Интерфейс modbus описание. Сетьевой протокол - Modbus

Пришло время рассмотреть еще одну вариацию протокола Modbus Modbus ASCII . Эта версия протокола использует для передачи данных только символы ASCII, которыми кодирует шестнадцатеричное представление бинарных данных. Немного не понятно и запутано? Это ничего, welcome под кат и давайте рассмотрим, с чем же мы имеем дело.

Разделитель пакетов

Первое отличие протокола Modbus ASCII от Modbus RTU – у него есть разделитель между пакетами. Если в Modbus RTU все пакеты шли один за одним (практически, там должна быть небольшая задержка на линии между пакетами, порядка 2-5мс), то в Modbus ASCII каждый новый пакет должен начинаться со специального символа разделителя.

По стандарту Modbus RTU между пакетами нужна задержка в 3.5 символа (это время, которое нужно для передачи 3.5 символов по линии связи, зависит от скорости передачи). Эта задержка используется, что бы детектировать новый запрос от мастера. Т.е. эта задержка указывает начало нового запроса. Но когда стали использовать модемы, это перестало работать. На модеме невозможно выдержать нужное время. Поэтому решили использовать новый вариант протокола — Modbus ASCII . Этот вариант устраняет многие неудобства при работе с модемом: есть специальный символ разделитель пакетов и используются только видимые символы ASCII.

Так вот, таким символом начала пакета служит символ двоеточие с шестнадцатеричным кодом 0x3A . А конец каждого пакета помечается символами новой строки и перевода каретки – 0x0D 0x0A . Таким образом, из протокола полностью убирается зависимость от задержек между байтами. Т.е. если модем задержит байт, это не вызовет недопонимания на стороне клиента. И он будет ждать окончания пакета байтами 0x0D 0x0A . А если встретит символ разделителя 0х3А – сбросит буфер и начнем формировать пакет заново. Кроме того нет необходимости в экранировании спец символов модема, так как данные не используют символы из начальной секции ASCII таблицы.

Представление байтов данных

В Modbus ASCII протоколе каждый байт данных представлен в виде 2 байтов. Каждый байт представляет собой ASCII символ в шестнадцатеричном представлении. Что бы легче было понять, приведем пример:

Немного объяснений для таблицы.

Например, нам нужно передать байт данных, который хранит символ # . Этот символ имеет в таблице ASCII шестнадцатеричный код 0x23 . В протоколе Modbus RTU мы просто передаем байт со значением 0x23 .

Если мы хоти передать тот же символ через протокол Modbus ASCII , нам нужно уже передавать 2 байта. На первом этапе мы получаем шестнадцатеричный код символа, 0x23 . На втором этапе мы кодируем это значение при помощи двух символов ASCII – 2 и 3 . И на третьем этапе мы передаем два байта данных, первый — это шестнадцатеричное значение символа 2 , второй байт — это шестнадцатеричное значение символа 3 .

Таким образом, диапазон значений для байта данных в протоколе Modbus RTU 0 .. 0xFF

Диапазон значений для байта данных в протоколе Modbus ASCII – только символы, необходимые для отображения шестнадцатеричных цифр, т.е. 0 – 9, A, B, C, D, E, F (все заглавные).

Контрольная сумма для Modbus ASCII

В протоколе Modbus RTU используется 2 байтная контрольная сумма, которая помогает детектировать поврежденные запросы. В протоколе Modbus ASCII так же есть контрольная сумма – LRC (Longitudinal Redundancy Check) .

Вычисление LRC намного проще, чем вычисление CRC . Что бы высчитать LRC вам нужно сделать следующие:

  • Сложить вместе все байты в сообщении Modbus ASCII , до того, как они сконвертированы в в символы ASCII. Не включаются в вычисления стартовый символ двоеточия и завершающие символы CR/LF .
  • Обнулить все биты больше 8 (т.е. оставить младший байт)
  • Сделать результирующий байт отрицательным чтобы получить LRC байт

Таким образом, если затем сложить все байты пакета данных и байт LRC мы получим в результате 0. Это и есть самая быстрая проверка корректности пакета данных.

Ниже приведен пример вычисления LRC для конкретного запроса Modbus ASCII .

Для примера возьмем запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03
Данные (Десятичные) Данные (HEX) Данные (Двоичные)
17 11 0001 0001
3 03 0000 0011
0 00 0000 0000
107 6B 0110 1011
0 00 0000 0000
3 03 0000 0011

Теперь посчитаем сумму всех байт

Вот это отрицательное число (-130 или 0x7E ) и есть LRC запроса.

Эта контрольная сумма добавляется к запросу в виде 2 ASCII символов – 7 и E .

Т.е. в конце запроса нужно добавить 2 байта со значением 37 и 45 .

Примеры Modbus RTU и Modbus ASCII запросов

Что бы лучше понять, как все это работает, посмотрите пару простых примеров.

Возьмем наш запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03

Это Modbus RTU запрос без последних двух байтов CRC . Теперь преобразуем этот запрос из Modbus RTU в Modbus ASCII . Для этого добавляем в начало запроса символ двоеточия, в конец запроса символ перевода строки и возврата каретки, а каждый байт представим в виде ASCII символов, соответствующих шестнадцатеричному представлению каждого байта запроса. В итоге у нас получиться такой запрос (в виде ASCII символов, или попросту в виде текстовой строки). Так же в конец запроса добавляем LRC .

