Лазерная связь. Новостной и аналитический портал "время электроники". Пекин обвалил Уолл-стрит

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется связь

Лазерная связь позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство LOO OmniBeam 2000 OmniBeam 4000
Ethernet (10 Мбит/с) + + -
Token Ring (416 Мбит/с) + + -
E1 (2 Мбит/с) + + -
Видеоизображение - + -
Комбинация данных и речи - + -
Высокоскоростная передача данных (34-155 Мбит/с) - - +
Возможность модернизации - + +

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1.
Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2.
Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3.
Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4.
Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5.
Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость Медный кабель Оптоволокно Радиоканал Лазерный канал
от 3 до 7 тыс. дол. за 1 км до 10 тыс. дол. за 1 км от 7 до 100 тыс. дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка - несколько часов Подготовка работ 1-2 недели, установка - несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1,2 км
BER >1E-7 1E-10 1E-10...1E-9

Начнем со всем известного обычного медного кабеля. Некоторые его характеристики позволяют практически точно рассчитать параметры создаваемого канала связи. Для такого канала неважно, каково направление передачи и нахоятся ли объекты в прямой видимости, не нужно думать о влиянии осадков и многих других факторов. Однако качество и скорость передачи, обеспечиваемые этим кабелем, оставляют желать лучшего. Частота появления ошибочных битов (BER) составляет величину порядка 1Е-7 и выше, что значительно больше величины этого показателя у оптоволокна или беспроводной связи. Медные кабели относятся к низкоскоростным каналам связи, поэтому прежде чем прокладывать новые кабели, подумайте о том, стоит ли их использовать. Если кабель уже имеется, то вам стоит задуматься о том, как повысить его пропускную способность на основе технологии HDSL. Однако следует учитывать, что она может не обеспечить требуемого качества связи из-за неудовлетворительного состояния кабельных линий.

Оптоволоконные кабели имеют значительные преимущества перед медными. Высокие пропускная способность и качество передачи (BER

Сейчас широкое применение находит радиосвязь, особенно радиорелейные линии и радиомодемы. Им также присущ свой набор преимуществ и недостатков. Существующие технологии радиосвязи при создании канала для передачи данных обеспечат вам более высокие качество (BER

Лазерная связь - быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Без выполнения этих условий лазерная связь невозможна. Ее несомненными преимуществами являются:

  • "прозрачность" для большинства сетевых протоколов (Ethernet, Token Ring, Sonet/OC, ATM, FDDI и др.);
  • высокая скорость передачи данных (до 155 Мбит/с сегодня, до 1 Гбит/с у анонсированного производителями оборудования);
  • высокое качество связи с BER=1Е-10...1Е-9;
  • подведение сетевого трафика к лазерному приемопередатчику при помощи кабельных и/или оптоволоконных устройств сопряжения;
  • отсутствие необходимости получения разрешений на использование;
  • относительно низкая стоимость лазерного оборудования, по сравнению с радиосистемами.

Лазерные приемопередатчики, из-за низкой мощности их излучения, не представляют опасности для здоровья. Следует отметить, что хотя луч безопасен, птицы его видят и стараются уклониться, что существенно уменьшает вероятность сбоев. Если передаваемая информация доставляется к лазерному приемопередатчику и от него по стандартному многомодовому оптоволоконному кабелю, то гарантируется передача данных без радиоволнового и электромагнитного излучения. Это не только обеспечивает отсутствие воздействия на работающее рядом оборудование, но и делает невозможным несанкционированный доступ к информации (получить его можно, только подобравшись непосредственно к приемопередатчику).

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи, а так же быстрое развертывание и изменение конфигурации сети.

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера, в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Оптический диапазон имеет много характерных особенностей и за счет малой длины волны позволяет достичь высокой направленности излучения, существенно уменьшить размеры антенных систем, сформировать чрезвычайно узкие лазерные пучки и получить высокую концентрацию электромагнитного излучения в пространстве.

