Программирование авр микроконтроллеров. Основы языка си для микроконтроллеров avr. Программирование Atmega8 для начинающих на примере

Микроконтроллеры (далее МК) прочно вошли в нашу жизнь, на просторах интернета можно встретить очень много интересных схем, которые исполнены на МК. Чего только нельзя собрать на МК: различные индикаторы, вольтметры, приборы для дома (устройства защиты, коммутации, термометры…), металлоискатели, разные игрушки, роботы и т.д. перечислять можно очень долго. Первую схему на микроконтроллере я увидел лет 5-6 назад в журнале радио, и практически сразу же перелистнул страницу, подумав про себя "все равно не смогу собрать". Действительно, в то время МК для меня были чем то очень сложным и непонятым устройством, я не представлял как они работают, как их прошивать, и что делать с ними в случае неправильной прошивки. Но около года назад, я впервые собрал свою первую схему на МК, это была схема цифрового вольтметра на 7 сегментных индикаторах, и микроконтроллере ATmega8. Так получилось, что микроконтроллер я купил случайно, когда стоял в отделе радиодеталей, парень передо мной покупал МК, и я тоже решил купить, и попробовать собрать что-нибудь. В своих статьях я расскажу вам про микроконтроллеры AVR , научу вас работать с ними, рассмотрим программы для прошивки, изготовим простой и надежный программатор, рассмотрим процесс прошивки и самое главное проблемы, которые могут возникнуть и не только у новичков.

Основные параметры некоторых микроконтроллеров семейства AVR:

Микроконтроллер

Память FLASH

Память ОЗУ

Память EEPROM

Порты ввода/вывода

U питания

Дополнительные параметры МК AVR mega:

Рабочая температура: -55…+125*С
Температура хранения: -65…+150*С
Напряжение на выводе RESET относительно GND: max 13В
Максимальное напряжение питания: 6.0В
Максимальный ток линии ввода/вывода: 40мА
Максимальный ток по линии питания VCC и GND: 200мА

Расположение выводов моделей ATmega 8X

Расположение выводов моделей ATmega48x, 88x, 168x

Расположение выводов у моделей ATmega8515x

Расположение выводов у моделей ATmega8535x

Расположение выводов у моделей ATmega16, 32x

Расположение выводов у моделей ATtiny2313

В конце статьи прикреплён архив с даташитами на некоторые микроконтроллеры

Установочные FUSE биты MK AVR

Запомните, запрограммированный фьюз – это 0, не запрограммированный – 1. Осторожно стоит относиться к выставлению фьюзов, ошибочно запрограммированный фьюз может заблокировать микроконтроллер. Если вы не уверены какой именно фьюз нужно запрограммировать, лучше на первый раз прошейте МК без фьюзов.

Самыми популярными микроконтроллерами у радиолюбителей являются ATmega8, затем идут ATmega48, 16, 32, ATtiny2313 и другие. Микроконтроллеры продаются в TQFP корпусах и DIP, новичкам рекомендую покупать в DIP. Если купите TQFP, будет проблематичнее их прошить, придется купить или и паять плату т.к. у них ножки располагаются очень близко друг от друга. Советую микроконтроллеры в DIP корпусах, ставить на специальные панельки, это удобно и практично, не придется выпаивать МК если приспичит перепрошить, или использовать его для другой конструкции.

Почти все современные МК имеют возможность внутрисхемного программирования ISP, т.е. если ваш микроконтроллер запаян на плату, то для того чтобы сменить прошивку нам не придется выпаивать его с платы.

Для программирования используется 6 выводов:
RESET - Вход МК
VCC - Плюс питания, 3-5В, зависит от МК
GND - Общий провод, минус питания.
MOSI - Вход МК (информационный сигнал в МК)
MISO - Выход МК (информационный сигнал из МК)
SCK - Вход МК (тактовый сигнал в МК)

Иногда еще используют вывода XTAL 1 и XTAL2, на эти вывода цепляется кварц, если МК будет работать от внешнего генератора, в ATmega 64 и 128 вывода MOSI и MISO не применяются для ISP программирования, вместо них вывода MOSI подключают к ножке PE0, a MISO к PE1. При соединении микроконтроллера с программатором, соединяющие провода должны быть как можно короче, а кабель идущий от программатора на порт LPT так-же не должен быть слишком длинным.

В маркировке микроконтроллера могут присутствовать непонятные буквы с цифрами, например Atmega 8L 16PU, 8 16AU, 8A PU и пр. Буква L означает, что МК работает от более низкого напряжения, чем МК без буквы L, обычно это 2.7В. Цифры после дефиса или пробела 16PU или 8AU говорят о внутренней частоте генератора, который есть в МК. Если фьюзы выставлены на работу от внешнего кварца, кварц должен быть установлен на частоту, не превышающей максимальную по даташиту, это 20МГц для ATmega48/88/168, и 16МГц для остальных атмег.