: 1 1 0 3 0 0 6 B 0 0 0 3 7 E CR LF

Теперь просто нужно передать данный запрос в порт, используя коды ASCII символов. В бинарном виде запрос будет выглядеть так:

3A 3131 3033 3030 3642 3030 3033 3745 0D 0A
Индекс байта Значение HEX ASCII Описание
0 3A : Символ начала
1-2 31 31 11 Адрес устройства
3-4 30 33 03 Код команды
5-8 30 30 36 42 00 6B Адрес HOLDING регистра, с которого нужно начинать чтение. В данном случае 0х006B = 107. Но это не адрес, а смещение от адреса 40001. Т.е. реальный адрес = 107+ 40001 = 40108.
9-12 30 30 30 33 00 03 Количество регистров, которые нужно прочитать. 0х0003 = 3. Т.е. читать нужно регистры 40108– 40110.
13 – 14 37 45 7E LRC запроса
15 CR 0D Символ перевода каретки
16 LF 0A Символ новой строки

Статья посвящена промышленному протоколу ModBus — наиболее простому, а потому широко распространённому цифровому протоколу передачи данных.

Стандарт ModBus был изобретён ещё в 1979 году компанией Modicon (ныне Schneider Electric) и с того времени не утратил своей актуальности, а даже наоборот получил широкое распространение и большую популярность среди разработчиков АСУ ТП.

Преимущества и недостатки протокола ModBus

Преимущества:

  • прост в реализации
  • отсутствует необходимость установки специальных микросхем для реализации протокола при разработке контроллеров и устройств
  • простота диагностики и отладки
  • поддерживается большинством устройств, применяемых при построении АСУ ТП
  • высокая надёжность и достоверность при передаче данных

Недостатки:

  • ModBus сеть построена по принципу «ведущий-ведомый», где ведущее устройство может быть только одно. Поэтому обмен данными происходит только по инициативе ведущего устройства (оно по очереди опрашивает все ведомые). Если ведомому устройству нужно срочно передать данные, оно не может этого сделать, пока его не опросит «ведущий».

Общие сведения о ModBus сети

ModBus сеть объединяет одно ведущее (мастер) и несколько ведомых (слейвов). Обмен данными в сети происходит по инициативе мастера. Он может отправить запрос одному из подчинённых устройств или широковещательное сообщение сразу всем ведомым устройствам сети.

После отправки запроса мастер ожидает ответ в течение заданного времени («время таймаута»). Если в течение этого времени ответ не получен, мастер считает, что связь с ведомым отсутствует. На широковещательное сообщение ответ не предусмотрен.

Слейвы (ведомые устройства) не могут самостоятельно инициировать передачу данных. Они могут передать данные только после запроса мастера (и только те данные, которые мастер запросит).

Существует три разновидности протокола:

  • ModBus ASCII — разновидность протокола, в которой сообщения кодируются с помощью ASCII-символов. Сообщения разделяются символами «:» и CR/LF. Не очень удобен, в России используется крайне редко.
  • ModBus RTU — разновидность протокола, в которой сообщения кодируются «как есть» (числами). Между собой сообщения разделяются временной паузой в 3,5 символа при заданной скорости передачи.
  • ModBus TCP — разновидность протокола для работы поверх TCP/IP стека, требуется при соединении устройств по Ethernet.

Физический уровень протокола ModBus

Для передачи ModBus сообщений используется последовательные асинхронные интерфейсы (RS232, RS485, RS422) в случае использования протоколов ASCII и RTU и Ethernet интерфейс для протокола ModBus TCP.

Использование стандартных интерфейсов делает ModBus удобным для пользователей и разработчиков.

Типы данных ModBus

Любой узел сети ModBus — это интеллектуальное устройство (контроллер, регулятор, датчик и др.). Согласно спецификации узел сети может иметь следующие структуры данных:

  • Discrete Inputs — состояния дискретных входов устройства, их можно только прочитать. Однобитовый тип данных.
  • Coils — состояния дискретных выходов устройства, их можно прочитать и изменить (записать новое состояние). Однобитовый тип.
  • Input Registers — 16-битные регистры, доступные только для чтения.
  • Holding Registers — 16-битные регистры свободного назначения, доступны для чтения и записи.

Указанные типы данных необязательны для всех устройств, поддерживающих ModBus. Например, Discrete Inputs и Coils характерны больше для .

Производитель устройства сам решает, какой тип данных сделать доступным для чтения и записи по ModBus, и об этом написано в руководстве устройства. В большинстве случае пользуются типом Holding Registers, поскольку он самый универсальный.

Структура обмена данными по ModBus

Как уже было сказано, обмен данными по ModBus состоит из запросов и ответов. Ведущее устройство посылает запрос одному из подчинённых устройств, указывая в запросе его адрес, или всем устройствам сразу, указывая адрес 0.

Рис. Структура ModBus-пакета

Типовой запрос или ответ состоит из следующих блоков:

  • адрес подчинённого устройства
  • номер функции — определяет тип запрашиваемых данных и что с ними нужно сделать (прочитать/записать)
  • данные — содержит параметры функции («куда», «сколько» и «какие» данные записывать или читать)
  • блок контроля подлинности — содержит контрольную сумму для проверки целостности полученных данных.

Состав данных блоков отличается для RTU и TCP реализаций ModBus. Далее мы подробно рассотрим каждый из них.

ModBus ASCII мы не будем подробно рассматривать, поскольку он используется крайне редко. Состав пакета в ModBus ASCII такой же как и ModBus RTU, и отличается только типом кодирования и способом разделения пакетов.

Номер функции определяет тип запрашиваемых данных и что с ними нужно сделать (прочитать/записать).

