Основные характеристики мультиметра. Мультиметры, такие одинаковые и при этом такие разные

Домашнему мастеру периодически необходимо провести измерения параметров цепей. Проверить какое напряжение на данный момент в сети, не перетерся ли кабель и т.д. Для этих целей есть небольшие приборы — мультиметры. При небольших размерах и стоимости они позволяют измерить различные электрические параметры. О том как пользоваться мультиметром и поговорим дальше.

Внешнее строение и функции

В последнее время специалисты и радиолюбители в основном пользуются электронными моделями мультиметров. Это не значит, что стрелочные совсем не используются. Они незаменимы когда из-за сильных помех электронные просто не работают. Но в большинстве случаев дело имеем именно с цифровыми моделями.

Есть разные модификации этих измерительных приборов с разной точностью измерений, разным функционалом. Есть автоматические мультиметры, в которых переключатель имеет всего несколько положений — им выбирают характер измерения (напряжение, сопротивление, сила тока) а пределы измерения прибор выбирает сам. Есть модели, которые могут быть связаны с компьютером. Данные измерений они передают сразу на компьютер, где их можно сохранить.

Но большинство домашних мастеров пользуются недорогими моделями среднего класса точности (с разрядностью 3,5, которая обеспечивает точность показаний в 1%). Это распространенные мультиметры dt 830, 831, 832, 833. 834 и т.д. Последняя цифра показывает «свежесть» модификации. Более поздние модели имеют более широкий функционал, но для домашнего применения эти новые возможности некритичны. Работа со всеми этими моделями мало чем отличается, так что будем говорить в общем о приемах и порядке действий.

Строение электронного мультиметра

Перед тем как пользоваться мультиметром, изучим его строение. Электронные модели имеют небольшой жидкокристаллический экран, на котором отображаются результаты измерений. Ниже экрана имеется переключатель диапазонов. Он вращается вокруг своей оси. Той частью, на которой нанесена красная точка или стрелка, он указывает на текущий тип и диапазон измерений. Вокруг переключателя нанесены метки, по которым выставляется тип измерений и их диапазон.

Ниже на корпусе имеются гнезда для подключения щупов. В зависимости от модели гнезд бывает два или три, щупов всегда два. Один положительный (красного цвета), второй отрицательный — черного. Черный щуп всегда подключается к разъему, подписанному «COM» или COMMON или который имеет обозначение как «земля». Красный — в одно из свободных гнезд. Если разъемов всегда два, проблем не возникает, если гнезд три, надо в инструкции прочесть, при каких измерениях в какое гнездо вставлять «плюсовой» щуп. В большинстве случаев красный щуп подключают в среднее гнездо. Так проводится большая часть измерений. Верхний разъем необходим, если измерять собрались ток до 10 А (если больше, то тоже в среднее гнездо).

Есть модели тестеров, в которых гнезда расположены не справа, а внизу (например, мультиметр Ресанта DT 181 или Hama 00081700 EM393 на фото). Разницы при подключении в этом случае нет: черный на гнездо с надписью «COM», а красный по ситуации — при измерении токов до от 200 мА до 10 А — в крайнее правое гнездо, во всех других ситуациях — в среднее.

Есть модели с четырьмя разъемами. В этом случае два гнезда для измерения тока — одно для микротоков (менее 200 мА), второе для силы тока от 200 мА до 10 А. Уяснив что и для чего имеется в приборе, можно начинать разбираться как пользоваться мультиметром.

Положение переключателя

Режим измерений зависит от того, в каком положении находится переключатель. На одном из его концов есть точка, она обычно подкрашена белым или красным цветом. Вот этот конец и указывает на текущий режим работы. В некоторых моделях переключатель сделан в виде усеченного конуса или имеет один край заостренный. Этот острый край тоже является указателем. Чтобы работать было проще, можно на этот указывающий край нанести яркую краску. Это может быть лак для ногтей или какая-то стойкая к истиранию краска.

Поворотом этого переключателя вы изменяете режим работы прибора. Если он стоит вертикально вверх, прибор выключен. Кроме этого есть следующие положения:

  • V с волнистой чертой или ACV (справа от положения «выключено»)- режим измерения переменного напряжения;
  • A с прямой чертой — измерение постоянного тока;
  • A с волнистой чертой — определение переменного тока (этот режим есть не на всех мультиметрах, на представленных выше фото его нет);
  • V с прямой чертой или надпись DCV (слева от положения выключено) — для измерения постоянного напряжения;
  • Ω — измерение сопротивлений.

Также есть положения для определения коэффициента усиления транзисторов и определения полярности диодов. Могут быть и другие, но их назначение надо искать в инструкции к конкретному прибору.

Измерения

Пользование электронным тестером удобно тем, что не надо искать нужную шкалу, считать деления, определяя показания. Они высветятся на экране с точностью до двух знаков после запятой. Если измеряемая величина имеет полярность, то отобразится и знак «минус». Если минуса нет, значение измерения положительное.

Как измерить сопротивление мультиметром

Для измерения сопротивления переводим переключатель в зону обозначенную буквой Ω. Выбираем любой из диапазонов. Один щуп прикладываем к одному входу, второй — к другому. Те цифры, которые высветятся на дисплее и есть сопротивление измеряемого вами элемента.

Иногда на экране отображаются не цифры. Если «выскочил» 0, значит надо изменить диапазон измерений на меньший. Если высветились слова «ol» или «over», стоит «1», диапазон слишком мал и его надо увеличить. Вот и все хитрости измерения сопротивления мультиметром.

Как измерить силу тока

Чтобы выбрать режим измерения необходимо сначала определиться ток постоянный или переменный. С измерением параметров переменного тока могут быть проблемы — этот режим есть далеко не на всех моделях. Но порядок действий вне зависимости от типа тока одинаков — меняется только положение переключателя.

Постоянный ток

Итак, определившись с типом тока, выставляем переключатель. Далее надо решить, в какое гнездо подключать красный щуп. Если даже приблизительно не знаете какие значения стоит ожидать, чтобы случайно не спалить прибор, лучше сначала установить щуп в верхнее (крайнее левое в других моделях) гнездо, которое подписано «10 А». Если показания будут небольшими — менее 200 мА, переставите щуп в среднее положение.

Точно также дело обстоит и с выбором диапазона измерений: сначала выставляете самый максимальный диапазон, если он оказывается слишком большим, переключаете на следующий меньший. Так до тех пор, пока не увидите показания.

Для измерения силы тока прибор должен включаться в разрыв цепи. Схема подключения дана на рисунке. В данном случае важно красный щуп устанавливать на «+» источника питания и черным касаться следующего элемента цепи. Не забывайте при измерении, что питание в есть, работайте аккуратно. Не касайтесь руками неизолированных концов щупа или элементов цепи.

Переменный ток

Испробовать режим измерения переменного тока можно на любой нагрузке, подключенной к бытовой электросети и определить таким образом потребляемый ток. Так как и в данном режиме прибор необходимо включать в разрыв цепи, с этим могут возникнуть сложности. Можно, как на фото ниже сделать специальный шнур для измерений. На одном конце шнура вилка, на другом — розетка, один из проводов разрезать, на концы прикрепить два разъема WAGO. Они хороши тем, что позволяют также зажать щупы. После того, как измерительная схема собрана, приступаем к измерениям.

Переводите переключатель в положение «переменный ток», выбирайте предел измерения. Учтите, что превышение пределов может вывести прибор из строя. В лучшем случае сгорит плавкий предохранитель, в худшем — повредится «начинка». Потому действуем по предложенной выше схеме: сначала ставим максимальный предел, потом постепенно уменьшаем. (не забываем про перестановку щупов в гнездах).

Теперь все готово. Сначала к розетке подключаем нагрузку. Можно настольную лампу. Вилку вставляем в сеть. На экране появляются цифры. Это и будет потребляемый лампой ток. Таким же образом можно измерить потребляемый ток для любого устройства.

Измерение напряжения

Напряжение также бывает переменным или постоянным, соответственно, выбираем требуемое положение. Подход к выбору диапазона тут такой же: если не знаете чего надо ожидать, ставите максимальный, постепенно переключая на меньшую шкалу. Не забывайте проверять правильно ли подключены щупы, в те ли гнезда.

В данном случае измерительный прибор подключается параллельно. Для примера можно измерить напряжение аккумулятора или обычной батарейки. Выставляем переключатель в положение режим измерения постоянного напряжения, так как ожидаемое значение знаем, выбираем подходящую шкалу. Далее щупами касаемся батарейки с двух сторон. Цифры на экране и будут тем напряжением, которое выдает этот элемент питания.

Как пользоваться мультиметром для измерения переменного напряжения? Да точно также. Только правильно выбрать предел измерений.

Прозвонка проводов с помощью мультиметра

Эта операция позволяет проверить целостность проводов. На шкале находим знак прозвонки — схематическое изображение звука (смотрите на фото, но там режим двойной, а может быть только знак прозвонки). Такое изображение выбрано потому, что если провод целый, прибор издает звук.

Ставим переключатель в нужное положение, щупы подключены как обычно — в нижнее и среднее гнездо. Прикасаемся одним щупом к одному краю проводника, другим — к другому. Если слышим звук, провод целый. В общем, как видите, пользоваться мультиметром несложно. Все легко запомнить.

У меня уже был сравнительный двух мультиметров, сильно отличающихся как по цене, так и по возможностям.
Сегодня обзор еще одной пары, с гораздо более близкими характеристиками, но тем не менее заметно отличающихся друг от друга.

Я специально выбрал пару мультиметров, которые схожи функционально, но при этом отличаются друг от друга и решил их сравнить.
К сожалению вынужден расстроить, точных метрологических измерений не будет, по крайней мере в этом обзоре, но я все равно попробую измерить их точность, а как смогу попасть в метрологию, то проверю и более корректно.

Это второй обзор из серии рассказов про мультиметры и всего что их касается, но будет и третий, скорее всего заключительный, обзор из этой серии.
Если конечно китайский продавец вышлет мне мой заказ.

В процессе обзора я буду немного рассказывать чем вообще одни мультиметры отличаются от других, возможно это поможет кому нибудь в выборе правильного прибора.
Скажу сразу, я не считаю себя специалистом в области измерительных приборов, потому возможны некоторые ошибки, опишу скорее словами пользователя. Если видите откровенные косяки, то прошу поправить или уточнить.