При передаче информации модулированными электромагнитными колебаниями необходимо, чтобы частота модуляции была в 10…100 раз меньше несущей частоты. Кроме того, частоты модуляции занимают некоторую полосу частот, и ширина ее определяется объемом передаваемой в единицу времени информации. Например, для передачи телеграфного текста требуется полоса частот 10 Гц, а для телевизионного изображения – полоса частот 107 Гц и несущая частота не менее 108 Гц. Радиодиапазон занимает полосу частот 104…108 Гц и полностью освоен. Информационная емкость канала связи в СВЧ-диапазоне (109..1012 Гц) выше, но в силу особенностей распространения СВЧ-излучения в атмосфере связь между станциями СВЧ-диапазона возможна только на расстоянии прямой видимости. В оптическом диапазоне только видимая область занимает полосу частот от 41014 до 1015 Гц. С помощью лазерного луча теоретически можно обеспечить передачу 1015/107 = 108 телевизионных каналов, что на несколько порядков превышает современные потребности, или 1013 телефонных разговоров. Таким образом, одним из преимуществ оптических линий связи является возможность передачи больших объемов информации, обусловленная сверхширокой полосой частот. Освоение оптического диапазона: создание лазерных источников света, чувствительных полупроводниковых приемников оптического излучения и разработка волоконных светодиодов с малыми потерями, – открывает новые возможности для создания систем связи.

Оптический диапазон открывает возможности создания информационных и управляющих систем с характеристиками, которые принципиально не достижимы в радиодиапазоне. К настоящему времени разработаны разнообразные наземные, авиационные и космические системы оптической связи, лазерной локации, лазерные системы аэрокосмического мониторинга природной среды, системы воздушной разведки, системы предупреждения столкновений подвижных объектов, лазерные системы стыковки космических аппаратов, системы лазерного наведения и лазерного управления оружием.

Потенциальные возможности лазерных информационных систем, как и в целом оптических методов передачи и обработки информации, весьма велики. Во многих задачах предельно достижимые характеристики ограничиваются лишь квантовыми эффектами. Однако в действительности потенциальные возможности оптического диапазона далеко не всегда удается эффективно реализовать на практике. Существует множество тому причин.

Огромное влияние на рабочие характеристики реальных лазерных систем оказывают неизбежные флюктуации в источниках лазерного излучения, случайные изменения параметров информационных процессов, воздействия различных помех, вероятностный характер операции фото детектирования. Многие информационные системы оптического диапазона строятся с использованием открытого (чаще всего атмосферного) канала. Для лазерного излучения атмосферный канал представляет собой канал со случайно-неоднородной средой распространения. Эффекты поглощения оптического излучения атмосферными газами, молекулярное и аэрозольное рассеяние, искажения пространственно-временной структуры и нарушение когерентности лазерного излучения – все это оказывает заметное влияние на энергетический потенциал, принципы обработки информационных сигналов и дальность действия создаваемых систем. Все перечисленные особенности показывают, что анализ лазерных информационных систем, оценка их потенциальных и реально достижимых характеристик не может проводиться без вероятностного исследования структуры информационных сигналов и помех.

На сегодняшний момент накоплены многочисленные результаты по вероятностному анализу различных лазерных систем. Однако большинство таких результатов представляются весьма разрозненными, они не базируются на едином подходе и их достаточно сложно использовать в практических задачах. Необходимость дополнительных детальных исследований вероятностной структуры сигналов, помех и в целом информационных процессов в радиооптике связана с необходимостью совершенствования математических моделей, решением задач оптимизации структуры сигналов и систем, разработкой новых перспективных алгоритмов передачи, приема, преобразования и обработки информации в оптических информационных системах.

Лазерная связь является альтернативой радио, кабельной и волоконно-оптической связи. Лазерные системы позволяют создать канал связи между двумя зданиями, находящимися на расстоянии до 1,2 км друг от друга, и передавать по нему телефонный трафик (скорость от 2 до 34 Мбит/с), данные (скорость до 155 Мбит/с) или их комбинацию. В отличие от беспроводных радиосистем лазерные системы связи обеспечивают высокие помехозащищенность и секретность передачи, так как получить несанкционированный доступ к информации можно только непосредственно от приемопередатчика.

