Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца. Накопление заряда на обкладках конденсатора

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

$F=k{|q_1|·|q_2|}/{r^2}$

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

$k=9·10^9H·м^2$/$Кл^2$

Часто его записывают в виде $k={1}/{4πε_0}$, где $ε_0=8.85×10^{-12}Кл^2$/$H·м^2$ - электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

$C={q}/{U}={ε_{0}εS}/{d}$

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_{0}$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

$E_n={qU}/{2}={q^2}/{2C}={CU^2}/{2}$

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

$ω={εε_{0}E^2}/{2}$

где $ε$ - диэлектрическая проницаемость среды, $ε_0$ - электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

$I={∆q}/{∆t}$

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_{0}nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t={∆l}/{υ}$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

$I={∆q}/{∆t}={q_{0}nS∆l·υ}/{∆l}=q_{0}nυS$

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи . Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I={U}/{R}$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I={U}/{R}$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ{l}/{S}$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^{-1}м^{-1}$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^{-6}$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^{-2}$) Ом$·$м$м^2$/м, диэлектрики — в $10^{15}-10^{20}$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

$α={R_t-R_0}/{R_0t}$

Зависимость удельного сопротивления проводников от температуры выражается формулой:

$ρ=ρ_0(1+αt)$

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=({1}/{273})K^{-1}$. Для растворов электролитов $α

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Параллельное и последовательное соединение проводников

Для параллельного соединения проводников справедливы следующие соотношения:

1) электрический ток, поступающий в точку $А$ разветвления проводников (она называется также узлом ), равен сумме токов в каждом из элементов цепи:

3) при параллельном соединении проводников складываются их обратные сопротивления:

${1}/{R}={1}/{R_1}+{1}/{R_2}, R={R_1·R_2}/{R_1+R_2};$

4) сила тока и сопротивление в проводниках связаны соотношением:

${I_1}/{I_2}={R_2}/{R_1}$

Для последовательного соединения проводников в цепи справедливы следующие соотношения:

1) для общего тока $I$:

где $I_1$ и $I_2$ — ток в проводниках $1$ и $2$ соответственно; т. е. при последовательном соединении проводников сила тока на отдельных участках цепи одинакова;

2) общее напряжение $U$ на концах всего рассматриваемого участка равно сумме напряжений на отдельных его участках:

3) полное сопротивление $R$ всего участка цепи равно сумме последовательно соединенных сопротивлений:

4) также справедливо соотношение:

${U_1}/{U_2}={R_1}/{R_2}$

Работа электрического тока. Закон Джоуля-Ленца

Работа, совершаемая током, проходящим по некоторому участку цепи, согласно ($U=φ_1-φ_2={A}/{q}$) равна:

где $А$ — работа тока; $q$ — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство формулу $q=It$, получаем:

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Закон Джоуля-Ленца

Закон Джоуля — Ленца гласит: количество теплоты, выделяемое в проводнике на участке электрической цепи с сопротивлением $R$ при протекании по нему постоянного тока $I$ в течение времени $t$ равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтвержден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которому удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца следует, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на проводнике с наибольшим сопротивлением. Это используется в технике, например, для распыления металлов.

При параллельном соединении все проводники находятся под одинаковым напряжением, но токи в них разные. Из формулы ($Q=I^2Rt$) следует, что, так как, согласно закону Ома $I={U}/{R}$, то

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле ($A=IUt$) выразить $U$ через $IR$, воспользовавшись законом Ома, получим закон Джоуля-Ленца. Это лишний раз подверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Мощность электрического тока

Действие тока характеризуют не только работой $A$, но и мощностью $Р$. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время $t$ была совершена работа $А$, то мощность тока $P={A}/{t}$. Подставляя в это равенство выражение ($A=IUt$), получаем:

Это выражение можно переписать в разных формах, воспользовавшись законом Ома для участка цепи:

$P=IU=I^{2R}={U^2}/{R}$

Из соотношения для ЭДС легко получить мощность источника тока:

В СИ работу выражают в джоулях (Дж), мощность - в ваттах (Вт), а время -в секундах (с). При этом

$1$Вт$=1$Дж/с, $1$Дж$=1$Вт$·$с.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать $I=10$А, то при напряжении $U=220$В соответствующая электрическая мощность оказывается равной:

$Р=10А·220В=2200Вт=2.2кВт.$

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока, и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения прямо пропорциональна силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах ($кВт·ч$).

$1кВт·ч$ — это работа, совершаемая электрическим током мощностью $1кВт$ в течение $1ч$. Так как $1кВт=1000Вт$, а $1ч=3600с$, то $1кВт·ч=1000Вт·3600с=3600000 Дж$.