Функций ModBus достаточно много и они разделены на три категории:

  • стандартные — функции, описанные в стандарте протокола. Среди них много устаревших и неиспользуемых.
  • пользовательские — диапазон номеров функций (с 65 по 72 и с 100 по 110), которые может использовать любой производитель устройств для реализации своих специфичных функций. При этом вполне возможно, что у устройств различных производителей под одинаковыми номерами будут разные по смыслу функции.
  • зарезервированные — функции, не описанные в базовом стандарте, но реализованные в устройствах различных производителей. При этом гарантируется, что данные производители зарезервировали эти номера для себя и другие производители не могут ими воспользоваться.

Однако, это всё лирика… На практике в большинстве случаев используются всего несколько функций, мы подробно поговорим о них в , а в этой будем рассматривать всё на примере функции Read Holding Registers (чтение регистров общего назначения).

Функция Read Holding Registers (0x03)

Функция под номером 3 — одна из самых употребимых функций, предназначена для чтения регистров общего назначения устройства.

В запросе указывается количество регистров, которые нужно прочитать и адрес первого из них.

Ответ содержит количество байт (количество регистров умноженное на 2) и значения запрошенных регистров.


Рис. Запрос от мастера

Рис. Ответ слейва

Количество байт в ответе помогает ведущему устройству по мере получения данных понять, когда все данные уже получены. То есть если мастер получил третий байт с числом 200 — это означает, что ему осталось получить еще 100 байт + 2 байта контроля целостности. Это позволит ему посчитать количество пришедших байт и закончить приём, не дожидаясь, когда закончится время таймаута, отведённое слейву на ответ.

Вместо нормального ответа, содержащего запрошенные данные, подчинённое устройство может ответить ошибкой. При этом к номеру функции в ответе добавляется код 0х80 в шестнадцатеричной системе исчисления.

Обратимся к предыдущему примеру. Там подчинённое устройство ответило без ошибки и второй байт в ответе был 0х03. Если бы ответ содержал код ошибки, то к номеру функции подчинённое устройство добавило бы 0х80 и получилось бы 0х83. Вот так:

Рис. Ответ слейва с признаком ошибки

В этом примере код ошибки 02 — это один из стандартных кодов. Вот какие они бывают:

01 — функция не поддерживается. Это значит, что, возможно, функция не стандартная или просто не реализована конкретно в этом устройстве.

02 — запрошенная область памяти не доступна. Каждое устройство содержит определённое количество данных определённого типа. Например, в устройстве доступно 100 регистров общего назначения. Если при этом запросить чтение 101 регистров — возникнет ошибка 02.

03 — функция не поддержит запрошенное количество данных. Например, функция №3 «Read Holding Registers» позволяет читать от 1 до 2000 регистров общего назначения. Поэтому, даже если в подчинённом устройстве доступно для чтения 10 000 регистров, при запросе более 2000 с помощью функции №3 — возникнет эта ошибка.

04 — функция выполнена с ошибкой. Такой код ошибки будет возвращён, если есть какое-то иное препятствие для нормального выполнения команды, не охваченное тремя предыдущими кодами ошибки. Проще говоря, это такая заглушка «на всякий случай», если что-то пошло не так, но в протоколе специального кода для такой ошибки не предусмотрено.

Нужно помнить, что существуют не только стандартные функции, но ещё и пользовательские и зарезервированные. Поэтому, производители устройств, которые дополнили протокол своими функциями, возможно заложили туда другие коды ошибок. Но это всё очень большая экзотика…

ModBus RTU

Как уже говорилось, в протоколе ModBus RTU данные передаются в виде сообщений, разделённых между собой временными паузами длиной в 3,5 символа при заданной скорости передачи.

В сообщении обязательно указывается адрес получателя (или 0, если сообщение широковещательное) и номер функции.Номер функции определяет какие данные содержит сообщение и как их интерпретировать.

За номером функции идут данные. Регистры данных в ModBus 32-битные, а передаются ввиде двух 16-битных сло. Сначала идёт старший байт, затем младший.

Пример. Допустим, мы хотим прочитать из удалённого модуля сбора данных 2 регистра, начиная с первого. Адрес удалённого модуля в сети ModBus «4». Для этого воспользуемся функцией №3 Read Holding Registers.


Рис. Запрос на чтение 2-х регистров, начиная с 1-го

Рис. Ответ от слейва на запрос

В ответе подчинённое устройство повторяет свой адрес и номер функции, далее следует количество полезных байт в ответе. Каждый регистр состоит из двух байт (сначала идёт старший, затем младший). Значение запрошенных регистров оказались равны 11 и 22 в десятичной системе исчисления (0B и 16 в шестнадцатеричной соответственно).

О том, как использовать другие ModBus функции мы выпустим отдельную статью.

Контроль целостности пакета в ModBus RTU (CRC-16)

В предыдущем примере за байтами данных идут два байта проверки целостности пакета. Они являются результатом вычисления кода CRC-16 для всего сообщения.

Мастер, передавая запрос, вычисляет CRC-код и добавляет его в конец сообщения. Слейв, получив сообщение, проверяет сообщение на целостность согласно алгоритму CRC-16. Затем подчинённое устройство составляет ответ, точно так же вычисляет для него CRC и добавляет в конец пакета.

Подробно рассматривать алгоритм CRC-16 мы не будем, т.к. мы стараемся быть ближе к практике… А на практике программисту практически никогда не приходится писать блок вычисления CRC — в любой среде программирования можно найти соответствующую функцию или функциональный блок.

Заключение

В данной статье мы рассмотрели общую структуру протокола ModBus и его классическую разновидность ModBus RTU. Вообще говоря, ModBus RTU — это и есть «истинный Modbus» (если отбросить ModBus ASCII, который уже устарел).