Периодически я буду выделять в тексте некоторые термины или определенные особенности и объяснять что это такое и зачем надо.

Для начала как всегда об упаковке.
Оба мультиметра пришли в почти одинаковых коробках, внешне отличается только качество полиграфии.
HK68B
HONEYTEK HK68B Handheld Digital Multimeter, на товар в магазине, цена $42.24

ТТХ прибора

Разрядность - 3 ¾ разряда (максимальное отображаемое значение 4000)
Выбор предела измерения - ручной/автомат
Постоянное напряжение В - 40/400мВ, 4/40/400В, 1000В (±0.5%+5, ±0.8%+3, ±1.0%+5)
Переменное напряжение В - 40мВ, 400мВ, 4/40/400В, 750В (±1.0%+20, ±1.0%+5, ±0.8%+5, ±1.0%+5)
Постоянный ток А - 400мкА, 4/40/400мА, 4/10А (±1.0%+5, ±0.8%+3, ±1.0%+10)
Переменный ток А - 400мкА/ 4мА, 40/400мА, 4/10А (±1.2%+5, ±1.5%+3, ±1.8%+15)
Сопротивление кОм - 0.4 / 4 / 40 / 400 / 4000 ±(0,8%+5) - 40000 ±(1,2%+15)
Частота Гц - 10 Гц - 10МГц ±(0,5%+2)
Скважность импульсов % - 10 - 95
Ёмкость - 10нФ, 100нФ-10мкФ, 1-100мФ (±4.0%+25, ±4.0%+15, ±5.0%+25)
Температура - -20-1000 градусов Цельсия (±1.0%+3)
Звуковой пробник - < 30 Ом
Проверка диодов
Измерение среднеквадратичных значений
Измерение максимального и минимального значений
Подсветка ЖК дисплея
Автоматическое отключение питания
Питание - 9 В - 1 элемент типа 6F22/6LR61
Габариты - 200 х 92х 60мм
Вес - 230г



У UT61E упаковка явно красивее смотрится.
UNI-T UT61E LCD Digital Multimeter, на товар в магазине, цена $54.14

ТТХ прибора

Аналоговая гистограмма.
Автоматический/ручной выбор диапазона.
Относительные измерения (REL).
Различные измерения:
Постоянного напряжения.
Переменного напряжения.
Постоянного тока.
Переменного тока.
Сопротивления.
Емкости.
Частоты.
Тестирование диодов.
Прозвонка цепи.
Спящий режим для продления срока работа батареи.
Сигнализатор разрыва цепи.
Питание от батареи.
Интерфейс: RS232
Электробезопасность: EN61010-1, CATII600V/CATI1000V.




Кроме того здесь есть упоминание о вариантах модели. Я заказал вариант с самой высокой точностью измерений из серии UT61.
Полное описание различий.
UT61B, UT61C, UT61D, UT61E имеют возможность подключения к ПК,
UT61A не имеет интерфейса для подключения к ПК, но имеет функцию бесконтактного измерения переменного напряжения и возможность измерения hFE транзисторов.
UT61A, UT61B, UT61C, UT61D - имеют функцию подсветки дисплея
UT61B, UT61C – позволяют измерять температуру
UT61D, UT61E – измеряют истинно среднеквадратические величины (True RMS)
UT61E – имеет повышенную по сравнению с другими моделями точность измерений

Упаковка даже по размерам почти одинаковая.

HK68B имеет упаковку в виде пластикового лотка, в котором лежит все, что входит в комплект.

А в комплект входит -
Мультиметр
Кабели со щупами
Термодатчик
Инструкция

Инструкцию похоже просто размножили на копире и скрепили степлером. но инструкция хотя бы на английском, уже радует:)

В этой таблице показано чем отличается эта модель (HK68B) от остальных моделей этой серии.
Самый «продвинутый» вариант имеет больше количество отсчетов (6000 против 4000) и USB порт, заявленная точность при этом точно такая же как у других мультиметров этой серии.

Первое отступление.
Количество отсчетов.
Это максимальное значение, отображаемое на индикаторе прибора. Понятно что чем больше, тем лучше, но при этом есть некоторые особенности.
Обычно приборы имеют такие варианты отображения (условно):
1999
3999
5999
22000
40000
50000
60000
80000 (UT70D)

Стоит пояснить, что первые три варианта обычно будут иметь примерно одинаковую точность измерения, так как например напряжение 12.34 Вольта будет отображаться одинаково на всех трех приборах.
Остальные могут отображать более точный результат (естественно при том, что АЦП прибора рассчитан под такое измерение и исправен), например 12.345 Вольта.
Но есть некоторый нюанс.
Например если прибором с индикатором 6000 измерить напряжение 34.56 Вольта, то на приборе с индикатором 22000 мы получим точно такой же результат, так как 34.567 будет больше чем 22.000 и прибор перейдет в режим отображения 034.56 (первый ноль показан для наглядности).

Однако следует помнить, что точность, с которой прибор может отобразить результат на дисплее и точность, с которой может измерить, это не одно и о же.

Я позже покажу это на реальном примере, а пока скажу, что как по мне, то я выбирал бы либо 6000, либо 40000, но для большинства применений достаточно и варианта 4000. Вариант 1999 уже довольно сильно устарел и встречается заметно реже чем раньше.

Погрешность прибора.
Когда вы выбираете прибор, то смотрите не только на погрешность в %, а и сколько знаков может «гулять» в последнем разряде.

Например есть пара приборов у которых заявлена погрешность при измерении -
Постоянное напряжение В - 4/40/400В (±0.5%+3)
Постоянное напряжение В - 4/40/400В (±0.5%+8)

В этом примере первый прибор лучше.

В комплекте шла довольно подробная инструкция, несколько фото я спрятал под спойлер.
Инструкция .
Как бы это было не смешно, но иногда она может рассказать что то полезное, например некоторые тонкости работы (если прибор относительно сложный).
Поэтому для начинающего я бы рекомендовал искать либо прибор с русской инструкцией, либо русскую инструкцию отдельно в интернете. Причем лучше сначала найти инструкцию, а потом покупать прибор. Для опытных пользователей обычно это не имеет значения.

Инструкция






В комплекте к прибору HK68B дали щупы и термодатчик.
Щупы в принципе стандартные, одни из самых простых и дешевых.
Датчик немного неудобен. Лично мне больше нравятся датчики с «вилкой», а не парой контактов для подключения. Первый вариант более надежен при подключении.

Кабели со щупами.
Данные кабели нормируются по степени безопасности и им присваивается соответствующая маркировка.
CAT II 600 В | 4000 В импульсного напряжения
CAT II 1000 В | 6000 В импульсного напряжения
CAT III 600 В | 6000 В импульсного напряжения
CAT III 1000 В | 8000 В импульсного напряжения
CAT IV 600 В | 8000 В импульсного напряжения
CAT IV 1000 В | 12000 В импульсного напряжения

Чаще всего встречаются
CAT III 1000 В
CAT IV 600 В
При этом несмотря на маркировку в 600 Вольт второй вариант надежнее первого.
В была найдена картинка. поясняющая, где какая категория применяется.

Вообще есть довольно неплохая статья на русском языке от фирмы Fluke - Основы техники безопасности при обращении с мультиметром.
Но статья в формате PDF и я ее приложу к дополнениям.

Степень безопасности у комплектных щупов к недорогим мультиметрам это вещь неоднозначная.
Дело в том, что качественные щупы стоят примерно как недорогой мультиметр и мало кто будет их класть в комплекте, на разве что исключая продукцию именитых брендов типа упомянутого выше Флюка.
Для примера фотография из другого моего обзора, где я сравнивал типичные комплектные кабели и относительно качественные, но купленные отдельно
Я думаю не надо пояснять где какие.

Качественные кабели даже внутри контактов, которые вставляются в мультиметр, имеют дополнительную изоляцию.
И эти кабели нормированы как CATIII, ниже я покажу кабели, которые шли к мультиметру UT61 и они маркированы как CATIV, можно будет вернуться обратно и сравнить.

Кроме качества изоляции в «электрическом» плане еще есть критерий, будет ли твердеть изоляция кабеля на морозе, обычно твердеет, по крайней мере во всех попадавшихся мне комплектных кабелях. Даже те кабели которыми пользуюсь я, также «дубеют» на морозе.

Собственно по этому я не вижу смысла сравнивать какие комплектные кабели лучше, какие хуже, потому как в комплекте обычно дают самый простой вариант.
Никто не будет класть комплект кабелей стоимостью 10-20 баксов в комплект к прибору стоимостью даже 50-60 долларов.

Прибор выполнен в противоударном варианте, защита выполнена в виде резиновой «калоши», в которую вставлен пластмассовый корпус прибора.
Такой вариант хорош при выездных работах, но проигрывает при работах дома, так как обычно из-за этого прибор имеет больше габариты.

Большинство мультиметров имеют подставку для вертикальной установки. Подставки нет обычно у самых компактных вариантов, там это и сделано обычно в угоду компактности.
Подставка
При выборе мультиметра желательно обратить внимание на конструкцию подставки.
Подставка должна:
1. Надежно фиксироваться как минимум в одном положении - сложенном, в идеале иметь фиксацию в обоих крайних положениях.
2. Прибор должен стоять с подставкой устойчиво, причем желательно чтобы угол по отношению к столу был не сильно большим. Например я недавно делал обзор мультиметра Мастеч и жаловался как раз на неудобную конструкцию подставки, хотя сам прибор был не из дешевых.

Питание .
Также очень важный вопрос.
Чаще всего попадаются приборы с питанием от батареи 9 Вольт, реже от элементов АА или ААА, еще меньше приборов имеют аккумуляторное питание (обычно дорогие варианты), или от «таблеток» (чаще дешевые или специфические варианты).
Питание от батареи 9 Вольт это очень плохо в плате удобства, такая батарея имеет меньше емкость при большой цене, но при редком использовании это непринципиально. мне качественной батареи на 9 Вольт хватает примерно на пару лет.
Но приборы с питанием от низковольтных элементов имеют и свои минусы, обычно у них меньше напряжение на щупах в режиме проверки диодов, это может быть иногда критично или неудобно.

Как по мне, то оба варианта имеют право на жизнь, но в варианте с батареей 9 Вольт прибор будет иметь меньше время автономной работы.