Для программирования AVR-микроконтроллеров существует немало средств разработки, однако, наиболее популярным, несомненно, следует признать пакет AVR Studio . Есть ряд причин такой популярности – это бесплатный пакет, разработанный фирмой ATMEL , он объединяет в себе текстовый редактор, ассемблер и симулятор. Пакет AVR Studio также используется совместно с аппаратными средствами отладки. В предлагаемой статье на примерах рассматриваются приемы работы с пакетом, что поможет начинающим программистам быстрее понять взаимодействие отдельных компонентов AVR Studio.

В следующей части статьи будет рассказано об отладке в среде AVR Studio программ, написанных на языке Си.

Пакет AVR Studio имеет солидную историю развития, что отражается в количестве существующих версий. В конце 2003 г. выпущена версия 4.08, которая имеет ряд полезных дополнений, а в начале 2004 г. вышло обновление (Service Pack 1), добавляющее поддержку AVR-контроллеров третьего поколения семейства ATmega48. Производство микросхем этого семейства намечено на вторую половину 2004 г.

Дистрибутив пакета и Service Pack можно загрузить с сайта www.atmel.com или получить компакт-диск с этим дистрибутивом у российского дистрибьютора фирмы ATMEL.

Работу пакета AVR Studio удобно рассматривать на какой-либо конкретной программе. В качестве илюстрации мы рассмотрим создание проекта для простейшей программы, которая будет по очереди зажигать два светодиода. Для определенности возьмем микросхему Atmega128 и подключим два светодиода в выводам 31 и 32 (это биты 6 и 7 порта D микросхемы ATmega128). AVR-контроллеры имеют мощные выходные каскады, типовой ток каждого вывода составляет 20 мА, максимальный ток вывода – 40 мА, причем это относится как к втекающему, так и к вытекающему току. В нашем примере светодиоды подключены анодами к выводам контроллера, а катоды через гасящие резисторы соединены с землей. Это означает, что светодиод зажигается подачей «1» на соответствующий вывод порта. Принципиальная схема приведена на рисунке. На схеме также показаны две кнопки, которые будут использованы в одной из программ.

Здесь уместно сделать небольшое отступление о выборе типа микросхемы для простейшего примера. Действительно, с первого взгляда может показаться странным, зачем нужен такой мощный кристалл в 64-выводном корпусе там, где хватит и 8-выводной микросхемы ATtiny12 ? Однако, в таком подходе есть логика. Известно, что в основе практически любого AVR-контроллера лежит одинаковое ядро. По большому счету, контроллеры различаются объемом памяти, количеством портов ввода/вывода и набором периферийных модулей. Особенности каждого конкретного контроллера – привязка логических имен регистров ввода/вывода к физическим адресам, адреса векторов прерываний, определения битов портов и т.д. описаны в файлах с расширением.inc, которые входят в состав пакета AVR Studio. Следовательно, используя конкретный тип кристалла, можно отлаживать программу как собственно для него, так и для любого младшего кристалла. Далее, если использовать в качестве отладочного самый старший кристалл, на сегодня это ATmega128, можно отлаживать программу практически для любого AVR-контроллера, надо просто не использовать аппаратные ресурсы, которые отсутствуют у целевого микроконтроллера. Таким образом, например, можно отлаживать на ATmega128 программу, которая будет выполняться на ATtiny13 . При этом исходный код останется практически тем же, изменится лишь имя подключаемого файла с 128def.inc на tn13def.inc. У такого подхода также есть свои преимущества. Например, «лишние» порты ввода/вывода можно использовать для подключения ЖК-индикатора , на который можно выводить отладочную информацию. Или, воспользоваться внутрисхемным эмулятором, который подключается к JTAG-порту микросхемы ATmega128 (контроллер ATtiny13 такой порт не имеет). Таким образом, можно использовать единственную отладочную плату, на которой установлен «старший» AVR-контроллер, для отладки любых вновь разрабатываемых систем, естественно, базирующихся также на AVR-микроконтроллерах. Одна из таких плат называется AS-megaM. Именно она использовалась для создания примеров программ, приводимых в статье. Это универсальный одноплатный контроллер на базе микросхемы ATmega128, который содержит внешнее ОЗУ, два порта RS-232 , порт для подключения ЖК-индикатора, внутрисхемного программатора и эмулятора AT JTAG ICE . На плате также есть место для распайки микросхемы FLASH-ПЗУ серии АТ45 в корпусах TSOP32/40/48 и двухканального ЦАП серии AD5302/ AD5312/ AD5322 . Теперь, после объяснения причин использования AVR-монстра для зажигания пары сватодиодов, можно идти дальше.

При программировании в среде AVR Studio надо выполнить стандартную последовательность действий:

  • компиляция
  • Создание проекта начинается с выбора строки меню Project\New Project. В открывшемся окне “Create new Project” надо указать имя проекта, (в нашем случае – sample1) и имя файла инициализации. После нажатия кнопки “Next” открывается окно “Select debug platform and device”, где выбирается отладочная платформа (симулятор или эмулятор) и тип микроконтроллера.

