор с импульсной индукцией не способны к такой же степени дискриминации как СНЧ приборы. За счет измерения увеличивающегося периода времени между окончанием импульса передатчика и точкой, в которой отраженный импульс рассасывается до нуля (время задержки), можно отфильтровать объекты, состоящие из определенных металлов. На первом месте по этой характеристике стоит алюминиевая фольга, затем мелкие никелевые монетки, пуговицы и золото. Некоторые монеты могут быть вычислены по очень длинному хвосту импульса, однако железо, таким образом, НЕ определяется.
Было сделано много попыток создать металлодетектор с импульсной индукцией, способный определять железо, однако все эти попытки имели очень ограниченный успех. Хотя железо и дает длинный «хвост», серебро и медь имеют такие же характеристики. Столь длительная задержка плохо влияет на определение глубины залегания. Содержание минералов в почве также будет удлинять отраженный импульс, изменяя точку, в которой объект определяется или отвергается. Если постоянная времени интегратора настроена так, что золотое кольцо не определяется в воздухе, это же кольцо может «засветиться» в грунте, насыщенном солями. Таким образом, почва, насыщенная солями, изменяет всё, что относится к времени задержки и избирательной способности металлодетектора с импульсной индукцией.

ОТСТРОЙКА ОТ ЗЕМЛИ.
Отстройка от земли является очень критичной для СНЧ приборов, но не для металлодетекторов с импульсной индукцией. В среднем почва не запасает какого-либо значительного количества энергии от поисковой катушки и обычно сама не даёт никакого сигнала. Почва не будет маскировать сигнал от объекта и даже напротив, минерализация почвы слегка удлиняет сигнал пропорционально увеличению глубины залегания предмета. По отношению к МД с импульсной индукцией часто применяется термин «автоматическая отстройка от земли» (automatic ground balance) они обычно не реагируют на избыточную минерализацию почвы, не требуют внешней подстройки для разных типов почвы. Исключением является один из наиболее неприятных компонентов грунта - магнетит (Fe3O4), или магнитный оксид железа. Он вызывает перегрузку входных катушек детекторов СНЧ типа, сильно уменьшая их чувствительность, металлодетекторы с импульсной индукцией будут работать, но могут показывать ложные цели, если поднести катушку слишком близко к земле. Можно свести до минимума этот вредный эффект, удлинив время задержки между окончанием импульса передатчика и началом стробирования. Настраивая эту постоянную времени можно отстроиться от помех, вызванных минерализацией грунта.

АВТОМАТИЧЕСКАЯ И РУЧНАЯ НАСТРОЙКА.
Большинство металлодетекторов с импульсной индукцией имеют ручную настройку. Это означает, что оператор должен крутить настройку до тех пор, пока не послышится щелкающий или зудящий звук в наушниках. Если почва в районе поиска изменяется от и до нейтрального песка или от сухой почвы до морской воды, в этом случае подстройка необходима. Если этого не делать, можно потерять в глубине обнаружения и пропустить некоторые объекты. Ручная настройка очень затруднительна при использовании короткой постоянной времени интегратора (ПВИ). Поэтому многие приборы с ручной настройкой имеют длинную ПВИ и требуют медленного перемещения поисковой катушки.
Нет проблем с использованием МД с импульсной индукцией для подводного поиска, поскольку при этом поисковую катушку не перемещают быстро. При использовании в полосе прибоя, катушка будет, находится то в воде, то под водой, и при таких условиях использование приборов с ручной настройкой может вас сильно разочаровать, поскольку придется непрерывно подстраивать порог срабатывания. Некоторые операторы в таком случае сразу настраивают прибор чуть ниже порога срабатывания. Но это может привести к уменьшению глубины обнаружения, при изменении характеристик почвы.
Автоматическая настройка (SAT- self adjusting Threshold) дает значительное преимущество при поиске в и над соленой водой или на почве с высоким содержанием солей. Она позволяет использовать детектор на максимальной чувствительности без постоянной подстройки. Это улучшает стабильность работы, помехозащищенность и позволяет использовать больший коэффициент усиления. МД с импульсной индукцией не излучают сильные отрицательные сигналы как СНЧ приборы. Поэтому они не зашкаливают на ямах с минералами. Необходимо непрерывно перемещать катушку металлоискателя оснащенного системой автоподстройки, если вы останавливаете катушку, настройка сбивается или прибор перестает реагировать.