У данного прибора как раз питание 9 Вольт. Элемент питания в комплект не входит.
Подключение стандартное для многих приборов, разъем на проводках. В закрытом состоянии крышка прижимает батарею через приклеенную резинку, ничего внутри не болтается.
Крышка фиксируется винтом, а не саморезом, это хорошо, так как саморез со временем может перестать держать.

Дисплей .
Ну здесь вообще отдельная тема.
Дисплей прибора должен быть не только информативным, а и удобным для использования.
Если по поводу информативности все просто, на дисплей выводится обычно все что необходимо в работе прибора (хотя иногда есть некоторые мелкие нюансы), то вот насчет удобства я напишу отдельно.
1. Желательно чтобы дисплей имел цифры большого размера, при беглом взгляде это удобно.
2. Дисплей должен быть контрастным и хорошо виден с разных углов, прибор ведь стоит не всегда удобно.

Как ни странно, большая высота цифр часто встречается у недорогих приборов, брендовые «собратья» обычно в этом плане скромнее. Но вообще высота цифр это иногда даже вопрос привычки.
Высота цифр у HK68B составляет около 21мм.

Разъемы подключения щупов, здесь все предельно привычно и почти одинаково.
Клемма для измерения тока до 10 Ампер, до 400мА, общий и входи измерения напряжения, частоты, емкости и т.п.
Исполнение самое простое, отверстие с контактами внутри, но сейчас появились приборы, где неиспользуемые отверстия закрываются шторкой, которая убирается при повороте ручки выбора режима.
Как по мне, то очень удобная вещь для начинающих, да и не для начинающих тоже, хотя и в меньшей степени.

Переключатель режимов и клавиатура для дополнительного управления.
Здесь я тоже сделаю небольшое отступление.
Переключатель режимов.
Приборы обычно делятся на две категории, с ручным выбором диапазона измерения и автоматическим.
В ручном режиме вы сами выбираете диапазон измерения, в автоматическом этим занимается процессор мультиметра, но при желании можно выбрать диапазон вручную, для этого существует специальная кнопка Range .
Принцип здесь примерно похож на принцип с авто, где есть ручная КПП и автомат. Также есть приверженцы и одного и второго типа.
Ручной выбор многим может быть привычнее, там все однозначно, что выбрал, с тем и работаешь.
Автоматический выбор иногда может немного раздражать так как на переключение тратится некоторое время, пока прибор переберет все необходимые ему диапазоны.
Принцип переключения довольно прост, прибор имеет индикацию перегрузки, и перебирает диапазоны до тех пор пока не сможет отобразить корректные показания без перегрузки.
Перебор всегда идет «снизу». Т.е. если вы проверяете резистор на 100 Ом, то прибор включится на этот диапазон почти сразу, чем если бы вы проверяли резистор на 10МОм. Та же картина и с измерением напряжения.
В общем здесь тяжело сказать что лучше. Из неявных плюсов «автомата», немного меньший износ переключателя.

Над переключателем режимов расположена клавиатура дополнительных функций.
Func - переключение функций измерения в пределах одного положения переключателя, например AC/DC или измерение резисторов/прозвонка и т.п.
REL - Относительные измерения (например можно замкнуть щупы, нажать кнопку и после этого сопротивление щупов не будет учитываться), очень удобная функция
MIN/MAX - Измерение максимальных/минимальных значений, в жизни использую довольно редко.
Range - Этот режим я описал выше, ручное переключение диапазонов измерения.
Hz/% - Измерение частоты или скважности сигнала.
HOLD - Удержание показаний на экране.
Кнопка включения подсветки.

Хоть к самому прибору я отнесся несколько скептически, но не могу не отметить довольно качественный дисплей с хорошими углами обзора и очень контрастный.
Также в этом приборе есть подсветка. Лично я считаю эту функцию второстепенной, так как если я не вижу показаний на дисплее, то проверяемые элементы я также вряд ли увижу.
Кроме того, если прибор питается от 9 Вольта батареи, то подсветка довольно сильно ее разряжает. Из хорошего, подсветка автоматически отключается (если не путаю, то через 15 секунд).

Второй красавец, мультиметр UT61E.
Упаковка один в один повторяет упаковку предыдущего мультиметра.
Это так называемый «эконом» вариант исполнения. Иногда в комплекте идет сумка или бокс для хранения мультиметра, для мобильного применения это бывает удобно, для домашнего чаще всего лишняя трата денег. Но если прибор используется очень редко, то сумка или бокс также будут не лишними.
Малогабаритные приборы сами по себе иногда сделаны так, что имеют верхнюю крышку, которая закрывает переключатель и дисплей.
Рекомендовать что то конкретное тяжело, каждый выбирает для себя то, что ему удобнее.

Комплект этого мультиметра немного отличается.
Мультиметр
Кабели со щупами
Кабель для подключения к компьютеру
Вилка для измерения параметров транзисторов и конденсаторов
Инструкция
Гарантийный талон.

Об инструкции говорить особо нечего, она чуть менее чем полностью на китайском языке и для наших пользователей имеет лишь условную пользу.
Щупы здесь получше, да и длиннее. У предыдущего мультиметра провода имели длину около 90см, здесь честный метр, даже с небольшим «хвостиком».
Разъемы которые вставляются в мультиметр имеют немного непривычную форму, я больше привык к Г-образным, но на самом деле это роли не играет.
У щупов заявлена защита CAT IV, хотя внешне они проигрывают даже моим отдельным щупам с категорией CAT III, но явно удобнее и лучше чем у предыдущего мультиметра.

Подключение к компьютеру предлагается выполнять с использованием кабеля старого типа, к COM порту. Существует вроде версия с USB, даже на корпусе написано RS232C(USB), но к USB его можно подключить только при помощи конвертера:(
Измерительная вилка, возможно подключать как SMD, так и компоненты с выводами.
К сожалению в данной версии прибора отсутствует возможность измерения параметров транзисторов, но сейчас проще и лучше иметь известный тестер Маркуса, чем проверять транзисторы при помощи мультиметра.

Внешне прибор действительно красавец, выглядит просто отлично. Скажем так, его приятно взять у руки, нет чувство что его вырубили топором из цельного куска резины и пластмассы.
Предыдущий прибор выглядит куда более дешево, увы, но это так.



У этого прибора также присутствует подставка для вертикальной установки.

Питание также от 9 Вольт батареи.
А вот с отсеком для элемента питания разработчики явно немного перемудрили.
Отсек сконструирован так, что сначала батарейку надо положить в сам отсек, а потом отсвек вставить в мультиметр, этом обеспечивается защита от установки батареи с неправильной полярностью.
Но как же криво это сделано, ставить батарею реально неудобно, хорошо что делать это надо редко.
Кстати, данный прибор не имеет подсветки, потому менять батарею надо будет еще реже.
Но из минусов то, что крышка крепится саморезом, а не винтом. Почему не поставили винт, мне непонятно.

Дисплей здесь немного отличается от предыдущего мультиметра.
1. Меньше высота символов (около 13мм), но это отчасти обусловлено тем, что сам прибор чуть меньше, а символов чуть больше.
2. Присутствует так называемая «динамическая» шкала. Довольно удобная вещь, так как она отображает изменение измеряемого параметра горазд быстрее, пусть и с гораздо меньшей точностью. Если она есть мультиметре, то это только в плюс.
3. Дисплей менее контрастный, вы это увидите позже на этапе тестов.

Клеммы расположены немного по другому, но суть их полностью идентична предыдущему прибору.
Отличие только в том, что данный прибор измеряет малые токи только до 220мА.

Управление прибором.
Здесь для управления используется также шесть кнопок, но функций выполняется больше, да и сам принцип управления несколько отличается.
Hold - удержание показаний
Range - ручной выбор диапазона измерения
REL - режим относительных измерений
Peak - а вот этой кнопки на прошлом мультиметре не было, при включении этого режима прибор отображает амплитудное, а не действующее значение сигналов.
Желтая и голубая кнопки являются функциональными и включают режим, который обозначен соответствующим цветом на диапазонах выбираемых переключателем.

Кстати о переключателе. За него реально 5 баллов, ход мягкий, тихий, но с отчетливой фиксацией.

Ну и несколько фото со спичечным коробком.
На фото хорошо видно, что UT61E меньше и имеет более «сбитую» конструкцию, да и выглядит аккуратнее.
Но также уже заметно что показания на экране читаются немного хуже.

По размерам он почти такой же как мой старый Мастеч 890.

Угол подставки одинаков для всех трех мультиметров, потому при переходе с известного многим Мастеча будет удобно.

Немного о режимах работы приборов.
Эту часть я спрячу под спойлер, так как она особого интереса не имеет и скорее несет общий смысл.
Режимы работы приборов

1. Измерение напряжения, по умолчанию включается в режим измерения постоянного напряжения.
2. При нажатии кнопки Func переходит в режим измерения переменного напряжения, при этом отображается надпись TrueRMS. Фотка с включенным режимом приведена для примера, такой значок отображается во всех режимах измерения переменного напряжения/тока.
3. Измерение малых напряжений, до 400мВ
4. Режим NCV.

Режим NCV представляет собой функцию поиска наведенного напряжения, т.е. поиска проводов под напряжением. При этом на экране отображаются прочерки (чем больше, тем провод ближе), светит светодиод и пищит зуммер.

1. Измерение сопротивления, включается по умолчанию
2. Прозвонка диодов
3. Прозвонка цепей на короткое замыкание, следующий режим, измерения емкости, не попал в кадр случайно.
4. Измерение частоты или скважности сигнала.

1. Измерение температуры. Если внешний датчик не подключен, то измеряется температура внутри прибора.
2. Измерение тока до 6мА
3. Измерение тока до 600мА
4. измерение тока до 10 А


1. Измерение напряжения, по умолчанию постоянного.
2. Измерение напряжения до 220мВ
3. Измерение сопротивления (включается по умолчанию).
4. Режим прозвонки цепей на КЗ
5. Режим прозвонки полупроводников
6. Режим измерения емкости.

1. Измерение частоты и скважности. На самом деле частоту можно измерять и при измерении напряжения и тока, отдельный диапазон предназначен для сигналов с низким напряжением.
2. Измерение тока до 2.2мА
3. Измерение тока до 220мА
4. Измерение тока до 10 А.