    Можно выбрать один из предлагаемых внутрисхемных эмуляторов, заметим, что у каждого эмулятора свой список поддерживаемых микросхем. Для рассматриваемого примера мы выбираем в качестве отладочной платформы AVR Simulator и микросхему ATmega128. После нажатия кнопки “Finish” нашему взору предстают собственно рабочие окна пакета AVR Studio, пока пустые. Следует в правое окно поместить исходный текст программы. Это можно сделать двумя способами, либо набрать весь текст непосредственно в окне редактора, либо загрузить уже существующий файл. Ниже приведен полный текст простейшей программы с комментариями.

    ; Пример «Управление светодиодами» ; написан для отладочной платы AS-MegaM ; Частота задающего генератора 7,37 МГц; светодиоды подключены к выводам PD6 и PD7 и через резисторы - на общий провод. ; подключение файла описания ввода-вывода микросхемы ATmega128 .include "m128def.inc" ; начало программы begin: ; первая операция - инициализация стека; если этого не сделать, то вызов подпрограммы или прерывания; не вернет управление обратно; указатель на конец стека устанавливается на последний адрес внутреннего ОЗУ - RAMEND ldi r16,low(RAMEND) out spl,r16 ldi r16,high(RAMEND) out sph,r16 ; для того, чтобы управлять светодиодами, подключенными к выводам PD6 и PD7, ; необходимо объявить эти выводы выходными. ; для этого нужно записать "1" в соответствующие биты регистра DDRD (DataDiRection) ldi r16,(1<<6) | (1<<7) out DDRD,r16 ; основной цикл программы loop: ldi r16,(1<<6) ; светится один светодиод out PORTD,r16 rcall delay ; задержка ldi r16,(1<<7) ; светится второй светодиод out PORTD,r16 rcall delay ; задержка rjmp loop ; повторение цикла; процедура задержки; примерно полсекунды при частоте 7,37 МГц; три пустых вложенных цикла соответственно delay: ldi r16,30 ; 30 delay1: ldi r17,200 ; 200 delay2: ldi r18,200 ; и еще 200 итераций delay3: dec r18 brne delay3 dec r17 brne delay2 dec r16 brne delay1 ret ; возврат в главную программу

    Проект может состоять из нескольких файлов, при этом один файл назначается основным. Все операции удобно производить, используя контекстную кнопку мыши. После подключения исходного файла окна имеют следующий вид.

    Компиляция проекта производится командой \Project\Build или нажатием кнопки F7. Процесс компиляции отображается в окне “Output”. Это окно можно «вытащить» командой \View\Output.

    В принципе, мы уже получили выходной файл в формате.hex, который уже можно загружать в микросхему и наблюдать перемигивание светодиодов. Однако, цель статьи – показать полный цикл работы в среде AVR Studio, поэтому мы переходим к стадии отладки. Это делается командой \Debug\Start Debugging.

    Теперь устанавливаем в окне “Simulator Options” частоту кварца 7,3728 МГц для точного измерения времени выполнения программы.

    Остальные опции следует оставить без изменения. Теперь можно выполнять программу в пошаговом режиме при помощи мыши или кнопки F11.

    Пакет AVR Studio содержит мощные средства для просмотра и редактирования состояния внутренних регистров и портов ввода/вывода отлаживаемого микроконтроллера, а также время, выполнения программы. Доступ к ним осуществляется через окно “I/O”.

    На самом деле, количество информации, доступное через окна просмотра пакета AVR Studio настолько велико, что для получения максимального комфорта нужно использовать компьютер в двухмониторной конфигурации.

    Для отладки нашего примера, чтобы получить доступ к битам порта D, надо раскрыть строку I/O ATMEGA128 и затем строку PORTD. Теперь видны все три регистра этого порта, PORTD, DDRD и PIND. Чтобы увидеть поля Value, Bits и Address, придется расширить правую границу окна, потеснив при этом окно с исходным текстом программы.

    Теперь, проходя программу в пошаговом режиме, можно видеть изменение текущих состояний этих регистров в поле Bits. Есть возможность оперативного изменения состояния любого бита регистров порта, причем это можно делать либо записью нового кода в поле Value, либо непосредственно, щелкнув мышью на нужном бите регистра.

    Для самостоятельных упражнений, предлагается следующая программа, которая отличается от предыдущей тем, что зажиганием светодиодов управляют две кнопки.