В мы поговорим о разновидности протокола ModBus TCP, который является «притягиванием за уши» классического ModBus с целью использования его в Ethernet-сетях, что, конечно же, накладывает определённые ограничения. Но об этом в следующей статье. Следите за обновлениями на LAZY SMART .

Интерфейс RS-48


Стандарт ANSI TIA/EIA-485, более известный как RS485, определяет сбалансированный способ надёжной передачи данных на длинные расстояния в условиях промышленных помех. Также стандарт определяет топологию сети и описывает способы согласования полного сопротивления линии интерфейса и предоставляет результаты лабораторных тестов.

Физически, интерфейс RS485 является дифференциальным, обеспечивает многоточечные соединения и позволяет передавать и принимать данные в обоих направлениях.

Упрощённо, сеть интерфейса RS485 представляет собой приемопередатчики, соединенные при помощи витой пары - двух скрученных проводов (см. рис. 2.1).


Типовая разница напряжений между линиями A и B передатчика равна 3В, минимальная 1.5В, максимальная 5В.

Разница напряжений между линиями A и B на приёмнике должна быть не менее 0.2В и абсолютная разница потенциалов относительно общего провода должно быть в диапазоне (-7…+12)В.

Таким образом, между двумя проводами витой пары всегда есть разность потенциалов. Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Максимальная скорость связи прибора по интерфейсу RS485 может достигать нескольких Мбод. Максимальное расстояние - 1200 метров. Если необходимо организовать связь на расстоянии больше чем 1200 метров или подключить больше устройств, чем допускает нагрузочная способность передатчика - применяют специальные повторители (репитеры). Типовое правило для расчёта максимальной длины линии связи таково: произведение скорости передачи в бодах на длину в метрах должно дать результат не более чем 108.

При значительных расстояниях между устройствами, связанными по витой паре или высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. Электромагнитный сигнал имеет свойство отражаться от открытых концов линии передачи и ее ответвлений. Фронт сигнала, отразившийся от конца линии, может исказить текущий или следующий сигнал. В таких случаях нужно подавлять эффект отражения.

Существуют стандартные решения этой проблемы (R, RC - терминаторы). У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля и не зависит от его длины. Для обычно применяемых в линиях связи витых пар волновое сопротивление Zв составляет (90-120) Ом. Рассмотрим варианты:

  1. Если на удаленном конце линии, между проводниками витой пары включить резистор с номинальным омическим сопротивлением равным волновому сопротивлению линии, то электромагнитная волна, дошедшая до ≪тупика≫ поглощается на таком резисторе. Отсюда его названия - согласующий резистор или ≪терминатор≫ . Помимо достоинств этого метода (повышение скорости, увеличение длины и подавление отражений), есть и недостатки (дополнительная нагрузка на драйверы повышает энергопотребление, остальные ответвления линии продолжают вносить искажения, драйвер приёмника находится в неоднозначном состоянии: либо режим ожидания, либо режим приёма).
  2. Если на удалённом конце вместо резистора установить RC цепочку R=(90-120) Ом, С=1000 пФ, то можно устранить проблему повышенного энергопотребления и проблему неопределённости драйвера приёмника (для приёмников с функциями open-line и failsafe). Но из-за постоянной времени RC цепи, максимальная скорость передачи и длинна линии будут меньшими.

Эффект отражения и необходимость правильного согласования накладывают ограничения на конфигурацию линии связи (топология сети). Линия связи должна представлять собой один кабель витой пары. К этому кабелю присоединяются все приемники и передатчики (гирлянда). Расстояние от линии до микросхем интерфейса RS485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения. В оба наиболее удаленных конца кабеля включают терминаторы. Калибр витой пары достаточно не более AWG24.


Следует также сказать, что к линии интерфейса все устройства подключаются через специализированные микросхемы (драйверы интерфейса RS485). Они могут быть разных производителей и с различными техническими параметрами и как следствие различной стоимости. Эти драйверы в значительной степени могут определять эксплуатационные свойства приборов: дальность передачи, количество приборов в одном участке сети и надёжность передачи.


Протокол MODBUS


MODBUS - это протокол уровня приложений (уровень 7 модели OSI), что обеспечивает связь между устройствами, соединёнными различными каналами связи и сетями.

Де-факто, MODBUS является стандартом в сетях промышленного назначения с 1979 года. Он обеспечивает связь миллионам устройств во всём мире, в том числе и через Интернет. Есть различные реализации протокола:

  • Для асинхронных беспроводных, оптических и проводных каналов связи (RS-232, RS-485, RS-422)
  • Для TCP/IP (порт 502) через интернет
  • MODBUS-PLUS - для высокоскоростных сетей с передачей меток (high speed token passing network)

Кроме того, разнородные участки сетей могут объединяться шлюзами (специальными конверторами).

Для асинхронных последовательных каналов связи существует две реализации MODBUS-SERIAL-LINE протокола МODBUS-RTU и MODBUS-ASCII (уровень 1 и 2 модели OSI). Разница между ними заключается в способе кодировки данных, способе синхронизации фреймов, и алгоритме обеспечения целостности данных. В нашем случае, в сети RS485 обмен данными реализован посредством протокола MODBUS-RTU. Далее по тексту будем рассматривать ситуацию только в этом аспекте.