Небольшое вводное тестирование, заодно сравнение.
В этом тестировании я буду сравнивать такие характеристики прибора, как напряжение и ток на его клеммах, в разных режимах работы.
Измерять буду сравнивая показания двух мультиметров, так нагляднее, заодно буду объяснять разницу.

Вводное тестирование

Для начала напряжение.
1. В режиме измерения сопротивления лучше когда напряжение на клеммах ниже, это помогает проверять резисторы не опасаясь что например параллельно включенный диод внесет погрешность в измерение.
UT61 в этом плане заметно выигрывает.
2. В режиме измерения полупроводников наоборот, лучше когда напряжение больше, так как в таком режиме удобно проверять светодиоды.
Хоть и с небольшой разницей, но UT61 отстает.
3. Напряжение в режиме прозвонки. Здесь лично мне удобнее когда напряжение выше, UT61 в это плане заметно впереди. но стоит заметить, что в таком варианте полярность напряжения обратная.
Кстати о прозвонке . Она заметно отличается.
У HK68B она срабатывает быстро, но имеет небольшую задержку отключения звука, это проявляется в том, что если очень быстро замыкать/размыкать щупы, то звук будет непрерывным. UT61 такой проблемы не имеет, прозвонка работает очень четко.
В работе удобнее когда прозвонка не имеет инерционности и срабатывает максимально быстро.

Измерение тока КЗ в разных режимах.
1. В режиме прозвонки полупроводников ток одинаков для обоих приборов.
2.3, А вот в режиме измерения сопротивления и прозвонки на КЗ заметно отличается.
Как по мне, то лучше когда ток ниже, но я не могу сказать что действительно лучше.


Второй тест уже более важен. Он позволяет довольно просто проверить точность настройки внутреннего ИОНа (Источника Опорного Напряжения) прибора.
Проверять буду при помощи известной платки, я ее уже и рекомендую купить, очень полезная вещь и стоит относительно недорого. но с ней больше уверенности в результатах измерений.

Тест точности настройки встроенного источника опорного напряжения прибора

Для начала напомню табличку, которую я получил при проверке платы, потом с ней можно сравнивать показания испытуемых приборов.

А теперь что показали приборы.

Все приборы показали соответствие в пределах последнего знака, который может законно отличаться на ±1 и дальше анализировать погрешность смысла нет, все отлично.


Для следующего теста я взял набор своих деталей, которые имеют довольно высокую заявленную точность (как для компонентов), хотя есть компоненты и точнее, но что имеем.

Но для начала я обратил внимание на некоторую особенность довольно серъезного мультиметра из другого моего , Mastech MS8240D.
Особенность наглядно видна при измерении конденсаторов с маленькой емкостью:(
Прибор отображает всегда два знака после запятой при том, что имеет разрешение 22000.

Данные измерений я свел в табличку.
Для мультиметра Mastech MS8240D приведены два значения измерений.
Первые - измеренные, вторые с учетом погрешности прибора.
Что интересно, HK68B при индикаторе с максимальным отображением в 4000 в тесте измерения емкости может отображать значения даже больше чем 8000.

К сожалению измерительная вилка позволяет только проверять конденсаторы, хотя есть версия этого прибора с проверкой транзисторов.
Сначала я попытался проверить транзистор, но после неудачной попытки и не найдя как включается соответствующий режим я решил открыть инструкцию, увы, прибор этого не умеет.

Проверка точности измерения постоянного тока.
В этом тесте я поступил просто. Зная какие показания были у мультиметра Mastech MS8240D при измерении определенных значений я задал такой ток, чтобы показания совпадали с теми, что я получил в метрологии. Тест конечно также имеет свою погрешность, но для измерения тока он более чем достаточен.
Значения заданного тока в следующем порядке:
1мА, 10мА, 100мА, 200мА, 1 А, 2 А.
Последние два теста не имеют коррекции погрешности.

А вот следующие тесты я провел для оценки одной из особенностей обозреваемых приборов, измерение в режиме TrueRMS.
TrueRMS
Данная функция позволяет корректно измерить напряжение и ток с несинусоидальной формой.
Простой прибор обычно для получения результата сначала выпрямляет входное напряжение/ток чтобы получить амплитудное значение. потому делит это значение на 1.42 (разница между действующим и амплитудным значением для синусоидального сигнала).
Такой способ отлично подходит для измерения синусоидальных сигналов, но категорически не подходит для измерения сигналов других форм, треугольной, пилообразной, прямоугольной.
Для того чтобы измерять сигнал корректно, необходимо сначала его правильно интегрировать (приводить к среднему значению) и лишь потом считать.
Кстати, самый простой и очень точный способ, это термоэлектрический преобразователь, т.е. нагреваем элемент и измеряем температуру, чем больше температура, тем больше напряжение. Так сказать «аппаратный» TrueRMS.

Я не скажу что эта функция очень нужна и без нее нельзя прожить, но если она есть, то это однозначно хорошо и полезно.

Дальнейшие тесты я спрячу под спойлер, но для начала покажу в чем отличие прибора с дисплеем 4000 от прибора с дисплеем 22000.
Ниже видно, что при измерении напряжения до 400мВ простой прибор еще измеряет напряжение в мВ, а более точный его собрат требует перевода в режим измерения напряжений до 600-1000 Вольт

Много нудных, очень нудных фотографий и измерений.

И так тестирование функции TrueRMS

Так как я не имею точного источника переменного напряжения с необходимыми мне формами сигналов, то я решил просто протестировать приборы от функционального генератора
Данное измерение не имеет ничего общего с точностью, но позволило мне понять какой прибор все таки лучше, а какой хуже.
Для начала синусоидальный сигнал с частотами:
50Гц, 1кГц. 5кГц, 10кГц.
Видно что на частотах выше 1кГц первый прибор «сдулся» и начал показывать неизвестно что.
На частоте в 10кГц начал занижать показания и Mastech MS8240D, только UT61 показывал корректно.

Прямоугольный 50Гц и 1кГц
Пилообразный 50Гц и 1кГц
Треугольный 50Гц и 1кГц

Дальше я уже увлекся:)
Треугольный 10кГц и 20кГц
Треугольный 10кГц и 15кГц, но в верхнем диапазоне измерения напряжения (до 600-1000 Вольт)

Прямоугольный 10кГц, пилообразный 10кГц и 600Гц, треугольный 1800Гц, прямоугольный 600Гц, шумообразный.
Тесты на частотах 600Гц и 1800Гц приведены для того, чтобы показать при какой частоте первый мультиметр начинает показывать что то близкое к реальности.

Что показал данный тест.
А показал он то, что HK68B хоть и умеет корректно измерять напряжение с несинусоидальной формой, но имеет узкий частотный диапазон. Лучше всех в тестах оказался UT61, он показывал корректные значения на частотах до 20-25кГц и начинал занижать показания уже ближе к 30кГц.
Кроме того это показывает, что не всегда корректность измерения определяется наличием функции TrueRMS, к ней еще нужна нормальная электроника.


Измерение частоты.
Функция полезная, но не скажу что очень важная. Конечно это зависит от того для чего используется мультиметр, но мне нужна была всего несколько раз за много лет.
Дело в том, что первые мультиметры измеряли частоту не очень точно, могу ошибаться, но вроде там использовалось преобразование частота-напряжение и это напряжение измерялось.
В современных мультиметрах используется более корректное измерение частоты, потому такие тесты скорее являются формальностью.
Для эксперимента я сначала подал сигнал частотой 4МГц и 8МГц, измерение проблем не выявило. Отличие в последнем знаке также является нормой, потому тест мультиметры прошли без проблем.
А вот подав сигнал с более низким напряжением и прямоугольной формой, но поданной с аналогового выхода (т.е. фактически синтезированной) я получил некоторую неоднозначность.
Сначала все мультиметры показали «погоду на Марсе», но немного покрутив регулировки генератора начал корректно работать UT61, а вот с остальными все было не так просто и для того чтобы получить корректные значения пришлось помучаться.
Здесь также победил UT61, он раньше начинал показывать корректные значения чем два других мультиметра, хотя по логике он должен был работать примерно как Мастеч, но не все так просто.

С тестами я на этом закончу и перейду к самому интересному, разборке.
Тем более сегодня у меня на столе два пациента, а не один:))))

Также, по этическим соображениям, чтобы не травмировать ранимую психику защитников прав мультиметров, я спрячу это действие под спойлер.

Вскрытие, анализ внутренностей

Этот раздел я разбил на две части.

Начну я опять же с HK68B

Сначала снимаем с него резиновую «калошу», кстати без нее он весит значительно меньше, я бы даже сказал что как то легкий очень.

Потом откручиваем четыре самореза и добираемся до внутренностей.
Внутри все как то простенько.



В качестве «мозгов» используется DTM0680L, я не нашел документации по этому чипу, если есть информация, буду рад добавить в обзор.

Также на плате была найдена микросхема флеш памяти и терморезистор, скорее всего он и занимается измерением температуры.
Терморезистор для коррекции работы ИОНа внутри не обнаружен.

Зато на плате была обнаружена не очень хорошая пайка и перемычки, которыми задается режим работы прибора.
Я думаю что «продвинутая» версия отличается прошивкой и перерезанием соответствующих перемычек.
Кстати, плохая пайка не всегда показатель того, что мультиметр будет плохо измерять. В прошлый раз я делал обзор двух мультиметров и там был мелкий прибор с плохой пайкой но отличной точностью.

Внутри присутствуют предохранители.
Из плюсов, предохранителей два, из минусов, они внутри под крышкой.
В этом плане у Mastech MS8240D конструкция заметно лучше, для того чтобы долезть к предохранителям, не надо разбирать мультиметр.
Из плюсов, хотя скорее не плюсов, а даже небольшого минуса.
Предохранители
Желательно чтобы предохранители стояли и по цепи измерения малых токов и по цепи больших токов. В данном мультиметре так и сделано.
Но вот гораздо удобнее, когда для доступа к предохранителям не надо разбирать мультиметр полностью.
Но даже это не критично. Выше я писал насчет категорий безопасности прибора.
Так вот, в категорию с напряжением до 600 Вольт этот мультиметр проходит с бооольшим натягом, так как предохранители стоят всего на 500 Вольт, а должны стоять минимум на 630, так как предохранитель также является участником общей защиты прибора.