    ; Пример «Управление светодиодами от кнопок» ; написан для отладочной платы AS-MegaM ; светодиоды подключены к выводам PD6 и PD7 и через резисторы - на общий провод. ; кнопки - на PE4 и PE5 .include "m128def.inc" ; основная программа begin: ; инициализация стека ldi r16,low(RAMEND) out spl,r16 ldi r16,high(RAMEND) out sph,r16 ; инициализация светодиодов ldi r16,(1<<6) | (1<<7) out DDRD,r16 ; инициализация выводов, к которым подключены кнопки (на вход) ; внутренние подтягивающие резисторы подключены; для этого в PORTE нужно установить соответствующие биты в единицы ldi r16,(1<<4) | (1<<5) out PORTE,r16 ; а в DDRE - в нули ldi r16,0 out DDRE,r16 ; бесконечный цикл forever: in r16,PINE ; теперь в r16 находится текущее "состояние" кнопок com r16 ; кнопка "нажимается" нулем, поэтому инвертируем регистр lsl r16 ; переносим биты 4,5 в позиции 6,7 lsl r16 ; и обновляем "показания" светодиодов andi r16,(1<<6) | (1<<7) out PORTD,r16 rjmp forever ; цикл выполняется бесконечно

    Таким образом, на примере простейших программ показаны некоторые возможности пакета AVR Studio. Надо понимать, что это лишь первое знакомство, позволяющее быстрее освоиться с базовыми командами пакета. Между тем, возможности рассматриваемого пакета намного шире. Например, здесь можно отлаживать программы написанные на языках высокого уровня. В частности, Си-компилятор фирмы ImageCraft пользуется отладчиком AVR Studio «как родным». Для этого при компиляции исходного кода надо установить опцию генерации выходного файла в формате, совместимом с AVR Studio. При этом появляется возможность производить отладку в исходных кодах.

    Еще одна из многих характеристик пакета AVR Studio - возможность подключения внешних программ. Например, для обеспечения вызова оболочки внутрисхемного программатора AS2 нужно выполнить несколько простых операций.

    В меню Tools главного окна AVR Studio надо выбрать пункт Customize;

    В окне Customize выбрать пункт Tools;

    Двойным нажатием кнопки мыши или нажав Insert на клавиатуре, добавить новую команду в список и назвать ее "Программатор AS2";

    Указать путь к исполняемому файлу программатора, введя его непосредственно в поле для ввода "Command", или нажав на кнопку "…" справа от этого поля;

    Теперь в меню Tools появился пункт "Программатор AS2".

    Средства пакета AVR Studio 4.08 позволяют подключать вспомогательные программы – plugins. Первый plugin для AVR Studio – это программа графического редактора, упрощающая процесс инициализации ЖК-индикатора, которым может непосредственно управлять AVR-контроллер ATmega169. Максимальный логический размер ЖК-индикатора составляет 100 сегментов, каждому элементу индикатора ставится в соответствие бит в специальном регистре контроллера. Чтобы упростить рутинную процедуру привязки определенных битов к каждому сегменту, можно использовать вышеупомянутую программу.

    Во время посещения «родины AVR» - норвежского офиса фирмы ATMEL, один из авторов статьи беседовал с Ларсом Квенилдом, руководителем группы программистов, которая создала и поддерживает пакет AVR Studio. Этот человек, классический программист, с бородой, в свитере и обутый в сандали на носки, рассказал о перспективах развития пакета. В следующую версию (4.09) - будет включен интерфейс для нового внутрисхемного эмулятора – JTAGICE mkII (он называется также AT JTAGICE2), который во второй половине года придет на смену AT JTAGICE. У этого эмулятора есть два существенных отличия. С одной стороны, добавлена поддержка нового однопроводного отладочного интерфейса для младших AVR-контроллеров, debugWIRE. Этот интерфейс интересен тем, что он не занимает для своей работы дополнительные выводы микроконтроллера, так как использует для обмена вывод Reset микроконтроллера! С другой стороны (можно понимать это выражение буквально), у эмулятора AT JTAGICE2 появится, наконец, интерфейс USB для связи с компьютером.

    Литература

    1. Материалы технического семинара AVR Technical Training. Atmel. Norway. December 2003.
    2. Николай Королев, Дмитрий Королев AVR-микроконтроллеры второго поколения: средcтва разработчика. // Компоненты и технологии, 2003 № 7
    3. AVR-микроконтроллеры второго поколения: новые аппаратные возможности // Компоненты и технологии. 2003. № 4 .
    4. Николай Королев, Дмитрий Королев. AVR-микроконтроллеры: большое в малом. //Схемотехника», 2001, №5
    5. Николай Королев, Дмитрий Королев. AVR-микроконтроллеры: программные средства // Компоненты и технологии, 2000. № 4 .
    6. Николай Королев. AVR: аппаратные средства разработчика // Компоненты и технологии, 1999 № 1
    7. Николай Королев. RISC- микроконтроллеры фирмы ATMEL //Chip-News 1998, №2
    8. Николай Королев, Дмитрий Королев AVR: новые 8-разрядные RISC-микроконтроллеры фирмы ATMEL //Микропроцессор Ревю, 1998, №1

    AVR-микроконтроллеры предоставляют пользователю несколько различных интерфейсов для программирования. Это последовательное программирование при высоком напряжении, последовательное программирование при низком напряжении через SPI, параллельное программирование при высоком напряжении и программирование по интерфейсу JTAG. Первый тип программирования встречается только в моделях AVR семейства ATtiny, последний - доступен некоторым моделям старшего семейства. Модели ATmega с наиболее развитой периферией могут поддерживать до трех различных интерфейсов программирования.