Аудио контроль.
Схемы звуковой сигнализации МД с импульсной индукцией распадаются на две категории: с изменяющейся частотой и изменяющейся громкостью. Схемы с изменяющейся частотой, построенные на основе генератора управляемого напряжением, хороши для регистрации небольших предметов, поскольку изменение в частоте легче уловить на слух, чем изменение в громкости, особенно при небольшом уровне громкости, особенно для приборов с ручной подстройкой порога. Однако звук похожий на пожарную сирену быстро утомляет, а некоторые люди не способны различать высокие тона. Один из хороших вариантов - это механическая вибрация, которая первоначально использовалось для подводных аппаратов. Такой прибор издает звуки и вибрацию, которая нарастает до жужжания при обнаружении объекта. Сигналы такого механического прибора легко распознать и они не заглушаются системой подачи воздуха.
Многие люди предпочитают более традиционный звуковой тон с нарастанием громкости, а не частоты. Такие системы звукового контроля работают хорошо в приборах, с быстрым перемещением рамки, те в приборах с автоматической подстройкой, при этом они звучат аналогично приборам с СНЧ.

Выводы по МД с импульсной индукцией.
Это специализированные инструменты. Они мало пригодны для поиска монет в городских условиях, поскольку не могут отфильтровать железный и ферросодержащий мусор. Они могут быть использованы для археологических поисков в сельской местности, где нет железного мусора в больших количествах, поиска золотых самородков и для поиска на максимальной глубине в экстремальных условиях, таких как побережья морей или места, где земля сильно минерализирована. Такие металлодетекторы показывают отличные результаты в подобных условиях и в целом сравнимы с СНЧ приборами, особенно по их способностям отстраиваться от таких грунтов и «пробивать» их на максимальную глубину.

Обновлено 23.10.2018

Существует несколько основных типов металлоискателей (types of metal detectors – англ.). Некоторые из них уже не актуальны и не производятся, но до сих пор еще применяются.

По характеру работы металлоискатели разделяются на динамические и статические, а по характеру электронных устройств, которые используются в их конструкции на аналоговые и микропроцессорные. Знание оборудования, которое используется в любом хобби, является основой успеха...

(Beat Frequency Oscillation – англ.). Это один из первых типов металлоискателей. Принцип работы прибора основан на сравнении частоты эталона и частоты LC – генератора, который включает катушку поисковой головки. Если в зону поисковой головки попадает объект из черного или цветного металла, то частота LC – генератора понижается или повышается. Разница частоты LC – генератора и эталона выводится на звуковую (визуальную) индикацию. Рабочая частота 40-500 кГц. В наиболее простых приборах используется только звуковая индикация.

BFO металлоискатель имеет малую глубину обнаружения, низкую чувствительность и стабильность работы, невысокие результаты при поиске на соленом, влажном и минерализованном грунте. BFO металлоискатель - один из устаревших типов металлоискателей. Профессиональные производители металлоискателей не применяют технологию BFO, но произведенные ранее приборы еще применяются поисковиками.

(Transmitter – Reciver – англ.). Один из самых ранних типов металлоискателей. Работа прибора основана на принципе индукционного баланса. Прибор имеет разнесенные, ортогонально расположенные катушки или две сбалансированные катушки, расположенные в одной плоскости (поисковая головка). Главными характеристиками TR металлоискателя являются большая глубина обнаружения (в слабоминерализованном и не очень замусоренном грунте), возможность различать черный и цветной металл. Рабочая частота 50-100 кГц.

Прибор является бесполезным при поиске на соленом и сильноминерализованном грунте. Технология TR применяется в сочетании с другой технологией – VLF. TR металлоискатель - один из устаревших типов металлоискателей.


(Very Low Frequency – англ.). Один из наиболее распространенных и совершенных типов металлоискателей в настоящее время. Рабочая частота менее 20 кГц. Работа прибора основана на принципе индукционного баланса с использованием очень низких рабочих частот и анализе фазового сдвига между сигналом в передающей и приемной катушке. Фазовый сдвиг изменяется в зависимости от проводимости металла. Это позволяет легко отличать черный металл от цветного, а также цветные металлы между собой (серебро, медь, бронза, свинец).

Возможности прибора позволяют производить выборочную дискриминацию металлов и отстройку от влияния грунта. Специализированные metal detectors для поиска золота имеют диапазон рабочей частоты 20-70 кГц.