Откручиваем еще три самореза (вообще всего их семь, но верхние, угловые, держат дисплей).

К этой стороне платы у меня претензий не возникло, аккуратно, красиво.

Контактная панель покрыта слоем смазки, да и выглядит неплохо.
По хорошему узнать бы толщину меди, но сделать этого я не могу.



Ну а следующим будет UT61E

Здесь «калоши» нет.
Для доступа к внутренностям надо открутить саморез крышки отсека аккумуляторов и еще пару, которая соединяет половинки корпуса.
Как то даже необычно, привык что крепеж чаще всего размещается по четырем углам корпуса.
На нижней крышке присутствует защитный экран, который соединяется с основной платой при помощи пружинки.

Плата выполнена аккуратнее, но с этой стороны расположены в основном пассивные компоненты.

В верхней части расположена микросхема HEF4069UBP, то просто шесть инверторов сигнала, скорее всего работает как усилитель.
Рядом присутствует светодиод. Я сначала тупил, по привычке ища фотоприемник, но потом вспомнил, что мультиметр умеет только передавать данные и обратный канал ему ни к чему.

Зато здесь присутствует аж три терморезистора. И это при том, что прибор не умеет измерять температуру. Хотя судя по их включению, а также по тому, что они имеют положительную характеристику изменения сопротивления (PTC), то скорее всего они выполняют защитную функцию. Также рядом были обнаружены площадки с обозначением SG, скорее всего туда задумывалось впаять супрессоры или разрядники.
Вообще внутренности несколько проигрывают мультиметру Mastech MS8240D, у того элементов защиты вроде побольше было.

В верхней части корпуса присутствует также и резисторная сборка, состоящая из точных резисторов. Это входной делитель, который используется для работы в разных диапазонах.
Для защиты от помех он также закрыт металлическим экраном.

К сожалению предохранители у этого мультиметра сделаны также как и в прошлом варианте, внутри корпуса. Очень жаль, если менять, то надо разбирать. Правда разбирается этот прибор куда проще предыдущего.
Но у этого прибора есть минус, который больше чем у предыдущего прибора.
Предохранители стоят по двум диапазонам, это хорошо, спрятаны внутри, это не очень хорошо, но терпимо.
А вот то, что они рассчитаны всего на 250 Вольт, уже не очень хорошо. О какой CAT IV 600 В может идти речь?
У Mastech стоят предохранители с диапазоном до 1000 Вольт!
Хотите безопасности - менять!

Зато на элементы регулировки производитель явно не поскупился.
Я насчитал пять подстроечных резисторов и три конденсатора. Восемь элементов в относительно простом приборе.
Это конечно хорошо, но без понимания того, в какой последовательности их регулировать, я бы не лез.
На первом фото явно виден резистор установки опорного напряжения, ниже резисторы для подстройки работы в разных режимах.

Откручиваем еще три небольших самореза и добираемся до переключателя режимов.
Здесь отличий от предыдущего прибора особо и нет.

Здесь также обнаружились свои плюсы и минусы.
Из плюсов, на плате явно видны дополнительные элементы защиты (скорее всего), пара мощных диодов и транзисторов, с обратной стороны платы стоит такой же комплект.
Из минусов. Мне не понравилась конструкция разъемов для подключения щупов, ну как то очень уж хилыми они выглядят. Пайка только в одной точке, в качестве изолятора корпус прибора. слабенькая конструкция.

А вот к контактной площадке претензий не возникло. Все как и в прошлом приборе покрыто защитной смазкой, на вид особых отличий не обнаружено.

Если у HK68B практически вся электроника располагалась на одной стороне платы, то здесь процессор вынесен на верхнюю сторону.
Для разборки придется снять индикатор, он подключен при помощи токопроводящей резины и я не рекомендую без надобности снимать его.

А вот теперь самое интересное.
В данном мультиметре также применен процессор от фирмы CyrusTek.
Точно такой же процессор используется в Mastech MS8240D, собственно поэтому у меня возникло несколько вопросов.
1. Почему в приборе нет режима фиксации максимальных/минимальных результатов измерения.
2. Почему питание 9 Вольт, а не 6 как у Мастеча.
3. Почему у Мастеча измерение маленьких емкостей сделано в таком урезанном виде.
4. Почему Мастеч имеет хуже стабилизацию при измерении частоты
5. Ну и наконец, почему производители UT61 не сделали подсветку и управление ею от процессора, так как у процессора это заявленная функция.

Если совместить возможности обоих мультиметров, то получился бы наверно почти идеальный прибор, но у одного есть одно, у другого - другое.

Так мало того, здесь применена та же микросхема для работы в TrueRMS режиме, от Analog Devices.
Собственно поэтому приборы веля себя в тестах почти одинаково и показывали сопоставимую точность (хотя точность еще зависит от делителя напряжения).


Ну и сравнительные фото внутренностей обоих обозреваемых мультиметров.






Уже в самом конце вспомнил, что забыл проверить работу с компьютером.
Работа с компьютером.
В 95%, а может даже 99% случаев вещь необязательная, но есть по крайней мере 1%, когда она очень может пригодится. Например когда мультиметр используется в качестве логгера. Да и вариант сделать бооооольшой дисплей я бы также не стал ставить на последний план.
В общем вещь необязательная, но в некоторых случаях почти незаменимая (есть мультиметры со встроенным логгером, но они все равно в итоге подключаются к компьютеру).

В комплекте дали кабель, который подсоединяется при помощи такой вот нехитрой манипуляции.
Снимаем вставку в верхней части прибора и вставляем на ее место такую же вставку, но с кабелем.
Так как кабель имеет на втором конце COM разъем, то я решил для усложнения проверки подсоединить его через COM-USB конвертер. У меня в компьютере есть СОМ порты, но сейчас они встречаются все реже и реже.
Но не надо путать, СОМ-USB, а точнее RS232-USB конвертер это не то же самое что RS232TTL-USB. Первый имеет формирователь отрицательного напряжения для корректной работы СОМ порта (хотя здесь это не используется, кабель работает только в одну сторону) и кроме того USB-RS232TTL имеет инверсные сигналы.
Хотя не вижу особой проблемы подключить и RS232TTL-USB, просто придется воспользоваться паяльником:)

Для начала я опять попробовал запустить программу для работы с этим прибором на своем основном компьютере под Windows XP и опять получил синий экран.
В прошлом обзоре я жаловался на то, что это ПО не захотело работать с Мастечем, грешил на то что ПО неродное для него.
Попробовал запустить на планшете под Windows 8.1, ПО также отобразило одно измеренное значение и сообщило об ошибке. :(

Я на этом не стал останавливаться и полез искать альтернативное ПО для \того мультиметра, и нашел.
Оно конечно менее функционально чем родное, но оно работает и позволяет развернуть изображение на весь экран. Данная программа будет в дополнительных материалах.

Так как родное ПО не захотело работать, то скорее уже в немного расстроенных чувствах я стал упаковывать мультиметр обратно в коробку.
Но неожиданно там обнаружился компакт диск. Как я его не заметил сразу, не знаю.

Естественно я сразу полез смотреть что на нем (на компьютере без дисководов это целая проблема, опять городи целую конструкцию, когда уже ПО будут давать на флешках).
На диске была обнаружена программа версии 4.01, а до этого я пробовал с версией 2.0
Установил, запустил, все заработало просто отлично, в общем будьте внимательны при распаковке:)
Все что было на диске я также выложу в дополнительных материалах.

Что я могу сказать в итоге.
Мне честно понравился UNI-T UT61E, хороший, добротный мультиметр, хотя по своему и не лишенный недостатков.
Из его плюсов - отличная точность измерения, удобная конструкция, очень удобный переключатель режимов, возможность подключения к компьютеру.
Из минусов - функционально он мог бы быть и получше, если бы использовал все возможности установленного процессора. Питание от 9 Вольт батареи и отсутствие подсветки это лишь косвенные минусы, так как они не так критичны, хотя хотелось бы иметь питание от АА элементов.
Предохранители на 250 Вольт.

HONEYTEK HK68B меня несколько расстроил, но сначала плюсы
Хорошая точность при измерении напряжения и тока, а также корректная работа TrueRMS, но к сожалению только в очень узком диапазоне частот. Наличие выносного термодатчика, большой контрастный экран, крепкая конструкция корпуса (в основном за счет резиновой «калоши», подсветка.
Из минусов . точность измерения емкости явно «хромает». Диапазон частот при измерении переменного напряжения и тока ограничен частой 600-1800Гц. Питание также от 9 Вольт батареи. Как по мне, то для данного прибора цена несколько завышена.

Мое мнение. В поисках того, «идеального» для меня мультиметра, UT61E почти подобрался к нему. Понравился относительно небольшой корпус и сбалансированный набор функций при высокой точности измерения. Хотя, как я выше писал, не обошлось и без мелких недостатков. Но если бы я выбирал между HK68B и UT61E, то однозначно выбрал бы второй.
Я не хочу сказать что HK68B плохой, просто думаю что можно найти варианты лучше при той же стоимости.
Чего не хватает в UT61E, ну возможно измерения индуктивности и ESR, ну это наверное я уже много хочу:)

На том вроде все. Надеюсь мой обзор поможет в выборе мультиметра как для работы, так и «для дома, для семьи». Я постарался описать критерии выбора правильного мультиметра так, как я их вижу, возможно где то ошибся, потому жду комментариев, дополнений и исправлений.

Мультиметр – электронный ручной измерительный прибор, широко используемый в электротехнике и электронике для определения ключевых характеристик цепи постоянного и переменного тока. В зависимости от своей функциональной оснащенности, прибор может выполнять измерение силы тока, напряжения, сопротивления цепи, а также определять полярность.

Мультиметр состоит из корпуса, в котором размещены электронные компоненты, блок питания, дисплей или измерительная градуированная шкала, а также регулятор режима работы, с помощью которого осуществляется выбор типа и диапазона измерений.

Для удобства подключения к контактной зоной прибор оснащается щупами — металлическими заостренными стержнями с пластиковыми рукоятками, которые присоединяются к корпусу мультиметра с помощью проводов и клемм (штекеров).

Классификация мультиметров

Аналоговые мультиметры

Классические мультиметры, эксплуатируемые достаточно длительное время и в настоящее время вытесняемые цифровыми.

Имеют градуированную измерительную шкалу. Измерения выполняются с использованием массивных электронных блоков.