    Подавляющее большинство AVR-микроконтроллеров обладают также способностью самопрограммирования, благодаря чему содержимое памяти программ можно модифицировать непосредственно из пользовательской программы. Кроме этого FLASH-память может быть перепрограммирована в режиме отладки через однопроводной интерфейс dW, имеющийся в ряде моделей ATmega и во всех новых моделях ATtiny.

    Программирование при высоком напряжении (параллельное и последовательное) требует значительного числа выводов микроконтроллера и дополнительного источника напряжения 12 В. По этой причине конструкция программаторов достаточно сложна. При высоковольтном программировании достигается наибольшая скорость записи и предоставляется максимальный доступ к ресурсам AVR. Чаще всего этот вид программирования применяется при крупносерийном заводском производстве.

    Интерфейс JTAG очень удобно использовать в тех случаях, когда необходимо вести программирование и отладку в одном цикле разработки. К сожалению JTAG имеется далеко не во всех моделях AVR, а фирменные программаторы стоят значительных денег.

    Низковольтное последовательное программирование через SPI, наиболее распространено. Это способ стоит признать основным при программировании AVR-микроконтроллеров. Его поддерживают все модели с ядром AVR, за исключением двух устаревших представителей младшего семейства ATtiny11x и ATtiny28x. В данном разделе будет приведено описание двух программаторов работающих в подобном режиме. Первый из них можно рекомендовать для быстрого старта. Он имеет простую конструкцию и работает под управлением популярной радиолюбительской программы . Второй, намного более совершенный, является функциональным аналогом AVR ISP фирмы ATMEL. Этот программатор интегрируется с и позволяет реализовать алгоритмы программирования с максимально возможной точностью.

    Особенности последовательного низковольтного программирования

    Для взаимодействия программатора с микроконтроллером при последовательном низковольтном программировании используется аппаратный модуль SPI. Это очень практичное решение, позволяющее использовать минимальное число выводов и изменять алгоритмы работы устройства предварительно запаянного на плату. В виду последней причины программирование через SPI называют также еще внутрисхемным программированием или ISP (In System Programming).

    Внутрисхемное программирование потребует задействовать у микроконтроллера в общей сложности 5 выводов. Это 3 линии модуля SPI (MISO, MOSI, SCK), вывод RESET и общий провод GND. В моделях семейства ATmega, имеющих на борту 64 и более кбайт FLASH-памяти, вместо MISO, MOSI используются выводы PDO и PDI, соответственно. В случае если программатор и микроконтроллер получают питание от одного источника, то дополнительно понадобится также вывод VCC, соединяющий шины питания. Перевод микроконтроллера в режим программирования осуществляется подачей низкого логического уровня на линию RESET. Длина шлейфа, соединяющего программатор с устройством, не должна превышать 15…20 см.


    внутрисхемном программировании одного микроконтроллера

    На рис.1а показана схема соединения программатора с AVR-микроконтроллером, при программировании через ISP. Для более надежной работы последовательно линиям MISO, MOSI, SCK рекомендуется включать сопротивления небольшого номинала. Напряжение питания программатора и устройства не должно иметь больших различий. Внутрисхемное программирование двух и более микроконтроллеров также возможно (рис.1б). В этом случае необходимо помнить об одном важном условии: в момент программирования на шине должен находиться только один активный микроконтроллер. Поэтому при проектировании платы заранее нужно предусмотреть переключатели (джампера J1, J2 на рис.1б), с помощью которых можно выборочно подавать напряжение на каждый программируемый микроконтроллер. После программирования модуль SPI или линии ввода-вывода, совпадающие с MISO, MOSI и SCK, могут быть использованы по своему прямому назначению.

    При внутрисхемном программировании для чтения и записи доступны FLASH–память программ, EEPROM-память данных, биты защиты и управляющие FUSE–биты. Кроме этого могут быть считаны калибровочные ячейки и ячейки идентификатора.


    Рис.1а Схема подключения программатора при
    внутрисхемном программировании 2-х и более микроконтроллеров

    Изменения некоторых FUSE–битов необходимо производить с большой осторожностью. Особенно если демонтировать микроконтроллер уже не представляется возможным. Главным образом это касается битов RSTDISBL и DWEN (если таковые имеется). Сброс любого из них в дальнейшем сделает невозможным использование линии RESET микроконтроллера. При RSTDISBL=0 вывод RESET настраивается как линия порта ввода-вывода, а при DWEN=0 – вход RESET служит однопроводным отладочным интерфейсом dW. Естественно, что в обоих случаях работа программатора с микроконтроллером будет заблокирована. Кроме того во время внутрисхемного программирования микроконтроллеры AVR должны работать от собственного источника тактовой частоты, выбор которого осуществляется битами CKSEL3:CKSEL0. Если их настройка произведена некорректно (например, вместо внутреннего RC-генератора, выбран внешний кварцевый резонатор), то устройство может вообще отказаться работать. Еще один FUSE–бит, о котором следует помнить, - это SPIEN. SPIEN не доступен во время последовательного низковольтного программирования. Однако его установка при программировании в каком-либо другом режиме запретит работу модуля SPI. Напомним, что активизированным FUSE–битам соответствует состояние лог.0.