(Very Low Frequency/ Transmitter – Reciver – англ.). Один из типов металлоискателей, который сочетает технологию VLF и TR. Прибор этого типа предусматривает анализ фазовых характеристик сигнала, поэтому он легко различает черные и цветные металлы, имеет высокую чувствительность и разрешающую способность, которая зависит от диаметра поисковой катушки.

С увеличением диаметра катушки увеличивается глубина обнаружения. Но при этом труднее находить мелкие объекты. Функциональность металлоискателя позволяет одновременно отстроиться от металлического мусора и влияния грунта.


(Pulse Induction – англ.). Работа прибора основана на принципе индукционного баланса с использованием пульсирующего электромагнитного поля и анализа затухающих вихревых токов от цели. Вихревые токи от минералов грунта затухают гораздо быстрее, чем токи от металлической цели. Именно поэтому PI металлоискатель наименее подвержен влиянию минерализованного грунта и соленой среды, является самым чувствительным из всех типов металлоискателей.

Глубина обнаружения PI металлоискателя при поиске в мокром грунте и соленой среде больше, чем у более распространенных VLF металлоискателей. Твердый и сухой грунт уменьшает глубину обнаружения. К недостаткам можно отнести высокую чувствительность к черным металлам и определенные трудности с дискриминацией. Однако в некоторых случаях PI металлоискатель превосходит все другие типы (например, поиск на дне моря).


(Radio Frequency – англ. или RF two-box ). Это высокочастотный вариант TR металлоискателя. Работа прибора основана на принципе индукционного баланса с разнесением приемной и передающей катушки в пространстве. Приемная катушка принимает отраженный от металлической поверхности сигнал, излучаемый передающей катушкой.

Этот специализированный тип металлоискателей применяется для поиска крупных предметов и месторождений полезных ископаемых на большой глубине. Превосходит все типы металлоискателей по глубине обнаружения, но не может различать черные и цветные металлы, не чувствует мелкие цели (монеты и другие цели подобного размера). Глубина обнаружения крупных объектов в зависимости от типа грунта от 1 до 9м. RF two-box используется в различных отраслях промышленности, и в тоже время является очень полезным и порой незаменимым инструментом для многих охотников за сокровищами и тайниками.


Related tags : типы металлоискателей, виды металлодетекторов, классификация металлоискателей по принципу действия, принцип работы металлоискателя, металлодетектор принцип работы


Эффективный поиск различных металлических предметов, находящихся под землёй или скрытых другими конструкциями, представляет интерес не только для охотников за кладами, но и для строителей, занимающихся прокладкой новых и восстановлением повреждённых подземных коммуникаций. Для этого используются эффективные приборы – металлоискатели. В этой статье рассматриваются самые популярные модели металлоискателей, основные характеристики и цены на них.

Garrett Ace 250

Отличается простотой своего применения и высокой точностью поиска, поэтому часто рекомендуется для применения лицам, не имеющим достаточного опыта и квалификации. У металлоискателя Garrett Ace 250 отсутствует катушка индуктивности, что не мешает ему быть весьма эффективным. В качестве индикатора используется двойная концентрическая катушка, что положительно сказывается на цене прибора. Перед тестированием весь закопанный в землю металлолом тщательно закрывался неметаллическими предметами, и размещался в неудобных для определения местах на глубине не менее 50 мм. В таких условиях процент обнаруженных с помощью рассматриваемого металлоискателя предметов достигал 98%.

Характерная особенность Garrett Ace 250 – высокая точность фиксирования места нахождения, а также класса металла. Прибор распознаёт около 67% цветных металлов, что важно для последующей идентификации предметов. Точность индикатора глубины составляет около 56%, при этом устройство ошибается преимущественно в сторону увеличения, особенно, если в одном месте скрыто несколько разнородных металлов (например, медно-никелевые монеты, прикрытые мелкой стальной сеткой).

Металлоискатель Garrett Ace 250 прост в применении. Прибор оснащён ЖК-дисплеем, на экране которого имеется подвижная стрелка. При обнаружении металла стрелка указывает на его примерный тип, а по располагающейся в правой части экрана гистограмме можно установить примерную глубину обнаруженного предмета. Последовательность действия заключается в том, что сначала слышится первичный звук, который усиливается при приближении прибора к металлу. Предельная глубина определения данным металлоискателем заявлена производителем в пределах 200…220 мм. Недостаток прибора – двухлетний срок гарантии.