Аналоговые мультиметры не обеспечивают высокую точностью измерений, однако являются самыми надежными. Они позволяют выполнять измерения в условиях сильных радиопомех, что может быть невозможным с помощью современного цифрового оборудования;

Цифровые мультиметры

Современные высокоточные приборы, оснащенные компактной электроникой и удобным жидкокристаллическим дисплеем.

Позволяют выполнять измерения с минимальной погрешностью, компактны и удобны в работе. Из недостатков стоит отметить высокую чувствительность к радиопомехам и прочим типам электромагнитного излучения.

Классификация по точности выполнения измерений

Мультиметры также классифицируются по разрядности или классу точности выполняемых измерений.

Самый простой тип мультиметра имеет разрядность 2,5, что соответствует точности измерений около 10%. Популярные и широко используемые модели имеют разрядность 3,5 (точность около 1%). Мультиметры могут иметь разрядность 5 и более. Чем точнее прибор — тем выше его стоимость.

Назначение мультиметров

Мультиметры в отличие от специализированных приборов (вольтметров, амперметров и омметров) позволяют выполнять измерения всех трех основных параметров цепей переменного и постоянного тока. Как известно, такими параметрами являются: сила тока, определяемая в Амперах (А); напряжение (разность потенциалов), определяемое в Вольтах (В) и сопротивление цепи, определяемое в Омах (Ом).

Приборы находят широкое применение в сферах промышленной электротехники, электроники, а также при выполнении инженерных, строительных, эксплуатационных и ремонтных работ. Мультиметры, наряду с тестерами и контрольными лампами, очень часто используют при выполнении ремонтно-отделочных работ — на этапе устройства и подключения внутренней электросистемы. Применение мультиметра позволяет выполнить наиболее качественный монтаж и коммуникацию электрооборудования.

Порядок сборки и выполнения измерений

ВАЖНО: Убедитесь, что Ваш прибор может работать в цепи высокого напряжения (см. инструкцию по эксплуатации).

Перед тем как приступить к замерам, прибор необходимо собрать, присоединив к его корпусу проводники со щупами. При выполнении большинства измерений, и в частности, проверки внутренних электросистем помещения, используется следующий порядок подключения прибора:

  • нулевой провод, маркированный черным цветом, подключается к гнезду COM;
  • красный (фазный) — к гнезду для измерения напряжения, сопротивления цепи и силы тока до 200mA, расположенному выше.

ВАЖНО: Обязательно убедитесь, что у гнезда для подключения фазного щупа есть подпись, содержащая символ V. Не присоединяйте фазный щуп к третьему гнезду (измерение силы постоянного тока до 10А), при выполнении замеров в цепи переменного тока (бытовая сеть 220В) — это очень опасно.

Прозвон цепи

Прозвон (тест) цепи выполняется для проверки изоляции проводников, их целостности, а также качества сборки (коммутации). Проверка выполняется двумя способами:

1 способ (измерение сопротивления цепи)

Установите переключатель в режим измерения сопротивления цепи. Позиция переключателя диапазона измерений может быть любой.

Подключите щупы к проводникам тестируемой цепи. Если на дисплее отображается «1» (единица) — проводники не пересекаются (сопротивление максимальное), т.е. — цепь отсутствует. В зависимости от типа выполняемого исследования это может свидетельствовать как о разрыве цепи, так и об её правильной сборке — отсутствии замыкания и повреждений изоляции смежных проводников.

Если на дисплее отображается какое-либо значение, отличное от единицы — через цепь идёт ток, что может свидетельствовать о наличии замыкания смежных проводников либо служить подтверждением корректной сборки цепи (если тестируется рабочий контур). При этом чем меньше значение сопротивления отображается на дисплее — тем более качественной является сборка цепи.



Пример прозвона стандартного трехжильного кабеля на замыкание смежных контактов.

2 способ (проверка проводимости)

Установите переключатель в режим прозвона цепи (функция присутствует не во всех моделях мультиметров).

Произведите проверку линий в порядке, аналогичном описанному выше.

Проверка напряжения и заземляющего контура

Для определения величины напряжения и проверки функционирования заземляющего контура, с помощью переключателя переведите прибор в режим измерения переменного напряжения, при этом предел измерения должен превышать величину напряжения сети (220 В).

Измерение напряжения

Подключите щупы к гнездам определяемой розетки или линии.

На дисплее прибора отобразится значение измеряемого напряжения.

Полярность подключения щупов не имеет значения — при реверсном подключении (нулевой щуп к фазе, фазный — к нулю) на дисплее отобразится та же величина, но со знаком минус.

ВАЖНО: Фактическая величина сетевого напряжения постоянно меняется и, как правило, отличается от 220 В. Во время проверки на дисплее мультиметра могут отображаться значения от 200 до 280 В. В большинстве случаев это не является неисправностью.

Проверка контура заземления

Для того чтобы протестировать контур заземления, один из щупов подключите к заземляющему контакту, а другой — к фазному.

При определении заземления очень часто возникает серьёзная проблема. Контур фаза-заземление и контур фаза-нейтраль, определяются с очень похожими параметрами напряжения, из-за чего их крайне сложно различить. Если Вы не производили монтаж электропроводки самостоятельно — проводник заземления может оказаться обычным нулевым проводником.

Особенно сложно различить контуры в домах с застарелыми электрическими коммуникациями, в которых заземляющий проводник чаще всего отсутствует. Между тем, если при выполнении монтажа заземляющий проводник был соединен с нейтралью — неизбежно возникновение проблем с контрольно-измерительным электрооборудованием, а также с безопасностью бытовых приборов.

Для того чтобы избежать серьезных осложнений, перед началом электроустановочных работ убедитесь в наличии заземления на вводе в помещение (в распределительном щитке), а затем выполняйте коммутацию в точном соответствии с цветовыми маркировками проводников.

Если Вам все таки требуется определить действительное наличие заземления в уже смонтированном контуре — воспользуйтесь следующими рекомендациями:

  • чаще всего (особенно в новостройках) — величина напряжения в контуре фаза-заземление немного превышает напряжение контура фаза-нейтраль;



  • между нулевым проводником и заземлением может определяться напряжение — из-за наличия небольшого потенциала на нулевом проводнике.

Измерительные приборы с электронной начинкой и ручным управлением, применяемые в электронике и электротехнике для измерения свойств цепи электрического тока называются мультиметры. Приборы могут измерять различные параметры, включая напряжение, ток, сопротивление, емкость, определять полярность выводов, а также цоколевку транзисторов и многие другие параметры.

Устройство

Мультиметры состоят из пластмассового корпуса, в котором располагается электронная начинка, блока питания, экрана, или стрелочной шкалы, регулятора, которым можно выбирать вид и интервал измерений.

Чтобы было удобно измерять параметры цепи, устройство снабжено специальными щупами, которые выполнены в виде заостренных металлических стержней с изолированными ручками. Эти щупы присоединяются к мультиметру штекерами через гибкие проводники.

Классификация и особенности

Все мультиметры, или как их еще называют, тестеры, делятся на два класса:

  • Аналоговые.
  • Цифровые.

Рассмотрим подробнее каждый класс измерительных устройств.

Аналоговые мультиметры

Тестеры классического типа, которые используются давно, имеющие стрелочную шкалу показаний, относятся к аналоговому классу приборов. Они уже практически вытеснены цифровыми приборами.

В корпусе имеется встроенный экран с градуированной шкалой и стрелкой. Измерения осуществляются с применением электронных блоков.

Такие приборы не обладают высокой точностью замеров, но достаточно надежны в работе. С помощью них можно измерить параметры при сильных помехах от радиоволн, в отличие от современных цифровых устройств.

Цифровые мультиметры

Цифровые тестеры относятся к приборам высокой точности. Они оснащены электронными компонентами компактных размеров, удобным цифровым жидкокристаллическим дисплеем.

В основе конструкции цифрового прибора имеется контроллер с аналого-цифровым преобразователем. В микросхеме находится блок, который производит анализ напряжения.

С помощью таких устройств можно измерить параметры с наименьшей погрешностью, они удобны в эксплуатации и имеют небольшие размеры. Основным их недостатком является повышенная чувствительность к радиопомехам и другим электромагнитным излучениям.

Классификация по точности

Мультиметры имеют различную точность измерений в зависимости от исполнения прибора. Наиболее простыми являются тестеры с разрядностью 2,5. Это эквивалентно точности измерений 10%. Наиболее применяемыми моделями стали мультитестеры с точностью 1%. Также такие приборы могут иметь более низкую точность. Их стоимость зависит от точности. Чем выше точность измерений, тем прибор дороже.

Сфера применения

Эти универсальные приборы позволяют измерять несколько параметров постоянного и переменного тока: напряжение, ток, сопротивление, в то время как специализированные приборы, такие как омметры, амперметры и вольтметры, могут измерить только один определенный параметр цепи.

Мультиметры широко используются в промышленной сфере, электротехнике, электронике, в инженерных расчетах, при проведении ремонтных и эксплуатационных работ. Вместе с контрольными лампами мультитестеры применяют при отделочных работах, во время монтажа и подключения электрической сети. Использование мультиметров дает возможность обеспечения качественной установки электрооборудования.

Подготовка прибора к работе

Перед началом измерений прибор нужно подготовить к работе, собрать все элементы, подсоединить к клеммам корпуса гибкие проводники со щупами. Чаще всего при осуществлении многих измерений, например, при контроле внутренних электрических систем здания, примеряется определенный алгоритм подключения мультитестера:

  • Черный нулевой проводник вставляется в гнездо «СОМ».
  • Красный провод (фазный) вставляется в гнездо, расположенное выше черного, для замера напряжения, силы тока (не более 200 мА) и сопротивления.

Предупреждение : необходимо убедиться в том, что у гнезда для красного провода есть маркировка со знаком «V». Красный штекер нельзя вставлять в третье гнездо (оно служит для замера постоянного тока до 10 ампер), при измерении переменного тока бытовой сети, так как это опасно для жизни.

Проверка цепи цифровым мультиметром

Тестирование параметров цепи осуществляется для контроля состояния изоляции проводов, их целостности, качества соединений. Прозвонка цепи производится двумя методами.

Метод замера сопротивления цепи

Установите регулятор в режим замера сопротивлений на любое значение показаний.