    Побитовые операции основаны на логических операциях, которые мы уже рассмотрели ранее. Они играют ключевую роль при программировании микроконтроллеров AVR и других типов. Практически ни одна программа не обходится без применения побитовых операций. До этого мы намеренно избегали их, чтобы облегчить процесс изучения программирования МК.

    Во всех предыдущих статьях мы программировали только порты ввода-вывода а и не задействовали дополнительные встроенные узлы, например, такие как таймеры, аналогово-цифровые преобразователи, прерывания и другие внутренние устройства без которых МК теряет всю свою мощь.

    Прежде, чем перейти к освоению встроенных устройств МК, необходимо научится управлять или проверять отдельные биты регистров МК AVR. Ранее же мы выполняли проверку или устанавливали разряды сразу всего регистра. Давайте разберемся, в чем состоит отличие, а затем продолжим далее.

    Побитовые операции

    Чаще всего при программировании микроконтроллеров AVR мы пользовались , поскольку она имеет большую наглядность по сравнению с и хорошо понятна для начинающих программистов МК. Например, нам нужно установить только 3-й бит порта D. Для этого, как мы уже знаем, можно воспользуемся следующим двоичным кодом:

    PORTD = 0b00001000;

    Однако этой командой мы устанавливаем 3-й разряд в единицу, а все остальные (0, 1, 2, 4, 5, 6 и 7-й) мы сбрасываем в ноль. А теперь давайте представим ситуацию, что 6-й и 7-й разряды задействованы как входы АЦП и в это время на соответствующие выводы МК поступает сигнал от какого-либо устройства, а мы, применяемой выше командой, обнуляем эти сигналы. В результате чего микроконтроллер их не видит и считает, что сигналы не приходили. Поэтому вместо такой команды нам следует применить другую, которая бы установила только 3-й бит в единицу, при этом не влияя на остальные биты. Для это обычно применяется следующая побитовая операция:

    PORTD |= (1<<3);

    Синтаксис ее мы подробно разберем далее. А сейчас еще один пример. Допустим нам нужно проверить состояние 3-го разряда регистра PIND, тем самым проверяя состояние кнопки. Если данный разряд сброшен в ноль, то мы знаем, что кнопка нажата и далее выполняется код команды, который соответствует состоянию нажатой кнопки. Ранее мы бы воспользовались следующей записью:

    if (PIND == 0b00000000)

    { какой-либо код}

    Однако с помощью нее мы проверяем не отдельный, – 3-й, а сразу все биты регистра PIND. Поэтому даже если кнопка нажат и нужный разряд сброшен, но в это время на какой-либо другой вывод порта D поступит сигнал, то соответствующий быт установится в единицу, и условие в круглых скобках будет ложным. В результате код, находящийся в фигурных скобках, не будет выполняться даже при нажатой кнопке. Поэтому для проверки состояния отдельного 3-го бита регистра PIND следует применять побитовую операцию:

    if (~PIND & (1<<3))

    { какой-либо код}

    Для работы с отдельными битами микроконтроллера в арсенале языка программирования C имеются , с помощью которых можно изменять или проверять состояние одного или нескольких отдельных бит сразу.

    Установка отдельного бита

    Для установки отдельного бита, например порта D, применяется побитовая операция ИЛИ. Именно ее мы применяли в начале статьи.

    PORTD = 0b00011100; // начальное значение

    PORTD = PORTD | (1<<0); применяем побитовую ИЛИ

    PORTD |= (1<<0); // сокращенная форма записи

    PORTD == 0b00011101; // результат

    Эта команда выполняет установку нулевого разряда, а остальные оставляет без изменений.

    Для примера установим еще 6-й разряд порта D.

    PORTD = 0b00011100; // начальное состояние порта

    PORTD |= (1<<6); //

    PORTD == 0b01011100; // результат

    Чтобы записать единицу сразу в несколько отдельных бит, например нулевой, шестой и седьмой порта B применяется следующая запись.

    PORTB = 0b00011100; // начальное значение

    PORTB |= (1<<0) | (1<<6) | (1<<7); //

    PORTB == 0b1011101; // результат

    Сброс (обнуление) отдельных битов

    Для сброса отдельного бита применяются сразу три ранее рассмотренные команды: .

    Давайте сбросим 3-й разряд регистра PORTC и оставим без изменений остальные.

    PORTC = 0b00011100;

    PORTC &= ~(1<<3);

    PORTC == 0b00010100;

    Выполним подобные действия для 2-го и 4-го разрядов:

    PORTC = 0b00111110;

    PORTC &= ~((1<<2) | (1<<4));

    PORTC == 0b00101010;

    Переключение бита

    Кроме установки и сброса также применяется полезная команда, которая переключает отдельный бит на противоположное состояние: единицу в ноль и наоборот. Данная логическая операция находит широкое применение при построении различных световых эффектов, например, таких как новогодняя гирлянда. Рассмотрим на примере PORTA

    PORTA = 0b00011111;

    PORTA ^= (1<<2);

    PORTA == 0b00011011;

    Изменим состояние нулевого, второго и шестого битов:

    PORTA = 0b00011111;

    PORTA ^= (1<<0) | (1<<2) | (1<<6);

    PORTA == 0b01011010;

    Проверка состояния отдельного бита. Напомню, что проверка (в отличии от записи) порта ввода-вывода осуществляется с помощью чтения данных из регистра PIN.