Fisher F4

Конструктивно прибор от фирмы Фишер считается конструктивно наиболее сложным, а, следовательно, и самым дорогим. Металлоискатель оборудован двойной электромагнитной катушкой, что расширяет технические возможности прибора. Тем не менее, процент обнаружения объектов составляет всего 72%, при точности фиксирования местонахождения металла до 54%, а по глубине – до 35%. Столь невпечатляющие результаты связываются с относительной сложностью предварительной настройки прибора, которая для неопытных пользователей является достаточно трудоёмкой. Тем не менее, при достаточной практике с прибором большинство сложностей исчезают.

Как и в предыдущем случае, наблюдается существенный разброс в показаниях местонахождения металлического предмета по глубине: фактические показания прибора завышаются в 2…3 раза. Такая особенность Fisher F4 объясняется конструкцией и принципом действия электромагнитной катушки. Она отлично подходит для дифференциации между двумя близко расположенными предметами из-за своего клиновидного магнитного поля, но для получения точных показаний требуется более профессиональное прикосновение поискового наконечника к поверхности грунта или материала, в котором находится объект.

В отличие от металлоискателя Garrett Ace 250 в приборе Fisher F4 имеется дополнительная опция двойного контроля, что позволяет избежать ложного сигнала. Настройки ЖК-дисплея могут постоянно обновляться в зависимости от цели поиска. Кроме того, индикатор рассматриваемого прибора учитывает неровности грунта в зоне поиска, что повышает точность определения скрытого в земле металла. Качественно отбалансированная рука может учитывать даже характер грунта, что также способствует высокой точности результатов поиска. Катушка в Fisher F4 имеет не концентрический, а овальный контур, и это увеличивает площадь зоны обследования.

Bounty Hunter Quick Draw PRO

По результатам тестирования признан одним из лучших металлоискателей, поскольку позволяет установить факт наличия металла в 86% случаев. При этом в 39% с помощью этого прибора можно точно установить род металла, и его примерные размеры.

Металлоискатель Bounty Hunter Quick Draw PRO, как и Fisher F4, снабжён эллиптической концентрической катушкой, которая имеет форму эллипса. Удобный жк-экран показывает идентификаторы цели в виде и чисел, и условных знаков. Интерфейс монитора прост и удобен в использовании, он также оснащён достаточно продвинутыми пользовательскими функциями, и это позволяет снизить общее число попыток обнаружения металлов. При тестировании конструкция была признана одной из лучших для целей как идентификации металла, так и для определения глубины его залегания. Для прибора этого типа наблюдается минимальный разброс показываемой и фактической глубины местонахождения металла. Вместе с тем, при значительной глубине (более 250 мм) точность показаний прибора резко падает.

Жк-экран имеет два целевых идентификатора, которые последовательно указывают на тип металла и на примерную глубину его залегания. Показания носят чисто качественный характер, и не показывают расстояние, поэтому применение металлоискателя Bounty Hunter Quick Draw PRO может быть оправдано лишь для приблизительной оценки. Гарантийный срок использования прибора – пять лет.

Прибор характеризуется хорошей точностью фиксации результата, что важно при затруднённых первичных условиях поиска. Фирма Minelab специализируется на разработке и производстве металлодекторов, которые могут работать под водой, в процессах разминирования, поэтому металлоискатель Minelab X-Terra 305 отличается надёжностью своей схемы. При высокой цене за свою продукцию преимуществом рассматриваемой техники считается её практически полная нечувствительность ко всем внешним условиям поиска. Факт наличия металла под землёй устанавливается в 90% случаев, тип металла – в 62%, глубина залегания – в 57%.

Самая большая проблема с X-Terra 305 — простота его использования. В приборе отсутствуют графические идентификаторы, а, вместо них на экране появляется число, которое соответствует проводимости обнаруженного металла. Дальше по этому параметру пользователю предлагается определить размеры и тип предмета. Этот процесс требует определённого опыта и квалификации. Металлоискатель Minelab X-Terra 305 оснащён круглой концентрической катушкой, и имеет дискретный тональный сигнал идентификации, рассчитанный на 12 звуковых оттенков (в отличие от остальной техники, тональный сигнал которой определяет всего три уровня тона).

Металлоискатель «Пират»

Отечественная разработка, предназначенная для обнаружения скрытого металла различной конфигурации и размеров. Металлодетектор использует комбинированный магнитно-индуктивный принцип распознавания. Генератор создаёт в катушке переменное электромагнитное поле, которое взаимодействует с токопроводящим предметом, находящимся в земле или внутри другой конструкции. В металле наводится своё переменное магнитное поле, которое и улавливается звуковым индикатором.