Компания, которая воспользуется лазерной связью для создания основного (резервного) канала ближней связи, избавится не только от необходимости прокладывать новые проводные коммуникации, но также и от необходимости получать разрешение на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в эксплуатацию обеспечат быструю окупаемость вложенных средств. Таким образом, широкий спектр возможностей и несомненные преимущества лазерного оборудования делают его использование лучшим решением проблемы организации надежного канала связи между двумя зданиями.

Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применяемую в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи, передающих не только телефонные, но и телевизионные и компьютерные сигналы.
Оптические системы связи делятся на открытые, где сигнал передается в атмосфере или космосе, и закрытые, то есть использующие световоды . Далее рассматриваются только открытые атмосферные линии связи.
Оптическая атмосферная система связи между двумя пунктами состоит из двух спаренных приемопередающих устройств, расположенных в пределах прямой видимости на обоих концах линии и направленных друг на друга. В передатчике находится генератор-лазер и модулятор его оптического излучения передаваемым сигналом. Модулированный лазерный луч коллимируется оптической системой и направляется в сторону приемника. В приемнике излучение фокусируется на фотоприемник, где производится его детектирование и выделение передаваемой информации. Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Кроме того, в атмосфере наблюдаются турбулентные явления, которые приводят к флуктуации показателя преломления среды, колебаниям луча и искажениям принимаемого сигнала. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней миРаспространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. При этом ни одно из этих явлений не проявляется в отдельности. По чисто качественным признакам указанные явления можно разделить на три основные группы: поглощение и рассеяние молекулами газов воздуха, ослабление на аэрозолях (пыль, дождь, снег, туман) и флуктуации излучения на турбулентностях атмосферы. Главными ограничителями дальности АЛС являются густой снег и густой туман, для которых аэрозольное ослабление максимально. На распространение лазерного луча сильное влияние оказывает также турбулентность атмосферы, то есть случайные пространственно-временные изменения показателя преломления, вызванные перемещением воздуха, флуктуациями его температуры и плотности. Поэтому световые волны, распространяющиеся в атмосфере, испытывают не только поглощение, но и флуктуации передаваемой мощности.
Турбулентность атмосферы приводит к искажениям волнового фронта и, следовательно, к колебаниям и уширению лазерного пучка и перераспределению энергии в его поперечном сечении. В плоскости приемной антенны это проявляется в хаотическом чередовании темных и ярких пятен с частотой от долей герца до нескольких килогерц. При этом иногда возникают замирания сигнала (термин заимствован из радиосвязи) и связь становится неустойчивой. Замирание наиболее сильно проявляется в ясную солнечную погоду, особенно в летние жаркие месяцы, в часы восхода и захода солнца, при сильном ветреСистемы АЛС могут использоваться не только на "последней миле" каналов связи, но также и в качестве вставок в волоконно-оптические линии на отдельных труднопроходимых участках; для связи в горных условиях, в аэропортах, между отдельными зданиями одной организации (органы управления, торговые центры, промышленные предприятия, университетские городки, больничные комплексы, стройплощадки и т. д.); при создании разнесенных в пространстве локальных компьютерных сетей; при организации связи между центрами коммутации и базовыми станциями сотовых сетей; для оперативной прокладки линии при ограниченном времени на монтаж. Поэтому в последнее время возрастает интерес отечественных производителей к этому новому и перспективному сектору



Функциональная схема системы лазерной связи очень проста:

· блок обработки принимает сигналы от различных стандартных устройств (телефона, факса, цифровой АТС, локальной компьютерной сети) и преобразует их в приемлемую для передачи лазерным модемом форму;

· преобразованный сигнал передается электронно-оптическим блоком в виде инфракрасного излучения;

· на приемной стороне собранный оптической системой свет падает на фотоприемник, где преобразуется обратно в электрические сигналы;

· усиленный и обработанный электрический сигнал поступает на блок обработки сигналов, где восстанавливается в первоначальном виде.