MODBUS-SERIAL-LINE протокол - это протокол типа MASTER-SLAVE (протокол запросов-ответов). Ведущий в сети (MASTER) всегда один. Каждый подчинённый (SLAVE) должен иметь уникальный номер 1-247. Адрес 0 - это широковещательный запрос, адресованный сразу всем подчинённым. Таким образом, логически в одном участке сети может быть до 248 устройств (включая MASTER). Каждый запрос содержит код функции. Под MODBUS функциями понимают определённые сервисы предоставляемые подчинёнными ведущему. Таким образом, роль клиента играет MASTER, а роль сервера, с определённым набором функций-сервисов, SLAVE.


Функции протокола MODBUS


Каждый SLAVE может содержать уникальный набор функций-сервисов, но есть и ряд стандартных функций, которые подробно описаны в документе (www.modbus.org ). Также полезная информация может быть найдена в документе “MODBUS over serial line specification and implementation guide” (www.modbus.org ).

Поддерживаемые нами функции (см. табл. 4.1 - 4.2).



В более ранних версиях приборов (до 2010г) были реализованы лишь пользовательские функции, но со временем стало понятно, что для обеспечения совместного использования приборов с ПЛК (минуя ПК) необходимы и стандартные функции.

Будьте внимательны и обратите внимание на то, что стандартные функции оперируют только со словами (16-бит) и в формате big-endian, но при этом формат контрольной суммы CRC16 little-endian! Поэтому, для исключения разночтений в описании протокола MODBUS, в части порядка следования байт контрольной суммы CRC16, стоит пользоваться нехитрым правилом: правильно посчитанная контрольная сумма неповреждённого пакета (с участием 2-ух последних байт CRC16) всегда равна нулю.

Правильный запрос: CRC16 (1 104 0 0 8 0 103 195) = 0

Неверный запрос: CRC16 (1 104 0 0 8 0 195 103) <> 0

Стандартные функции (см. таб. 4.1) подробно описаны в документе “MODBUS Application Protocol Specification” (www.modbus.org ).






Функция 108 «Служебные команды» имеет следующие коды подфункций (см. таб. 4.8).
Подфункции, возвращающие какие-либо данные, имеют префикс GET. Подфункции, не возвращающие данных, не содержат поля данных и, при удачном выполнении, возвращаются эхом.


Подфункции 1 и 2, возвращающие номер тома всегда возвращают 4-х байтное значение типа DWORD.

Подфункции 3 и 4, возвращающие номера страниц могут возвращать как 2-х байтные (WORD), так и 4-х байтные (DWORD) значения, в зависимости от модели прибора.


Карты распределения памяти приборов


В следующих таблицах представлены карты распределения памяти приборов. Следует отметить тот факт, что в стандартных MODBUS функциях размеры типов данных могут отличаться от типов данных пользовательских функций (в большую сторону) в случае, если размер типа данных не кратен типу WORD (2 байта).

Порядок следования байт указан в столбце Order. Обозначение BE соответствует порядку big endian, а LE - little endian.

Операции, доступные для данной переменной, указываются в последнем столбце rw (read-write). R - разрешается только чтение, W - разрешается только запись, RW - разрешается, как чтение, так и запись.

Массивы обозначены словом array, а количество элементов массив указано в квадратных скобках [n].






Однофазный прибор OMIX измеряет 7 параметров качества электроэнергии, в массивах памяти (array) они расположены в следующем порядке -напряжение, -ток, - частота, - полная мощность, - активная мощность, - реактивная мощность, - cos(Φ).







Использованные источники информации
  • Electrical Characteristics of Balanced Voltage Digital Interface Circuits, ANSI/TIA/EIA-422-B-1994, Telecommunications Industry Association, 1994
  • Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems, ANSI/TIA/EIA-485-A-1998, Telecommunications Industry Association, 1998
  • Application Guidelines for TIA/EIA-485-A, TIA/EIA Telecommunications Systems Bulletin, Telecommunications Industry Association, 1998
  • A Comparison of Differential Termination Techniques, Joe Vo, National Semiconductor, Application Note AN-903
  • Data Transmission Design Seminar Reference Manual, 1998, Texas Instruments, literature number SLLE01
  • Data Transmission Line Circuits Data Book, 1998, Texas Instruments, literature number SLLD001
  • MODBUS Application Protocol Specification
  • MODBUS over serial line specification and implementation guide

ООО «Автоматика» 2012

Modbus -коммуникационный протокол, основан на архитектуре ведущий-ведомый (master-slave). Использует для передачи данных интерфейсы RS-485, RS-422, RS-232, а также Ethernet сети TCP/IP (протокол Modbus TCP).

Сообщение Modbus RTU состоит из адреса устройства SlaveID, кода функции, специальных данных в зависимости от кода функции и CRC контрольной суммы.

Если отбросить SlaveID адрес и CRC контрольную сумму, то получится PDU, Protocol Data Unit.

SlaveID – это адрес устройства, может принимать значение от 0 до 247, адреса с 248 до 255 зарезервированы.

Данные в модуле хранятся в 4 таблицах.

Две таблицы доступны только для чтения и две для чтения-записи.

В каждой таблице помещается 9999 значений.

Номер регистра Адрес регистра HEX Тип Название Тип
1-9999 0000 до 270E Чтение-запись Discrete Output Coils DO
10001-19999 0000 до 270E Чтение Discrete Input Contacts DI
30001-39999 0000 до 270E Чтение Analog Input Registers AI
40001-49999 0000 до 270E Чтение-запись Analog Output Holding Registers AO

В сообщении Modbus используется адрес регистра.

Например, первый регистр AO Holding Register, имеет номер 40001, но его адрес равен 0000.

Разница между этими двумя величинами есть смещение offset.

Каждая таблица имеет свое смещение, соответственно: 1, 10001, 30001 и 40001.