    Наиболее часто проверка выполняется одним из двух операторов цикла: if и while. С этими операторами мы уже знакомы ранее.

    Проверка разряда на наличие логического нуля (сброса) с if

    if (0==(PIND & (1<<3)))

    Если третий разряд порта D сброшен, то выполняется Код1. В противном случае, выполняется Код2.

    Аналогичные действия выполняются при и такой форме записи:

    if (~PIND & (1<<3))

    Проверка разряда на наличие логической единицы (установки) с if

    if (0 != (PIND & (1<<3)))

    if (PIND & (1<<3))

    Приведенные выше два цикла работаю аналогично, но могут, благодаря гибкости языка программирования C, иметь разную форму записи. Операция!= обозначает не равно. Если третий разряд порта ввода-вывода PD установлен (единица), то выполняется Код1, если нет ‑ Код2.

    Ожидание сброса бита с while

    while (PIND & (1<<5))

    Код1 будет выполняться пока 5-й разряд регистра PIND установлен. При сбросе его начнет выполняться Код2.

    Ожидание установки бита с while

    Здесь синтаксис языка С позволяет записать код двумя наиболее распространёнными способами. На практике применяются оба типа записи.

    Микроконтроллеры Atmega8 являются самыми популярными представителями своего семейства. Во многом они этим обязаны, с одной стороны, простоте работы и понятной структуре, с другой - довольно широким функциональным возможностям. В статье будет рассмотрено программирование Atmega8 для начинающих.

    Общая информация

    Микроконтроллеры встречаются везде. Их можно найти в холодильниках, стиральных машинках, телефонах, заводских станках и большом количестве других технических устройств. Микроконтроллеры бывают как простыми, так и чрезвычайно сложными. Последние предлагают значительно больше возможностей и функционала. Но разбираться сразу в сложной технике не выйдет. Первоначально необходимо освоить что-то простое. И в качестве образца будет взят Atmega8. Программирование на нём не является сложным благодаря грамотной архитектуре и дружелюбному интерфейсу. К тому же он является обладателем достаточной производительности, чтобы использовать в большинстве Более того, они применяются даже в промышленности. В случае с Atmega8 программирование предусматривает знание таких языков как AVR (C/Assembler). С чего же начать? Освоение этой технологии возможно тремя путями. И каждый выбирает сам, с чего начать работу с Atmega8:

    1. Программирование через Arduino.
    2. Покупка готового устройства.
    3. Самостоятельная сборка микроконтроллера.

    Нами будет рассмотрен первый и третий пункт.

    Arduino

    Это удобная платформа, выполненная в виде что подходит для быстрого создания различных устройств. В плате уже есть всё необходимое в виде самого микроконтроллера, его обвязки и программатора. Пойдя по этому пути, человек получит следующие преимущества:

    1. Низкий порог требований. Не нужно обладать специальными навыками и умениями для разработки технических устройств.
    2. Широкий спектр элементов будет доступен для подключения без дополнительной подготовки.
    3. Быстрое начало разработки. С Arduino можно сразу переходить к созданию устройств.
    4. Наличие большого количества учебных материалов и примеров реализаций различных конструкций.

    Но есть и определённые минусы. Так, Arduino программирование Atmega8 не позволяет глубже окунуться в мир микроконтроллера и разобраться во многих полезных аспектах. Кроме этого, придётся изучить язык программирования, что отличается от применяемых AVR (C/Assembler). И ещё: Arduino имеет довольно узкую линейку моделей. Поэтому рано или поздно возникнет необходимость использовать микроконтроллер, что не используется в платах. А в целом это неплохой вариант работы с Atmega8. Программирование через Arduino позволит получить уверенный старт в мире электроники. И у человека вряд ли опустятся руки из-за неудач и проблем.

    Самостоятельная сборка

    Благодаря дружелюбности конструкции их можно сделать самими. Ведь для этого нужны дешевые, доступные и простые комплектующие. Это позволит хорошо изучить устройство микроконтроллера Atmega8, программирование которого после сборки будет казаться более лёгким. Также при необходимости можно самостоятельно подобрать иные комплектующие под конкретную задачу. Правда, здесь есть и определённый минус - сложность. Самостоятельно собрать микроконтроллер, когда нет нужных знаний и навыков, нелегко. Этот вариант мы и рассмотрим.

    Что же нужно для сборки?