Передача и прием осуществляются каждым из парных модемов одновременно и независимо друг от друга. Лазерные модемы устанавливаются таким образом, чтобы оптические оси приемопередатчиков совпадали. Основную сложность представляет собой юстировка направления оптических осей приемопередатчиков. Угол расходимости луча передатчика составляет у разных моделей от нескольких угловых минут до 0,5°, и точность юстировки должна соответствовать этим значениям.

После установки приемопередающих блоков необходимо подключить их к кабельным сетям в обоих зданиях. Существует множество моделей устройств с самыми разнообразными интерфейсами, однако, в отличие от поставщиков оборудования для радиосвязи, производители систем беспроводной оптики придерживаются следующей общей идеологии подключения: линия лазерной связи представляет собой эмуляцию отрезка кабеля (две витые пары или две жилы оптического кабеля). Связанные при помощи беспроводной оптики локальные сети функционируют так, как если бы их соединили выделенным кабелем. Некоторые модели лазерных модемов имеют совмещенные интерфейсы к сети Ethernet и потокам Е1. В результате одна атмосферная линия связи может соединить LAN и телефонные сети зданий без использования мультиплексора.

Вот так выглядит установленная система атмосферной лазерной связи. Пропускная способность системы - 100Mbit/sec на расстояние до 3! километров. фото:

Некоторые беспроводные удаленные мосты применяют для передачи данных инфракрасное излучение лазера. Обычно такое устройство содержит традиционный проводной Ethernet-мост и лазерный модем, обеспечивающий физическую связь. Другими словами, лазерное устройство только посылает биты данных, а всю остальную работу выполняет обычный мост. Лазерные модемы генерируют излучение с длиной волны 820 нм, которое не может быть обнаружено без специальных приборов. Очевидно, что для лазерных мостов излучатель и приемник должны располагаться на линии прямой видимости. Типичное расстояние между мостами составляет немногим больше 1 км и ограничивается мощностью лазера.
Одним из основных преимуществ таких систем является их большая пропускная способность. Второе
преимущество - достаточная помехозащищенность, поскольку инфракрасное излучение не взаимодействует с радиоволнами. Подобно оптоволоконным системам лазерные мосты обеспечивают высокий уровень безопасности. Для перехвата информации необходимо поместить соответствующий прибор на линии луча, что, во-первых, легко может быть обнаружено, а во-вторых, это весьма сложно осуществить, так как такие системы устанавливаются на крышах высотных зданий. Недостатками лазер-базированных систем является влияние на устойчивость связи погодных условий. Сильный дождь, снег или туман приводят к значительному рассеянию луча и ослаблению сигнала. На связь может повлиять также солнечный восход или заход, если канал ориентирован с востока на запад.
Беспроводные мосты используются для постоянного соединения сетей, в качестве запасного канала или как временное средство. Их производством занимаются множество компаний. Цены в зависимости от пропускной способности и расстояния связи составляют от 5 до 75 тыс. долл. за канал. Дорого, однако со временем такое решение может окупиться.

2,5 Гбит/с по лазерному лучу

Компания fSONA Communications представила новую систему беспроводной оптической связи SONAbeam 2500-M, позволяющую достичь скорости передачи данных порядка 2,5 Гбит/с. Основа системы – четыре избыточных передатчика, работающих на длине волны 1550 нм с выходной мощностью лазерного сигнала 560 мВт. На пятикилометровом испытательном полигоне в ясную погоду, система отработала на максимальной скорости и практически без ошибок.

Контрольные вопросы

1. Какие технологии применяются для создания беспроводных сетей?

2. Перечислить основные технологии радиосетей.

3. Что такое точка доступа (access point)?

4. Охарактеризовать технологию 802.11.Что такое направленная и всенаправленная антенна?

5. Что такое роумингом (roaming).?

6. Перечислить технологии, альтернативные стандарту IEEE 802.11;

7. Охарактеризовать технологию Bluetooth .