Приложите щупы к проводам проверяемой цепи. Если на экране появилась «1», то провода не имеют между собой контакта, то есть, сопротивление между ними наибольшее. Также это может говорить о том, что цепь разорвана, либо о правильности сборки, отсутствии замыканий и неисправности изоляции проводов.

Если же на дисплее отобразилось некоторое значение, то по цепи протекает ток. Это говорит о том, что имеется замыкание проводов, либо свидетельствует о хорошей сборке. В этом случае, чем ниже значение сопротивления на дисплее, тем качественнее сборка.

Порядок прозвона 3-жильного кабеля на наличие замыкания проводов.

Метод измерения проводимости

Установите регулятор в режим проверки цепи (есть не во всех приборах).

Определение напряжения и прозвон заземления

Для измерения напряжения и контроля контура заземления, при помощи ручки переключения установите режим для напряжения переменного вида, на значение интервала, превышающего измеряемое напряжение.

Определение напряжения

Вставьте наконечники щупов в гнезда розетки сети.

На экране появится величина напряжения. Полярность щупов для подключения не важна, так как при подключении щупов с обратной полярностью на экране также будет отображаться измеряемая величина, только со знаком минуса.

Величина напряжения в сети постоянно изменяется, и чаще всего отличается от 220 вольт, но это не является поломкой или неисправностью.

Прозвон заземления

Для проверки заземляющего контура один щуп прикладывают к заземлению, другой к фазе.

При прозвонке , часто возникают трудности. Цепь заземление – – фаза прозваниваются практически с равными значениями напряжения. Поэтому их трудно отличить. Если самостоятельно не было , то скорее всего провод заземления окажется нулевым проводом.

Наиболее сложным является определить контуры заземления в старых домах с отсутствующим заземлением. Если , то возникнут проблемы с измерительными приборами и безопасностью бытовых устройств.

Для предотвращения особых сложностей, перед монтажными работами нужно убедиться, есть ли заземление на входе в здание в распределительном щите, а потом осуществлять соединения по цветовой маркировке проводов.

Если нужно выяснить, есть ли заземляющий контур в проводке, то следуйте некоторым советам:

  • Во вновь построенных домах значение напряжения в цепи фаза-заземление больше, чем в цепи фаза-нейтраль.
  • Между нулевым проводом и заземлением возможно появление напряжения, вследствие наличия слабого потенциала на проводе ноля.
Проверка транзисторов

Подобным образом проверяются транзисторы. Инновационные мультитестеры оснащены функцией измерения коэффициента усиления. Это значение обозначают одной из греческих букв, или буквой «h» с дополнительной буквой, например, «э». Это значит, что величина была измерена для полупроводника, подключенного с общим эмиттером. Для измерения усиления транзистора имеется два отдельных гнезда для разных . Величины полевых типов транзисторов определяют по-другому, более сложному варианту, и не может быть определена таким измерительным прибором.

Измерение емкости

Ножки конденсатора вставляются в специальные гнезда, подается импульс напряжения, делается оценка времени разряда. Разность потенциалов на конденсаторе уменьшается по экспоненциальному закону, по которому дается оценка этого параметра. Этот метод применяется в технике для различных целей.

Измерение температуры

Дополнительной функцией некоторых цифровых устройств является измерение температуры, которое основано на действии термопары. Современная электронная техника может определить температуру по изменению сопротивления термопары. Напряжение также определяется аналого-цифровым преобразователем и выдается на дисплей.

Для измерения температуры контроллер имеет дело с напряжением. На корпусе мультиметра имеется специальное гнездо для подключения проводов термопары. Чтобы измерить температуру выполняют следующие шаги:

  • Вставляют провода термопары в соответствующее гнездо.
  • Размещают термопару в измеряемую среду.
  • На дисплее выдается величина температуры.
Работа аналогового мультиметра

Этот прибор работает с током, в отличие от цифрового устройства, который в работе использует напряжение. В индуктивной катушке поле витков усиливается и отклоняет стрелку в сторону. Такой прибор служит для:

  • Измерения сопротивлений и емкостей.
  • Измерения напряжения.
  • Определение силы тока.

Показания всех параметров выдается на стрелочный экран с градуированной шкалой. Для переключения интервалов измерения имеется ручка управления. Так же, как и в цифровом приборе, есть специальные гнезда для подключения проводов щупов.

Прецизионный (высокоточный) цифровой мультиметр Mastech MS8218 с автоматическим выбором пределов измерения и функцией TrueRMS.

Небольшой фото обзор, комплект поставки, основные функции и работа с прибором.

Мультиметр MS8218 позволяет производить измерения среднеквадратичные значения (TrueRMS) величин силы постоянного и переменного тока, постоянного и переменного напряжения, сопротивления, емкости конденсаторов, частоты сигнала и скважность импульсов.

Комплект поставки:

  • мультиметр Mastech MS8218,
  • комплект щупов,
  • кабель для подключения к персональному компьютеру,
  • программное обеспечение на CD,
  • комплект батарей питания,
  • инструкция,
  • сумка-чехол с ремнём,
  • упаковка.

Упаковка. Коробка из плотного картона с цветной полиграфией:

Сумка-чехол прибора и её содержимое. Сумка выполнена добротно, в ней имеются отделения для кабелей, мультиметра и инструкции с компакт диском. Закрывается она при помощи застёжки молнии, для удобства транспортировки предусмотрен ремень. При использовании дополнительных щупов с прибором, есть возможность хранить всё в одном месте, сумка это позволяет:





Мультиметр MS8218 имеет ударопрочное исполнение, корпус его обрезинен:


Мультиметр на подставке:




Питание мультиметра осуществляется от шести батарей типа ААА. Также под крышкой находятся два предохранителя, которые обеспечивают защиту по току. В режиме измерения µA, mA (гнёзда µA, mA – COM) максимальный входной сигнал DC или AC 500мА. Предохранитель 0,63А/250В. В режиме измерения A (гнёзда A – COM) максимальный входной сигнал DC или AC 10А. Предохранитель 12,5А/500В. Батарейный отсек, крышка и винтики:



Щупы мультиметра (CATIII 1000V 10A). Щупы комплектуются защитными колпачками и пробками. Защитные колпачки имеют небольшие прорези на конусе. При надетом колпачке на щуп можно замерять параметры схемы под напряжением, таким образом, сводится к минимуму вероятность что-то замкнуть:





Оптический прот RS232C и кабель передачи данных:




Физические параметры:

  • Прорезиненный корпус 200x100x40mm
  • Вес прибора 600гр.
  • Дисплей: ЖК, размер 44х77мм, пяти разрядный с индикацией максимального значения величины измерения 50000, с графической пятидесяти сегментной шкалой для мнемонического отображения значений измерений и с отображением единицы измерения. Имеется возможность включения подсветки в условиях недостаточной видимости.
  • Многопозиционный поворотный переключатель режимов работы прибора,
  • Клавиши выбора функций и включения питания,
  • Разъемы: четыре, штекерного типа.

Органы управления индикация разъёмы:


  1. Гнездо для измерения dBm , Hz , V , mV , ёмкости, сопротивления, прозвонка цепей и диодов;
  2. Гнездо общего вывода COM ;
  3. Гнездо для измерения токов µA , mA ;
  4. Гнездо для измерения токов A ;
  5. Поворотный переключатель;
  6. Клавиша выключения питания;
  7. Клавиша RANGE (Нажмите кнопку RANGE для включения режима ручного выбора диапазона измерения, символ AUTO на дисплее исчезнет. Для ручного переключения диапазона нажимайте кнопку RANGE. Для возврата в режим автоматического выбора диапазона нажмите кнопку RANGE на время более 1сек. Надпись AUTO появится снова на дисплее.)
  8. Клавиша SELEСT (При нажатии кнопки SELECT переключаются режимы измерения);
  9. Клавиша WAKE (в случае ухода прибора в спящий режим и при этом существует необходимость продолжить измерения, нажатие на клавишу пробуждает прибор);
  10. Клавиша MAX/MIN ;
  11. Клавиша REL ∆ (Режим относительных измерений позволяет пользователю проводить измерения входных величин относительно определенного фиксированного значения, называемого эталонным. Практически любое значение входного сигнала, отображаемое на дисплее может быть принято за эталонное, включая сигналы в режимах MAX/MIN. Для включения/выключения режима относительных измерений нажмите кнопку REL ∆ .);
  12. Клавиша DATA HOLD (Удержание показаний на дисплее. При нажатии кнопки HOLD показания на дисплее застывают и не изменяются при изменении входного сигнала. На дисплее появляется символ. Для продолжения измерений нажмите кнопку HOLD еще раз, при этом символ исчезнет);
  13. Клавиша LIGHT (Включение подсветки дисплея прибора на пять секунд.);
  14. Клавиша ~ Hz (Измерение частоты синусоидальных сигналов, при установки переключателя режимов измерения в одно из положений mV , V , μA , mA или A . Повторное нажатие клавиши выключает режим измерения частоты.);
  15. Дисплей.

Сегменты индикации на дисплее:

Дисплей: ЖК, размер 44х77мм, пяти разрядный с индикацией максимального значения величины измерения 50000, с графической пятидесяти сегментной шкалой для мнемонического отображения значений измерений и с отображением единицы измерения.



  1. а). Индикатор измерения ёмкости µF или nF ;
    б). Индикатор измерения силы тока µA , mA или A ;
    в). Индикатор измерения dBm (единица измерения мощности по отношению к уровню 1 мВт, удобный способ представления в компактном виде и очень больших и очень малых значений мощностей, dBm привязан к ватту и не зависит от импеданса (impedance), служит для измерения абсолютной мощности) или напряжения в mV или V;
    г). Индикатор измерения сопротивления MΩ , kΩ и или измерения частоты MHz , kHz и Hz ;
  2. Индикатор измерения частоты логических сигналов или измерения относительной скважности импульсов;
  3. Индикация режимов максимума, минимума и разница измерений;
  4. Индикатор автоматического выбора диапазона измерения;
  5. Индикатор ручного выбора диапазона измерения;
  6. Индикатор диапазона ручного измерения 5 , 50 , 500 , 1000 и 5000 ;
  7. Индикатор низкого заряда батареи;
  8. Индикатор относительных измерений;
  9. Индикатор прозвонки соединений;
  10. Индикатор переменного напряжения и тока;
  11. Индикатор отрицательной полярности;
  12. Индикатор постоянного напряжения и тока;
  13. Индикатор HOLD ;
  14. Индикатор ожидания (сообщение «Please Wait …» высвечивается при измерении ёмкости в пределах от 50 до 5000 µF причины данного явления низкая скорость измерения емкостей больших величин);
  15. Аналоговая шкала измерений. Аналоговая шкала обеспечивает визуальную индикацию измерений, подобно аналоговому прибору ;
  16. Индикатор активности оптического порта для передачи данных по интерфейсу RS-232C на ПК;
  17. Основной цифровой набор сегментов.