Металлоискатель «Пират» не имеет ЖК-дисплея, поэтому не в состоянии определять тип металла. Его преимущество – доступность, простота обращения и надёжность. Кроме того, «Пират» — один из немногих образцов представленной техники, который способен распознавать металлические предметы на сравнительно больших расстояниях – до 450…500 мм, при этом время распознавания не превышает 20 с.

Сравнение металлоискателей, цен и характеристик:

  • «Пират» — до 5000 руб.
  • Fisher F4 — до 23000 руб.
  • Garrett Ace 250 – до 15000 руб.
  • Bounty Hunter Quick Draw PRO – до 16000 руб.
  • Minelab X-Terra 305 – до 14000 руб.

1.1. Принципы работы

Металлоискатель по принципу "передача-прием"

Термины "передача-прием" и "отраженный сигнал" в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о ме-таллоискателях. В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый (излучаемый), так и принимаемый (отраженный) сигналы являются непрерывными, они существуют одновременно и совпадают по частоте.

Принцип действия металлоискателей типа "передача-прием" заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. , стр. 225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки ме-таллоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая, приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной электродвижущей силы (э.д.с.) в приемной катушке.

Поначалу может показаться, что в природе существуют всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис. 1, а и б) - катушки с перпендикулярными и со скрещивающимися осями.

Рис. 1. Варианты взаимного расположения катушек датчика металлоискателя по принципу "передача-прием"

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискате-лей может быть сколь угодно много. Но это - более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис. 1, в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того, такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа "блина" или "летающей тарелки".

Основные варианты взаимного расположения компланарных катушек приведены на рис. 2, а и б. В схеме на рис. 2, а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис. 2, б одна из катушек (приемная) скручена в виде "восьмерки", так что суммарная э.д.с, наводимая на половинки витков приемной катушки, расположенные в одном крыле "восьмерки", компенсирует аналогичную суммарную э.д.с, наводимую в другом крыле "восьмерки". Возможны и другие разнообразные конструкции датчиков с компланарными катушками, например рис. 2, е.

Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу "передача-прием"

Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

Металлоискатель на биениях

Название "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты. Такая схемотехника долгое время была традиционной, однако в настоящее время она уже не используется ни в радиотехнике, ни в металлоискателях. И там, и там - на смену амплитудным детекторам пришли синхронные детекторы, но термин "на биениях" остался до сих пор.

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и, как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило, очень мало, однако изменение разности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты. Чувствительность металлоискателя на биениях зависит, кроме всего прочего, от параметров преобразования изменения полного сопротивления датчика в частоту.

Обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10 Гц. Визуально, по миганию светодио-да, можно зарегистрировать уход частоты не менее 1 Гц. Другими способами можно добиться регистрации и меньшей разности частот, однако, эта регистрация потребует значительного времени, что неприемлемо для металлоис-кателей, которые всегда работают в реальном масштабе времени.

Селективность по металлам на таких частотах, весьма далеких от оптимальной, проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Металлоискатель по принципу электронного частотомера

Положительной для практики стороной является простота конструкции датчика и электронной части металлоис-кателей на биениях и по принципу частотомера. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета.

Однокатушечный металлоискатель индукционного типа

Слово "индукционный" в названии металлоискателей данного типа полностью раскрывает принцип их работы, если вспомнить смысл слова "inductio" (лат.) - наведение. Прибор данного типа имеет в составе датчика одну катушку любой удобной формы, возбуждаемую переменным сигналом. Появление вблизи датчика металлического предмета вызывает появление отраженного (переизлученного сигнала), который "наводит" в катушке дополнительный сигнал -электрический. Остается этот дополнительный сигнал только выделить.

Металлоискатель индукционного типа получил право на жизнь, главным образом, из-за основного недостатка приборов по принципу "передача-прием" - сложности конструкции датчиков. Эта сложность приводит либо к высокой стоимости и трудоемкости изготовления датчика, либо к его недостаточной механической жесткости, что обусловливает появление ложных сигналов при движении и снижает чувствительность прибора.

Рис. 3. Структурная схема входного узла индукционного металлоискателя

Если задаться целью исключить у приборов по принципу "передача-прием" этот недостаток путем устранения самой его причины, то можно прийти к необычному выводу - излучающая и приемная катушки у металлоискателя должны быть объединены в одну! В самом деле, весьма нежелательные перемещения и изгибы одной катушки относительно другой в данном случае отсутствуют, так как катушка только одна и она одновременно и излучающая, и приемная. Налицо также предельная простота датчика. Платой за эти преимущества является необходимость выделения полезного отраженного сигнала на фоне значительно большего сигнала возбуждения излучающей/приемной катушки.