Ниже приведен пример запроса Modbus RTU для получения значения AO аналогового выхода (holding registers) из регистров от #40108 до 40110 с адресом устройства 17.

11 03 006B 0003 7687

В ответе от Modbus RTU Slave устройства мы получим:

11 03 06 AE41 5652 4340 49AD

11 Адрес устройства (17 = 11 hex) SlaveID
03 Функциональный код Function Code
06 Количество байт далее (6 байтов идут следом) Byte Count
AE (AE hex) Register value Hi (AO0)
41 (41 hex) Register value Lo (AO0)
56 Значение старшего разряда регистра (56 hex) Register value Hi (AO1)
52 Значение младшего разряда регистра (52 hex) Register value Lo (AO1)
43 Значение старшего разряда регистра (43 hex) Register value Hi (AO2)
40 Значение младшего разряда регистра (40 hex) Register value Lo (AO2)
49 Контрольная сумма CRC value Lo
AD Контрольная сумма CRC value Hi

Регистр аналогового выхода AO0 имеет значение AE 41 HEX или 44609 в десятичной системе.

Регистр аналогового выхода AO1 имеет значение 56 52 HEX или 22098 в десятичной системе.

Регистр аналогового выхода AO2 имеет значение 43 40 HEX или 17216 в десятичной системе.

Значение AE 41 HEX - это 16 бит 1010 1110 0100 0001, может принимать различное значение, в зависимости от типа представления.

Значение регистра 40108 при комбинации с регистром 40109 дает 32 бит значение.

Пример представления.

Тип представления Диапазон значений Пример в HEX Будет в десятичной форме
16-bit unsigned integer 0 до 65535 AE41 44,609
16-bit signed integer -32768 до 32767 AE41 -20,927
two character ASCII string 2 знака AE41 ® A
discrete on/off value 0 и 1 0001 0001
32-bit unsigned integer 0 до 4,294,967,295 AE41 5652 2,923,517,522
32-bit signed integer -2,147,483,648 до 2,147,483,647 AE41 5652 -1,371,449,774
32-bit single precision IEEE floating point number 1,2·10−38 до 3,4×10+38 AE41 5652 -4.395978 E-11
four character ASCII string 4 знака AE41 5652 ® A V R

Какие бывают команды Modbus RTU?

Приведем таблицу с кодами функций чтения и записи регистров Modbus RTU.

Код функции Что делает функция Тип значения Тип доступа
01 (0x01) Чтение DO Read Coil Status Дискретное Чтение
02 (0x02) Чтение DI Read Input Status Дискретное Чтение
03 (0x03) Чтение AO Read Holding Registers 16 битное Чтение
04 (0x04) Чтение AI Read Input Registers 16 битное Чтение
05 (0x05) Запись одного DO Force Single Coil Дискретное Запись
06 (0x06) Запись одного AO Preset Single Register 16 битное Запись
15 (0x0F) Запись нескольких DO Force Multiple Coils Дискретное Запись
16 (0x10) Запись нескольких AO Preset Multiple Registers 16 битное Запись

Как послать команду Modbus RTU на чтение дискретного вывода? Команда 0x01

Эта команда используется для чтения значений дискретных выходов DO.

В запросе PDU задается начальный адрес первого регистра DO и последующее количество необходимых значений DO. В PDU значения DO адресуются, начиная с нуля.

Значения DO в ответе находятся в одном байте и соответствуют значению битов.

Значения битов определяются как 1 = ON и 0 = OFF.

Младший бит первого байта данных содержит значение DO адрес которого указывался в запросе. Остальные значения DO следуют по нарастающей к старшему значению байта. Т.е. справа на лево.

Если запрашивалось меньше восьми значений DO, то оставшиеся биты в ответе будут заполнены нулями (в направлении от младшего к старшему байту). Поле Byte Count Количество байт далее указывает количество полных байтов данных в ответе.

Пример запроса DO с 20 по 56 для SlaveID адреса устройства 17. Адрес первого регистра будет 0013 hex = 19, т.к. счет ведется с 0 адреса (0014 hex = 20, -1 смещение нуля = получаем 0013 hex = 19).

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
01 Функциональный код 01 Функциональный код
00 05 Количество байт далее
13 CD Значение регистра DO 27-20 (1100 1101)
00 Количество регистров Hi байт 6B Значение регистра DO 35-28 (0110 1011)
25 Количество регистров Lo байт B2 Значение регистра DO 43-36 (1011 0010)
0E Контрольная сумма CRC 0E Значение регистра DO 51-44 (0000 1110)
84 Контрольная сумма CRC 1B Значение регистра DO 56-52 (0001 1011)
45 Контрольная сумма CRC
E6 Контрольная сумма CRC

Состояния выходов DO 27-20 показаны как значения байта CD hex, или в двоичной системе 1100 1101.

В регистре DO 56-52 5 битов справа были запрошены, а остальные биты заполнены нулями до полного байта (000 1 1011).

Модули с дискретным выводом: M-7065 , ioLogik R1214 , ADAM-4056S

Как послать команду Modbus RTU на чтение дискретного ввода? Команда 0x02

Эта команда используется для чтения значений дискретных входов DI.