8. Охарактеризовать технологию HiperLAN .

9. Что такое оптические сети?

10. Что такое микроволновые системы?

11. Охарактеризовать стандарт IEEE 802.16 (WiMAX)?

12. Что такое беспроводные сети на базе низкоорбитальных спутников Земли?

13. Какие устройства входят в состав инфракрасной системы?

14. Что такое ИК-излучение?

15. Что такое атмосферная лазерная связь?

16. Как происходит прием и передача при атмосферной лазерной связи?

В настоящее время лазерная техника открывает новые возможности для совершенствования систем связи, локации и радиоуправления. Эти возможности связаны с огромным коэффициентом усиления передающих оптических антенн, что позволяет получить большое отношение сигнал/шум в приемнике в широкой полосе частот при маломощных передатчиках и с возможностью использовать очень широкие полосы частот при передаче и приеме оптических сигналов.

Лазерные системы передачи информации имеют следующие преимущества по сравнению с радиосистемами.

Возможность передачи информации с очень высокой скоростью при относительно малой мощности передатчика и малых габаритных размерах антенны. Сегодня лазерные линии связи могут обеспечить передачу информации со скоростью до 102 Гбит/с и более. При временном уплотнении каналов можно в многоканальной линии связи получить результирующую частоту следования импульсов более 100 ГГц, что превышает всю полосу радиочастотного спектра, используемого сегодня.

Скрытность передачи информации и защищенность от организованных помех (из-за очень узких ДН передающих и приемных антенн, составляющих единицы угловых секунд).

Однако имеются и недостатки, основными из которых являются: зависимость работы от метеоусловий и необходимость использовать световоды (кварцевые, стеклянные волокна).

Реальные перспективы для лазерных систем связи открываются в системах космической связи «ИСЗ-ИСЗ» ввиду отсутствия атмосферы. В таких системах широкополосная и узкополосная информация от низкоорбитальных КА будет передаваться по лазерным линиям связи на стационарные ИСЗ и с них на наземные станции. Важное значение будут иметь спутниковые системы связи «Земля-Земля» через ИСЗ-ретранслятор с лазерными линиями связи.

Расчеты показывают, что в таком канале связи реализуема скорость передачи информации более 1 Мбит/с из района Марса. Для сравнения можно сказать, что в существующих телеметрических радиолиниях для связи с КА в районе Марса скорость передачи информации не превышает 10 бит/с.

Прежде чем обсуждать вопрос выбора системы для космической связи, оценим достоинства и недостатки используемых систем:

с прямым детектированием (рис. 8, а);

с гетеродинным приемником (рис. 8, б).

Рис. 8

Отметим, что помехоустойчивость обеих систем примерно одинакова и для одной и той же частоты и одинакового уровня развития лазерной техники имеются явные преимущества у первой системы, которые заключаются в следующем:

Имеет более простое приемное устройство;

Нечувствительна к доплеровскому сдвигу частоты, что исключает необходимость поиска сигнала по частоте в приемнике (как это имеет место во второй системе);

Нечувствительна к искажению волнового фронта сигнала (возникающего в турбулентной атмосфере), поэтому возможны простые наземные антенны с большой апертурой. В гетеродинном приемнике турбулентность атмосферы ограничивает размеры приемной антенны и для ее увеличения (площади антенны) необходимо применять антенную решетку, состоящую из множества антенн с устройством сложения выходных сигналов;

Имеет приемную антенну, к которой не предъявляются требования высокого оптического качества, что позволяет реализовать более легкие и дешевые бортовые антенны;

Позволяет реализовать более эффективные методы взаимного наведения передающих и приемных антенн (по сравнению с одноэтапным растровым сканированием во второй системе).

Единственным преимуществом систем с гетеродинным приемником является более эффективное подавление фона в приемнике (по сравнению с первым).

Проведем анализ частотной пригодности лазеров для космической связи.