Работа с прибором.

При включении щупов в разъемы для измерения тока в то время, когда поворотный переключатель установлен в режим, отличный от режима измерения тока, раздается сигнал зуммера и дисплей гаснет.

Режим среднеквадратичных измерений (True RMS).

При среднеквадратичных измерениях входного сигнала прибор вычисляет эффективное значение входного сигнала, определяющее его мощность, и таким образом обеспечивает более точное измерение сигналов, нежели простое усреднение детектированного сигнала. Данный режим вычисляет как переменную, так и постоянную компоненты входного сигнала, вычисления производятся по формуле: v(DC2+AC2) , в результате производятся точные измерения.

Измерение ACV/dBm. Максимальная величина входного напряжения: 1000В переменного напряжения!

Область применения:

  • ACV Измерение сетевого напряжения синусоидальной формы в диапазоне от 5,0000В до 1000В,
  • dBm Измерение в децибелах диапазоны измерения от -11,76dBm до 54,25dBm.

Точность измерений зависит от частоты: 40Гц – 1кГц ±0.5%, 1кГц – 10кГц ±1.0%, 10кГц – 20кГц ±2.5%.

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему V мультиметра. Установить переключатель режимов измерения в положение V~/dBm. Для переключения между режимами измерения V и dBm использовать кнопку SELECT.

При включении прибора в режиме dBm значение его импеданса отображается на дисплее в течение одной секунды. Для изменения величины импеданса в режиме dBm нажимайте кнопку dBm- Ω , при этом величина импеданса изменяется в последовательности 4, 8, 16, 32, 50, 75, 93, 110, 125, 135, 150, 200, 250, 300, 500, 600, 800, 900, 1000, 1200Ом. Новый выбранный импеданс сохраняется в энергонезависимой памяти мультиметра, и будет включаться по умолчанию.

Измерения DCV/(AC+DC)V. Максимальная величина входного напряжения : 1000В постоянного напряжения или постоянного/переменного напряжения!

Область применения:

  • DCV Измерения постоянных напряжений в цепях и батареях,
  • (AC+DC)V Измерение суммарного (постоянного и переменного) напряжения в цепях.

Диапазон измерения от 5,0000В до 1000В, точность ±0.03%.

Процедура измерения Подключить черный щуп к разъему COM, а красный щуп к разъему V мультиметра. Установить переключатель режимов измерения в положение DCV/(AC+DC)V. Для переключения между режимами измерения использовать кнопку SELECT.

Измерения ACmV/DCmV/(AC+DC)mV. Максимальная величина входного напряжения : 500мВ постоянного или постоянного/переменного напряжения!

Область применения:

  • ACmV Измерение малых переменных напряжений в цепях,
  • DCmV Измерение малых постоянных напряжений в цепях,
  • (AC+DC)mV Измерение малых суммарных напряжений в цепях.

Диапазон измерения от 1,0мВ до 500,00мВ, точность измерений для постоянного напряжения ±0.05% и для измерений переменного при частоте 40Гц – 1кГц ±0.5%, при частоте 1кГц – 10кГц ±1.0%, при частоте 10кГц – 20кГц ±2.5%.

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему V мультиметра. Установить переключатель режимов измерения в положение mV Для переключения между режимами измерения использовать кнопку SELECT.

Измерение частоты синусоидальных сигналов.

Область применения: Измерение частоты синусоидальных сигналов.

Диапазоны измерения от 5Гц до 2МГц (диапазон измерения зависит от установленного диапазона измерения).

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему Hz мультиметра. Установить переключатель режимов измерения в положение mV, V, μ A, mA или A. Для включения или выключения режима измерения частоты нажимайте кнопку ~Hz.

Измерение частоты цифровых сигналов и измерение относительной скважности импульсов.

Предупреждение: Никогда не подавайте на вход сигналы с уровнем, превышающие предельно допустимые значения. При изменении функции измерения всегда отсоединяйте щупы от измеряемой схемы. При проведении измерений всегда держите пальцы за защитными кромками щупов.

Область применения:

  • Измерение частоты логических сигналов,
  • Измерение относительной скважности импульсов.

Диапазоны измерения:

  • Частота: 5,0000Гц – 2,0000МГц,
  • Относительная скважность: 0,1% - 95%.

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему Hz мультиметра. Установить переключатель режимов измерения в положение Hz%. Для переключения между режимами измерения частоты и относительной скважности нажимайте кнопку SELECT.

Диодный тест.

Область применения: проверка качества диодов.

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему? мультиметра.
Установить переключатель режимов измерения в положение диодный тест:

  • Подключите черный щуп к катоду, а красный щуп к аноду диода. Проверьте исправность диода. Нулевые показания говорят о короткозамкнутом диоде. Если дисплей показывает OL, то диод имеет обрыв.
  • Подключите черный щуп к аноду, а красный щуп к катоду диода. Проверьте исправность диода. Если дисплей показывает OL, то диод исправен. Любые другие показания говорят о дефективности диода.

Измерение сопротивлений.

Область применения: измерение величины сопротивления резисторов и цепей.

Диапазон измерения: от 0,01Ом до 50,00МОм, точность ±0.1%,

Процедура измерения. Подключить черный щуп к разъему COM, а красный щуп к разъему Ω Ω и выберать режим измерения сопротивлений кнопкой SELECT.

Для компенсации сопротивления щупов при измерении малых сопротивлений используйте режим относительных измерений. Если электрические наводки влияют на точность показаний, экранируйте объект измерения проводником отрицательной полярности (COM). Если во время измерений пальцы касаются щупов мультиметра, то электрическое сопротивление тела может повлиять на точность измерений.

Прозвонка соединений.

Область применения: прозвонка кабелей, жгутов и пр.

Процедура проведения прозвонки. Подключить черный щуп к разъему COM, а красный щуп к разъему Ω мультиметра. Установить переключатель режимов в положение Ω и выбрать кнопкой SELECT режим прозвонки.

Порог срабатывания находится в пределах от 0,01 до 60Ом.

Измерение емкости конденсаторов.

Область применения: измерение емкостей конденсаторов.

Диапазон измерения от 10,00нФ до 5000мкФ, точность: при измерении ёмкости от 10,00нФ до 500мкФ ±1.0%, при измерении ёмкости то 500мкФ до 5000мкФ ±2.0%.

Процедура проведения измерений: подключить черный щуп к разъему COM, а красный щуп к разъему V мультиметра. Установить переключатель режимов в положение измерения емкостей.

При измерении ёмкости конденсаторов в пределах от 500мкФ до 5000мкФ время выполнение операции увеличивается, причины данного явления низкая скорость измерения емкостей больших величин, при этом до вывода результата на дисплее высвечивается сообщение «Please Wait …».

Измерение токов.

Предупреждение: Никогда не подавайте напряжение на входные разъемы. Убедитесь, что подключение мультиметра производится последовательно нагрузке. При проведении измерений в трехфазных цепях необходимы особые меры предосторожности, т.к. напряжение между фазами существенно выше напряжения между любой фазой и землей. Не подавайте на вход токи, превышающие максимально допустимые значения. Перед включением в измеряемую цепь мультиметра выключите питание цепи.

Измерение токов в диапазоне μ А и mA . Максимальный входной ток: не более 500мА .

Область применения:

  • Переменный ток: Измерение тока в схемах с переменным током,
  • Действующий ток: Измерение тока в различных цепях.

Диапазон измерения: в режиме μ А от 0,01 μ А до 5000,0 μ А, в режиме мА от 1,0 μ А до 500,0мА. Точность измерений для постоянного тока ±0.15% и для измерений переменного тока при частоте 40Гц – 1кГц ±0.75%, при частоте 1кГц – 10кГц ±1.0%, при частоте 10кГц – 20кГц ±2.0%.

Процедура проведения измерений. Подключить черный щуп к разъему COM, а красный щуп к разъему μ А/mA мультиметра. Установить переключатель режимов в положение μ А или mA и кнопкой SELECT выбрать требуемый режим измерения тока. Отключив питание измеряемой схемы, разорвать цепь и включить в разрыв цепи щупы мультиметра. Для измерения постоянного тока DC μ A и DCmA подключить черный щуп в разрыв к точке цепи с отрицательным потенциалом, а красный щуп к точке цепи с положительным потенциалом. Для измерения переменного напряжения AC?A и ACmA подключить черный и красный щупы в разрыв измеряемо цепи. Для измерения напряжения (AC+DC) μ A и (AC+DC)mA подключить черный и красный щупы в разрыв измеряемой цепи.

Измерение токов в диапазоне 10А. Максимальный входной ток не более 10А.

Область применения:

  • Постоянный ток: Проверка батарей питания и измерение токов в схемах,
  • Переменный ток: Измерение тока в схемах с переменным током.

Диапазон измерения: от 0,1мА до 10,00А Точность измерений для постоянного тока ±0.5% и для измерений переменного тока при частоте 40Гц – 1кГц ±0.75%, при частоте 1кГц – 10кГц ±1.5%, при частоте 10кГц – 20кГц ±5.0%.

Процедура проведения измерений. Подключить черный щуп к разъему COM, а красный щуп к разъему А мультиметра. Установить переключатель режимов в положение А и кнопкой SELECT выбрать режим измерения тока. Отключив питание измеряемой схемы, разорвать цепь и включить в разрыв цепи щупы мультиметра. Для измерения постоянного тока DCA подключить черный щуп в разрыв к точке цепи с отрицательным потенциалом, а красный щуп к точке цепи с положительным потенциалом. Для измерения переменного напряжения ACA подключить черный и красный щупы в разрыв измеряемой цепи. Для измерения напряжения (AC+DC)A подключить черный и красный щупы в разрыв измеряемой цепи.



Просмотров