Пример запроса DI с регистров от #10197 до 10218 для SlaveID адреса устройства 17. Адрес первого регистра будет 00C4 hex = 196, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
02 Функциональный код 02 Функциональный код
00 Адрес первого регистра Hi байт 03 Количество байт далее
C4 Адрес первого регистра Lo байт AC Значение регистра DI 10204-10197 (1010 1100)
00 Количество регистров Hi байт DB Значение регистра DI 10212-10205 (1101 1011)
16 Количество регистров Lo байт 35 Значение регистра DI 10218-10213 (0011 0101)
BA Контрольная сумма CRC 20 Контрольная сумма CRC
A9 Контрольная сумма CRC 18 Контрольная сумма CRC

Модули с дискретным вводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на чтение аналогового вывода? Команда 0x03

Эта команда используется для чтения значений аналоговых выходов AO.

Пример запроса AO с регистров от #40108 до 40110 для SlaveID адреса устройства 17. Адрес первого регистра будет 006B hex = 107, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
03 Функциональный код 03 Функциональный код
00 Адрес первого регистра Hi байт 06 Количество байт далее
6B Адрес первого регистра Lo байт AE Значение регистра Hi #40108
00 Количество регистров Hi байт 41 Значение регистра Lo #40108
03 Количество регистров Lo байт 56 Значение регистра Hi #40109
76 Контрольная сумма CRC 52 Значение регистра Lo #40109
87 Контрольная сумма CRC 43 Значение регистра Hi #40110
40 Значение регистра Lo #40110
49 Контрольная сумма CRC
AD Контрольная сумма CRC

Модули с аналоговым выводом: M-7024 , ioLogik R1241 , ADAM-4024

Как послать команду Modbus RTU на чтение аналогового ввода? Команда 0x04

Эта команда используется для чтения значений аналоговых входов AI.

Пример запроса AI с регистра #30009 для SlaveID адреса устройства 17. Адрес первого регистра будет 0008 hex = 8, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
04 Функциональный код 04 Функциональный код
00 Адрес первого регистра Hi байт 02 Количество байт далее
08 Адрес первого регистра Lo байт 00 Значение регистра Hi #30009
00 Количество регистров Hi байт 0A Значение регистра Lo #30009
01 Количество регистров Lo байт F8 Контрольная сумма CRC
B2 Контрольная сумма CRC F4 Контрольная сумма CRC
98 Контрольная сумма CRC

Модули с аналоговым вводом: M-7017 , ioLogik R1240 , ADAM-4017+

Как послать команду Modbus RTU на запись дискретного вывода? Команда 0x05

Эта команда используется для записи одного значения дискретного выхода DO.

Значение FF 00 hex устанавливает выход в значение включен ON.

Значение 00 00 hex устанавливает выход в значение выключен OFF.

Все остальные значения недопустимы и не будут влиять значение на выходе.

Нормальный ответ на такой запрос - это эхо (повтор запроса в ответе), возвращается после того, как состояние DO было изменено.

Пример записи в DO с регистром #173 для SlaveID адреса устройства 17. Адрес регистра будет 00AC hex = 172, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
05 Функциональный код 05 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
AC Адрес первого регистра Lo байт AC Адрес первого регистра Lo байт
FF Значение Hi байт FF Значение Hi байт
00 Значение Lo байт 00 Значение Lo байт
4E Контрольная сумма CRC 4E Контрольная сумма CRC
8B Контрольная сумма CRC 8B Контрольная сумма CRC

Состояние выхода DO173 поменялось с выключен OFF на включен ON.

Модули с дискретным выводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на запись аналогового вывода? Команда 0x06

Эта команда используется для записи одного значения аналогового выхода AO.

Пример записи в AO с регистром #40002 для SlaveID адреса устройства 17. Адрес первого регистра будет 0001 hex = 1, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
06 Функциональный код 06 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
01 Адрес первого регистра Lo байт 01 Адрес первого регистра Lo байт
00 Значение Hi байт 00 Значение Hi байт
03 Значение Lo байт 03 Значение Lo байт
9A Контрольная сумма CRC 9A Контрольная сумма CRC
9B Контрольная сумма CRC 9B Контрольная сумма CRC

Модули с аналоговым выводом: M-7024 , ioLogik R1241 , ADAM-4024

Как послать команду Modbus RTU на запись нескольких дискретных выводов? Команда 0x0F

Эта команда используется для записи нескольких значений дискретного выхода DO.

Пример записи в несколько DO с регистрами от #20 до #29 для SlaveID адреса устройства 17. Адрес регистра будет 0013 hex = 19, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
0F Функциональный код 0F Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
13 Адрес первого регистра Lo байт 13 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00
0A Количество регистров Lo байт 0A
02 Количество байт далее 26 Контрольная сумма CRC
CD Значение байт DO 27-20 (1100 1101) 99 Контрольная сумма CRC
01 Значение байт DO 29-28 (0000 0001)
BF Контрольная сумма CRC
0B Контрольная сумма CRC

В ответе возвращается количество записанных регистров.

Модули с дискретным выводом: M-7053 , ioLogik R1210 , ADAM-4051

Как послать команду Modbus RTU на запись нескольких аналоговых выводов? Команда 0x10

Эта команда используется для записи нескольких значений аналогового выхода AO.

Пример записи в несколько AO с регистрами #40002 и #40003 для SlaveID адреса устройства 17. Адрес первого регистра будет 0001 hex = 1, т.к. счет ведется с 0 адреса.