Из-за большой дальности связи требуются передатчики со средней мощностью от долей до единиц ватт. Такие лазеры с приемлемым КПД имеются в трех основных диапазонах:

10 мкм - газовый лазер на СО 2 с = 10,6 мкм, в одномодовом режиме при Р = 1 Вт = 10%, t раб = 10 тыс. ч. непрерывной работы (пригоден для бортовой аппаратуры и из-за высокой стабильности частоты вполне может работать в системе с гетеродинным приемником);

1 мкм - твердотельный лазер на итрий-алюминиевом гранате (ИАГ), активированном ниодимом (J-Al/Nd) = 1,06 мкм, = 1,5 2%, Р макс = n0,1 Вт (такой лазер может с успехом работать на стационарных ИСЗ, т.к. накачка осуществляется решетками светодиодов или устройствами солнечной накачки. В последнем случае коллектор солнечной энергии через оптический фильтр фокусирует энергию накачки на лазерном стержне, обеспечивая его возбуждение. Калий-рубидиевые лампы накачки обеспечивают t раб до 5 тыс. ч при = 10%. Результирующий = 10 Светодиоды имеют больший ресурс, но их мощность мала и поэтому они пригодны только для маломощных передатчиков до 0,1 Вт);

0,5 мкм - перспективным здесь является Nd:ИАГ-лазер, работающий в режиме удвоения частоты = 0,53 мкм (ярко-зеленый цвет), с эффективностью преобразователя близкой к единице.

Для низкоскоростных лазерных линий связи перспективными являются импульсные газовые лазеры на парах металлов. В импульсном режиме лазер на парах меди имеет = 0,5106 и 0,5782 мкм и = =5% (в режиме модуляции добротности) при средней мощности единицы ватт.

Возможности приемной техники в этих трех диапазонах следующие:

10,6 мкм - имеются фотодетекторы с высокой квантовой эффективностью (40 50%) при охлаждении до 77 100 К, но т.к. фотодетекторы не обладают внутренним усилением, они не пригодны для систем с прямым детектированием;

1,06 мкм - для систем с прямым детектированием можно использовать ФЭУ или лавинные фотодиоды. Но квантовая эффективность ФЭУ на этой длине волны составляет всего 0,008, поэтому этот диапазон значительно уступает первому;

0,53 мкм оказывается более приемлемым диапазоном в режиме прямого детектирования, т.к. показатели его из-за увеличения эффективности ФЭУ существенно выше.

Итак, имеются две системы космической связи:

С прямым детектированием сигнала на длине волны 0,53 мкм;

С гетеродинным приемником в ИК-диапазоне на 10,6 мкм.

Причем система с = 10,6 мкм имеет:

Более низкий уровень квантового шума (т.к. спектральная плотность квантового шума пропорциональна величине hf, то на = =10,6 мкм она в 20 раз меньше, чем на = 0,53 мкм);

КПД лазерного передатчика диапазона =10,6 мкм выше, чем на = 0,53 мкм.

Первые два свойства системы позволяют использовать более широкие диаграммы направленности передатчиков по сравнению с системой видимого диапазона, что упрощает систему наведения.

Недостатки здесь те же, что и у гетеродинного метода.

Система видимого диапазона = 0,53 мкм, имея более высокий уровень квантового шума, более низкий КПД передатчика, может иметь значительно уменьшенные ДН передающей антенны. Так, если апертуры передающих антенн одинаковы (на = 0,53 и 10,6 мкм), то передающая антенна на = 0,53 мкм будет иметь коэффициент усиления в 400 раз больший, чем на = 10,6 мкм, что с запасом компенсирует названные выше недостатки. Более узкие лучи передающих антенн усложняют систему взаимного наведения передающих и приемных антенн, однако использование эффективных многоэтапных методов поиска позволяет существенно сократить время вхождения в связь. Причем в гетеродинном приемнике возможно только простое растровое сканирование при поиске сигнала и время поиска существенно увеличивается за счет необходимости одновременного поиска сигнала по частоте.