Конденсатор – это элемент электрической цепи, который способен накапливать электрический заряд. Важной особенностью конденсатора является его свойство не только накапливать, но и отдавать заряд, причем практически мгновенно.

Согласно второму закону коммутации напряжение на конденсаторе не может измениться скачком. Эта особенность активно используется в различных фильтрах, стабилизаторах, интегрирующих цепях, колебательных контурах и тд.

В том, что напряжение не может измениться мгновенно, можно убедиться из формулы

Если бы напряжение в момент коммутации изменилось скачком, это означало бы, что скорость изменения du/dt = ∞, чего в природе быть не может, так как потребовался бы источник бесконечной мощности.

Процесс заряда конденсатора


На схеме представлена RC – цепь (интегрирующая), запитанная от постоянного источника питания. При замыкании ключа в положение 1 происходит заряд конденсатора. Ток проходит по цепи: “плюс” источника – резистор – конденсатор - “минус” источника.

Напряжение на обкладках конденсатора изменяется по экспоненциальному закону. Ток, протекающий через конденсатор, также изменяется по экспоненте. Причем эти изменения взаимообратны, чем больше напряжение, тем меньше ток, протекающий через конденсатор. Когда напряжение на конденсаторе сравняется с напряжением источника, процесс заряда прекратится, и ток в цепи перестанет течь.



Теперь, если мы переключим ключ в положение 2, то ток потечет в обратную сторону, а именно по цепи: конденсатор – резистор – “минус” источника. Таким образом, конденсатор разрядится. Процесс будет носить также экспоненциальный характер.

Важной характеристикой данной цепи является произведение RC , которую еще называют постоянной времени τ . За время τ конденсатор заряжается или разряжается на 63%. За 5 τ конденсатор отдает или принимает заряд полностью.

От теории перейдем к практике. Возьмем конденсатор на 0,47 мкФ и резистор номиналом 10 КОм.

Рассчитаем примерное время, за которое должен зарядиться конденсатор.

Теперь соберем данную схему в multisim и попробуем промоделировать


Собранная схема, запитана от батареи 12 В. Меняя положение переключателя S1, мы сначала заряжаем, а затем разряжаем конденсатор через сопротивление R = 10 КОм. Для того чтобы увидеть наглядно работу схемы посмотрите видео ниже.

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q .

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

(5.4.3)
(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

Или , отсюда

(5.4.6)

Сравните с последовательным соединением R :

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

. (5.4.7)

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε 0:

(5.4.8)

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Содержание:

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица - фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме. Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q - заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов используется формула:
в которой ε 0 = 8,854187817 х 10 -12 ф/м представляет собой постоянную величину. Прочие величины: ε - является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S - означает площадь обкладки, а d - зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как . После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде:W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: W эл = CU 2 /2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: U c = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома I зар = Е/R i , поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора - способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: I ут = U/R d , где I ут, - это ток утечки, U - напряжение, прилагаемое к конденсатору, а R d - сопротивление изоляции.

С момента начала изучения электричества решить вопрос о его накоплении и сохранении удалось лишь в 1745 году Эвальду Юргену фон Клейсту и Питеру ван Мушенбруку. Созданное в голландском Лейдене устройство позволяло аккумулировать и использовать ее при необходимости.

Лейденская банка - прототип конденсатора. Ее использование в физических опытах продвинуло изучение электричества далеко вперед, позволило создать прототип электрического тока.

Что такое конденсатор

Собирать и электроэнергию - основное назначение конденсатора. Обычно это система из двух изолированных проводников, расположенных как можно ближе друг к другу. Пространство между проводниками заполняют диэлектриком. Накапливаемый на проводниках заряд выбирают разноименным. Свойство разноименных зарядов притягиваться способствует большему его накоплению. Диэлектрику отводится двойственная роль: чем больше диэлектрическая проницаемость, тем больше электроемкость, заряды не могут преодолеть преграду и нейтрализоваться.

Электроемкость - основная физическая величина, характеризующая возможность конденсатора накапливать заряд. Проводники называют обкладками, электрическое поле конденсатора сосредотачивается между ними.

Энергия заряженного конденсатора, по всей видимости, должна зависеть от его емкости.

Электроемкость

Энергетический потенциал дает возможность применять (большая электроемкость) конденсаторы. Энергия заряженного конденсатора используется при необходимости применить кратковременный импульс тока.

От каких величин зависит электроемкость? Процесс зарядки конденсатора начинается с подключения его обкладок к полюсам источника тока. Накапливаемый на одной обкладке заряд (величина которого q) принимается за заряд конденсатора. Электрическое поле, сосредоточенное между обкладками, имеет разность потенциалов U.

Электроемкость (С) зависит от количества электричества, сосредоточенного на одном проводнике, и напряжения поля: С= q/U.