Байт Запрос Байт Ответ
(Hex) Название поля (Hex) Название поля
11 Адрес устройства 11 Адрес устройства
10 Функциональный код 10 Функциональный код
00 Адрес первого регистра Hi байт 00 Адрес первого регистра Hi байт
01 Адрес первого регистра Lo байт 01 Адрес первого регистра Lo байт
00 Количество регистров Hi байт 00 Кол-во записанных рег. Hi байт
02 Количество регистров Lo байт 02 Кол-во записанных рег. Lo байт
04 Количество байт далее 12 Контрольная сумма CRC
00 Значение Hi 40002 98 Контрольная сумма CRC
0A Значение Lo 40002
01 Значение Hi 40003
02 Значение Lo 40003
C6 Контрольная сумма CRC
F0 Контрольная сумма CRC

Протокол ModBus, несмотря на множество специализированных протоколов, появившихся в последние десятилетия, все еще занимает лидирующие позиции в задачах автоматизации и диспетчеризации зданий и технологических процессов. Многие специалисты уже привыкли к его использованию, несмотря на его явную архаичность. Тем не менее, судя по статистике поисковых запросов и популярности статей о ModBus, явно существует пласт специалистов, надеюсь, что это молодое поколение, для которых будет полезно, еще раз на пальцах объяснить, что такое ModBus.

В российской википедии существует довольно обширная , в которой рассказывается история протокола, его основные достоинства и недостатки, терминология, модель данных и функционал. Не претендуя на полноту изложения, но в то же время, не боясь повториться, рассмотрим некоторые базовые вещи для тех, кому надо всего-то «два байта переслать».

Прежде всего, как представлены данные в устройстве поддерживающем ModBus. Это четыре таблицы с данными:

Таблица Тип элемента Тип доступа
Дискретные входы (Discrete Inputs) один бит только чтение
Регистры флагов (Coils) один бит чтение и запись
Регистры ввода (Input Registers) 16-битное слово только чтение
Регистры хранения (Holding Registers) 16-битное слово чтение и запись

В реальной практике чаще всего встречаются устройства, в которых есть только таблица Holding Registers, иногда объединённая с таблицей Input Registers.

Для доступа к этим таблицам существует ряд стандартный функций ModBus:

  • 1 (0x01) - чтение значений из нескольких регистров флагов (Read Coil Status).
  • 2 (0x02) - чтение значений из нескольких дискретных входов (Read Discrete Inputs).
  • 3 (0x03) - чтение значений из нескольких регистров хранения (Read Holding Registers).
  • 4 (0x04) - чтение значений из нескольких регистров ввода (Read Input Registers).

Запись одного значения:

  • 5 (0x05) - запись значения одного флага (Force Single Coil).
  • 6 (0x06) - запись значения в один регистр хранения (Preset Single Register).

Запись нескольких значений:

  • 15 (0x0F) - запись значений в несколько регистров флагов (Force Multiple Coils)
  • 16 (0x10) - запись значений в несколько регистров хранения (Preset Multiple Registers)

Из сказанного выше следует, что самые часто используемые функции ModBus это 3, 6 и 16 («Read Holding Registers», «Preset Single Register» и «Preset Multiple Registers» — соответственно).

Что происходит при чтении или записи регистра в ModBus устройство? Рассмотрим, для начала, протокол ModBus RTU. Он применяется для передачи данных по последовательным интерфейсам, таким как RS-232 или RS-485. Большинство современных устройств используют RS-485, так как он, во первых, как правило, двух проводной и во вторых, позволяет подключить несколько устройств в один шлейф.

Важно то, что при подобной топологии на одном шлейфе может быть только один ModBus Master, то есть устройства не могут свободно «общаться» между собой. На каждом шлейфе организуется четкая иерархия Master – Slave («Ведущий» – «Ведомый»). Ведомых, как уже было сказано, может быть несколько, а ведущий только один!

Адресная модель ModBus позволяет использовать адреса устройств с 1 по 247, что иногда вводит в заблуждение некоторых «проектологов», т.к. RS-485 позволяет подключить к одной шине, без усилителей и репитеров, только 32 устройства. На самом деле я рекомендую для стабильной работы, с приемлемым количеством повторных запросов, не превышать значение 20 устройств на одну шину RS-485.

Итак, для чтения одного Holding Register ведущий посылает запрос на адрес ведомого устройства с кодом функции 3 (Read Holding Registers), указанием адреса интересующего регистра и количеством регистров для чтения, в данном случае = 1. На что ведомый отвечает пакетом, в котором повторяет собственный адрес, номер обрабатываемой функции и, в поле данных размещает значение запрашиваемого регистра. Для чтения нескольких последовательных регистров в запросе ведущий просто указывает адрес первого и их количество.

В общем виде, работу функции 3 (Read Holding Registers) протокола ModBus можно представить так:

Теперь рассмотрим, чем отличается ModBus TCP от ModBus RTU. Во первых, нет ограничения на одного ведущего в сети, все устройства могут практически свободно «общаться» между собой. Во вторых используется другой формат пакета, добавился заголовок, что более типично для данной среды передачи.

Так как транспортом для передачи служит протокол TCP, то для адресации устройств ведущему необходимо знать IP адрес ведомого устройства и порт, на котором ведомый ожидает запросов. Стандартный порт для ModBus TCP протокола 502 , но некоторые среды программирования контроллеров, например CODESYS, позволяют его изменить. Тот же самый CODESYS, а точнее контроллеры, запрограммированные в этой среде или средах производных от CODESYS, при работе по протоколу ModBus TCP игнорируют поле «Unit ID» и отвечают на запросы для любого «Unit ID», а не выдают сообщение об ошибке. Это значит, что иногда, достаточно знать IP адрес и порт контроллера.

Довольно часто сталкиваюсь с непониманием модели OSI среди инженеров и проектировщиков АСУ ТП и АСУЗ. Поэтому вот еще одна картинка, разъясняющая то, как пакет ModBus TCP передается по Ethernet сети:

UPD (26.09.2016): Довольно неплохое русскоязычное видео на тему:



Просмотров