Выделить отраженный сигнал можно, если вычесть из электрического сигнала, присутствующего в катушке датчика, сигнал той же формы, частоты, фазы и амплитуды, что и сигнал в катушке при отсутствии металла вблизи. *Как это можно реализовать одним из способов, показано на рис. 3.

Генератор вырабатывает переменное напряжение синусоидальной формы с постоянной амплитудой и частотой. Преобразователь "напряжение-ток" (ПНТ) преобразует напряжение генератора Ur в ток Iг, который задается в колебательный контур датчика. Колебательный контур состоит из конденсатора С и катушки L датчика. Его резонансная частота равна частоте генератора. Коэффициент преобразования ПНТ выбирается таким, чтобы напряжение колебательного контура ид равнялось напряжению генератора Ur (в отсутствие металла вблизи датчика). Таким образом, на сумматоре происходит вычитание двух сигналов одинаковой амплитуды, а выходной сигнал - результат вычитания -равен нулю. При появлении металла вблизи датчика возникает отраженный сигнал (иными словами, меняются параметры катушки датчика), и это приводит к изменению напряжения колебательного контура 11д. На выходе появляется сигнал, отличный от нуля.

На рис. 3 приведен лишь простейший вариант одной из схем входной части металлоискателей рассматриваемого типа. Вместо ПНТ в данной схеме в принципе возможно использование токозадающего резистора. Могут быть использованы различные мостовые схемы для включения катушки датчика, сумматоры с различными коэффициентами передачи по инвертирующему и неинвертирующему входам, частичное включение колебательного контура и т.д.

В схеме на рис. 3 в качестве датчика используется колебательный контур. Это сделано для простоты, чтобы получить нулевой сдвиг фаз между сигналами Ur и 11д (контур настроен на резонанс). Можно отказаться от колебательного контура с необходимостью точной настройки его на резонанс и использовать в качестве нагрузки ПНТ только катушку датчика. Однако коэффициент передачи ПНТ для этого случая должен быть комплексным, чтобы скорректировать сдвиг фазы на 90°, возникающий из-за индуктивного характера нагрузки ПНТ.

Импульсный металлоискатель

В рассмотренных ранее типах электронных металлоискателей отраженный сигнал отделяется от излучаемого либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно.

Применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. Как использовать это на практике? После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отраженный сигнал. Он и несет полезную информацию, его и надо регистрировать.

Таким образом, может быть предложена другая схема построения металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделения сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, которые могут быть совмещены в одну, устройства коммутации и блока обработки сигнала.

Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов - имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде десятков-сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.

Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в этом случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.

Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление коротких откликов прибора от массивных слабопрово-дящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить передачу сигнала с приемной катушки на блок обработки сигнала.

Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов. К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

Магнитометры

Магнитометрами называется обширная группа приборов, предназначенных для изменения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью говорить о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железным предметом.

По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1 м, а легковой автомобиль - на расстоянии 10 м! Такая большая дальность обнаружения объясняется следующим. Аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное (в масштабах поиска) магнитное поле Земли. Поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а всего лишь третьей степени расстояния.

Принципиальным недостатком магнитометров является невозможность обнаружения с их помощью предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно - в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.п.). Однако при поиске затонувших танков и кораблей такие приборы вне конкуренции!

Радиолокаторы

Общеизвестен факт, что с помощью современных радиолокаторов можно обнаружить самолет на расстоянии нескольких сотен километров. Возникает вопрос: неужели современная электроника не позволяет создать компактное устройство, позволяющее обнаруживать интересующее нас предметы хотя бы на расстоянии нескольких метров9 Ответом является ряд публикаций, в которых такие устройства описаны.

Типичным для них является применение достижений современной микроэлектроники СВЧ, компьютерной обработки полученного сигнала. Использование современных высоких технологий практически делает невозможным самостоятельное изготовление этих устройств. Кроме того, большие габаритные размеры пока не позволяют их широко применять в полевых условиях.

К преимуществам радиолокаторов следует отнести принципиально более высокую дальность обнаружения -отраженный сигнал в грубом приближении можно считать подчиняющимся законам геометрической оптики и его ослабление пропорционально не шестой и даже не третьей, а лишь второй степени расстояния.



Просмотров