Измеряется эта величина в Ф (фарадах).

Емкость всей Земли не идет в сравнение с величина которого примерно с тетрадь. Накапливаемый мощный заряд может быть использован в технике.

Однако накопить неограниченное количество электричества на обкладках нет возможности. При возрастании напряжения до максимального значения может произойти пробой конденсатора. Пластины нейтрализуются, что может привести к порче устройства. Энергия заряженного конденсатора при этом полностью идет на его нагревание.

Величина энергии

Нагревание конденсатора происходит из-за превращения энергии электрического поля во внутреннюю. Способность конденсатора совершать работу по перемещению заряда говорит о наличии достаточного запаса электроэнергии. Чтобы определить, как велика энергия заряженного конденсатора, рассмотрим процесс его разрядки. Под действием электрического поля напряжением U заряд величиной q перетекает с одной пластины на другую. По определению, работа поля равна произведению разности потенциалов на величину заряда: A=qU. Это соотношение справедливо лишь для постоянного значения напряжения, но в процессе разрядки на пластинах конденсатора происходит постепенное его уменьшение до нуля. Чтобы избежать неточностей, возьмем его среднее значение U/2.

Из формулы электроемкости имеем: q=CU.

Отсюда энергия заряженного конденсатора может быть определена по формуле:

Видим, что ее величина тем больше, чем выше электроемкость и напряжение. Чтобы ответить на вопрос о том, чему равна энергия заряженного конденсатора, обратимся к их разновидностям.

Виды конденсаторов

Поскольку энергия электрического поля, сосредоточенного внутри конденсатора, напрямую связана с его емкостью, а эксплуатация конденсаторов зависит от их конструктивных особенностей, используют различные типы накопителей.

  1. По форме обкладок: плоские, цилиндрические, сферические и т. д.
  2. По изменению емкости: постоянные (емкость не меняется), переменные (изменяя физические свойства, меняем емкость), подстроечные. Изменение емкости можно проводить, изменяя температуру, механическое или Электроемкость подстроечных конденсаторов меняется изменением площади обкладок.
  3. По типу диэлектрика: газовые, жидкостные, с твердым диэлектриком.
  4. По виду диэлектрика: стеклянные, бумажные, слюдяные, металлобумажные, керамические, тонкослойные из пленок различного состава.

В зависимости от типа различают и иные конденсаторы. Энергия заряженного конденсатора зависит от свойств диэлектрика. Основной величиной называют диэлектрическую проницаемость. Электроемкость ей прямо пропорциональна.

Плоский конденсатор

Рассмотрим простейшее устройство для собирания электрического заряда - плоский конденсатор. Это физическая система из двух параллельных пластин, между которыми находится слой диэлектрика.

Форма пластин может быть и прямоугольной, и круглой. Если есть необходимость получать переменную емкость, то пластины принято брать в виде полудисков. Поворот одной обкладки относительно другой приводит к изменению площади пластин.

С = εε 0 S/d.

Энергия плоского конденсатора

Видим, что емкость конденсатора прямо пропорциональна полной площади одной пластины и обратно пропорциональна расстоянию между ними. Коэффициент пропорциональности - электрическая постоянная ε 0 . Увеличение диэлектрической проницаемости диэлектрика позволят нарастить электроемкость. Уменьшение площади пластин позволяет получить подстроечные конденсаторы. Энергия электрического поля заряженного конденсатора зависит от его геометрических параметров.

Используем формулу расчета: W = CU 2 /2.

Определение энергии заряженного конденсатора плоской формы проводят по формуле:

W = εε 0 S U 2 /(2d).

Использование конденсаторов

Способность конденсаторов плавно собирать электрический заряд и достаточно быстро его отдавать используется в различных областях техники.

Соединение с катушками индуктивности позволяет создавать колебательные контуры, фильтры токов, цепи обратной связи.

Фотовспышки, электрошокеры, в которых происходит практически мгновенный разряд, используют способность конденсатора создать мощный импульс тока. Зарядка конденсатора происходит от источника постоянного тока. Сам конденсатор выступает как элемент, разрывающий цепь. Разряд в обратном направлении происходит через лампу малого омического сопротивления практически мгновенно. В электрошокере этим элементом служит тело человека.

Конденсатор или аккумулятор

Способность долгое время сохранять накопленный заряд дает замечательную возможность использовать его в качестве накопителя информации или хранилища энергии. В радиотехнике это свойство широко используется.

Заменить аккумулятор, к сожалению, конденсатор не в состоянии, поскольку имеет особенность разряжаться. Накопленная им энергия не превышает нескольких сотен джоулей. Аккумулятор может сохранять большой запас электроэнергии длительно и практически без потерь.



Просмотров