Важным преимуществом антенны видимого диапазона является возможность построения спутниковой системы связи многостанционного доступа. В этом случае на борту ИСЗ-РРС размещаются несколько (по числу линий связи) простых приемников прямого детектирования. Для систем диапазона 10,6 мкм это практически невыполнимо из-за сложности гетеродинных приемников с громоздкими устройствами охлаждения фотосмесителей.

Таким образом, по существующему техническому уровню системы с прямым детектированием (= 0,53 мкм) имеют существенные преимущества:

для дальней космической связи «КА-Земля» через атмосферу;

для спутниковой системы с многостанционным доступом.

Для спутниковой системы связи, когда приемный (или передающий) луч ИСЗ-ретранслятора «перекидывается» с одного абонента на другой по программе, система связи с высокой пропускной способностью на = 0,53 и 10,6 мкм имеют сравнимые характеристики при скоростях передачи информации до нескольких сотен мегабит в секунду. Более высокие скорости передачи информации (более 10 Гбит/с) в системе с = 10,6 мкм трудно реализуемы, в то время как в видимом диапазоне они могут быть просто обеспечены за счет временного уплотнения каналов.

Пример реализации системы связи трех синхронных спутников (рис. 9):

длина волны передатчика = 0,53 мкм (детектирование прямое);

модуляция осуществляется электрооптическим модулятором, а сигналом модуляции является СВЧ-поднесущая с центральной частотой m = 3 ГГц и боковой полосой от мин = 2,5·10 9 до макс = 3,5·10 9 Гц (т.е. = 10 9 Гц);


Рис. 9

электрооптический модулятор (кристалл) работает в поперечном режиме с электрооптическим коэффициентом r 4·10 -11 при микроволновой диэлектрической проницаемости = 55 0 . Максимальная глубина модуляции - Г m = /3;

коллимирующая и принимающая линзы имеют размеры 10 см;

соотношение сигнал/шум на выходе усилителя, следующего за ФЭУ, равен 10

Определим общую мощность источника постоянного тока, которым спутник должен снабжаться, чтобы удовлетворить требованиям задания на проектирование (определим сначала уровень оптической мощности передаваемого излучения, а затем мощность модуляции, необходимую для работы).

Решение : Синхронный спутник имеет период обращения 24 часа. Расстояние от Земли до спутника определяем из равенства центробежной и гравитационной сил

mV 2 /R ES = mg(R Зем) 2 /(R ES) 2 ,

где V скорость спутника; m его масса; g - гравитационное ускорение у поверхности Земли; R ES - расстояние от центра Земли до спутника; R Зем - радиус Земли.

Синхронная орбитальная частота вращения (24 часа) позволяет определить

V/R ES = 2/(246060), тогда R ES = 42 222 км.

Расстояние между спутниками R = 73 12 км при разносе в 120 О. Если оптический сигнал мощностью Р Т передается в телесном угле T и принимаемая апертура обеспечивает телесный угол R , то принимаемая мощность

P R = P T (R / T).

Передаваемый оптический пучок (рис. 35) дифрагирует с углом расходимости пучка, который связан с минимальным радиусом пучка 0 выражением

пучка = / 0 .

Соответствующий телесный угол T = (пучка) 2 .

Если принять 0 равным радиусу d т передающей линзы, то

Телесный угол приемника равен

R = d 2 R /R 2 ,

R расстояние между передатчиком и приемником.

Из (42), (44), (45) имеем

P T = P R R 22 / 22 T 2 R .

Запишем соотношение сигнал/шум на выходе ФЭУ, работающем в режиме квантового ограничения (т.е. когда основной источник шума - дробовый шум самого сигнала):

с/ш = 2 (P R e/h) 2 G 2 /G 2 ei d = P R /h,

где Р R оптическая мощность, G - коэффициент усиления по току, i d - темновой ток. При = 0,53 мкм, = 0,2 - эффективность преобразования мощности, = 10 9 Гц с/ш = 10 3 получим Р R 2·10 -6 . При этом требуемая мощность в соответствии с (46) при R = 7,5·10 4 м составит Р т 3 Вт.

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов



Просмотров