    Первоначально необходимо заполучить сам Atmega8. Программирование микроконтроллера без него самого, знаете ли, невозможно. Он обойдётся в несколько сотен рублей - обеспечивая при этом достойный функционал. Также стоит вопрос о том, как будет осуществляться программирование Atmega8. USBAsp - это довольно хорошее устройство, что себя зарекомендовало с лучшей стороны. Но можно использовать и какой-то другой программатор. Или же собрать его самостоятельно. Но в таком случае существует риск, что при некачественном создании он превратит микроконтроллер в неработающий кусочек пластика и железа. Также не помешает наличие макетной платы и перемычек. Они не обязательны, но позволят сэкономить нервы и время. И напоследок - нужен источник питания на 5В.

    Программирование Atmega8 для начинающих на примере

    Давайте рассмотрим, как в общих чертах осуществляется создание какого-то устройства. Итак, допустим, что у нас есть микроконтроллер, светодиод, резистор, программатор, соединительные провода, и источник питания. Первый шаг - это написание прошивки. Под нею понимают набор команд для микроконтроллера, что представлен в качестве конечного файла, имеющего специальный формат. В нём необходимо прописать подключение всех элементов, а также взаимодействие с ними. После этого можно приступать к сборке схемы. На ножку VCC следует подать питание. К любой другой, предназначенной для работы с устройствами и элементами,подключается сначала резистор, а потом светодиод. При этом мощность первого зависит от потребностей в питании второго. Можно ориентироваться по такой формуле: R=(Up-Ups)/Is. Здесь p - это питание, а s - светодиод. Давайте представим, что у нас есть светодиод, потребляющий 2В и требующий ток питания на уровне 10 мА, переводим в более удобный для математических операций вид и получаем 0.01А. Тогда формула будет выглядеть следующим образом: R=(5В-2В)/0.01А=3В/0.01А=300 Ом. Но на практике часто оказывается невозможным подобрать идеальный элемент. Поэтому берётся наиболее подходящий. Но нужно использовать резистор с сопротивлением выше значения, полученного математическим путём. Благодаря такому подходу мы продлим срок его службы.

    А что же дальше?

    Итак, у нас есть небольшая схема. Теперь осталось подключить к микроконтроллеру программатор и записать в его память прошивку, что была создана. Здесь есть один момент! Выстраивая схему, необходимо её создавать таким образом, чтобы микроконтроллер можно было прошивать без распайки. Это позволит сберечь время, нервы и продлит срок службы элементов. В том числе и Atmega8. Внутрисхемное программирование, нужно отметить, требует знаний и умений. Но оно же позволяет создавать более совершенные конструкции. Ведь часто бывает, что во время распайки элементы повреждаются. После этого схема готова. Можно подавать напряжение.

    Важные моменты

    Хочется дать новичкам полезные советы про программирование Atmega8. Встроенные переменные и функции не менять! Прошивать устройство созданной программой желательно после её проверки на отсутствие «вечных циклов», что заблокируют любое иное вмешательство, и с использованием хорошего передатчика. В случае использования самоделки для этих целей следует быть морально готовым к выходу микроконтроллера из строя. Когда будете прошивать устройство с помощью программатора, то следует соединять соответствующие выходы VCC, GND, SCK, MOSI, RESET, MISO. И не нарушайте технику безопасности! Если техническими характеристиками предусмотрено, что должно быть питание в 5В, то нужно придерживаться именно такого напряжения. Даже использование элементов на 6В может негативно сказать на работоспособности микроконтроллера и сократить срок его службы. Конечно, батареи на 5В имеют определённые расхождения, но, как правило, там всё в разумных рамках. К примеру, максимальное напряжение будет держаться на уровне 5,3В.

    Обучение и совершенствование навыков

    На счастье, Atmega8 является очень популярным микроконтроллером. Поэтому найти единомышленников или же просто знающих и умеющих людей не составит труда. Если нет желания изобретать заново велосипед, а просто хочется решить определённую задачу, то можно поискать требуемую схему на просторах мировой сети. Кстати, небольшая подсказка: хотя в русскоязычном сегменте робототехника довольно популярна, но, если нет ответа, то следует его поискать в англоязычном - он содержит на порядок большее количество информации. Если есть определённые сомнения в качестве имеющихся рекомендаций, то можно поискать книги, где рассматривается Atmega8. Благо, компания-производитель берёт во внимание популярность своих разработок и снабжает их специализированной литературой, где опытные люди рассказывают, что и как, а также приводят примеры работы устройства.

    Сложно ли начать создавать что-то своё?

    Достаточно иметь 500-2000 рублей и несколько свободных вечеров. Этого времени с лихвой хватит, чтобы ознакомиться с архитектурой Atmega8. После небольшой практики можно будет спокойно создавать свои собственные проекты, выполняющие определённые задачи. К примеру, роботизированную руку. Одного Atmega8 должно с лихвой хватить, чтобы передать основные моторные функции пальцев и кисти. Конечно, это довольно сложная задача, но вполне посильная. В последующем вообще можно будет создавать сложные вещи, для которых понадобятся десятки микроконтроллеров. Но это всё впереди, перед этим необходимо получить хорошую школу практики на чем-то простом.



    Просмотров