Терморезисторы, основы их расчета и применяемые материалы

Для измерения температур используются терморезисторы из материалов, обладающих высокостабильным ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до +650 °С выражается соотношением R = R 0 (1 + А + В 2), где R 0 -- сопротивление при 0 °С; -- температура, °С. Для платиновой проволоки с отношением R 100 /R o = 1,385 значения А = 3,90784·10 -3 Кг -1 ; В = 5,7841-10 -7 К -2 . В интервале температур от 0 до --200 °С зависимость сопротивления платины от температуры имеет вид R = R 0 , где С = = --4,482-10 -12 К -4 . Промышленные платиновые термометры согласно ГОСТ 6651--78 используются в диапазоне температур от --260 до + 1100 °С.

Миниатюрные высокоомные платиновые терморезисторы изготовляют путем вжигания или нанесения иным путем платиновой пленки на керамическое основание толщиной 1--2 мм. При ширине пленки 0,1--0,2 мм и длине 5--10 мм сопротивление терморезистора лежит в пределах 200--500 Ом. Такого рода термочувствительные элементы при нанесении пленки с обеих сторон используются для измерения температурного градиента и имеют порог чувствительности (1 5)10 -5 К/м.

При расчете сопротивления медных проводников в диапазоне температур от --50 до +180 °С можно пользоваться формулой R = R 0 (1 +), где = 4,26-10 -3 К -1 ; R 0 -- сопротивление при 0 °С. Если для медного терморезистора требуется определить сопротивление R, (при температуре 2) по известному сопротивлению R 1

(при температуре 1), то следует пользоваться формулой

R 2 = R 1 (1 + 2)/(1 + 1 ).

Медный терморезистор можно применять только до температуры 200°С в атмосфере, свободной от влажности и корродирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен --200°С, хотя при введении индивидуальной градуировки возможно их применение вплоть до --260 °С.

Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным

током. В частности, В. И. Лахом для определения допустимого измерительного тока через термометр в диапазоне измеряемых температур до 750 °С приводится соотношение

I = 2d 1,50,5 , где I -- ток, А; d -- диаметр проволоки термометра, мм; -- допустимое приращение показаний термометра за счет его нагревания током. В диапазоне температур от --50 до +100 °С перегрев находящегося в спокойном воздухе провода диаметром d = 0,05 0,1 мм определяется из формулы = 5I 2 /d 2 .

Полупроводниковые терморезисторы отличаются от металлических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: = В/ 2 . При 20 °С ТКС составляет 0,02--0,08 К -1 .

Температурная зависимость сопротивления ПТР (рис. 11, кривая 2) достаточно хорошо описывается формулой R = Ае В/Т , где Т -- абсолютная температура; А -- коэффициент, имеющий размерность Сопротивления; В -- коэффициент, имеющий размерность температуры. На рис. 11 для сравнения приведена температурная зависимость для медного терморезистора (прямая 1).

Если для применяемого ПТР не известны коэффициенты А и В, Но известны сопротивления R 1 и R 2 при Т 1 и Т 2 , то сопротивление и коэффициент В для любой другой температуры можно определить из соотношений:

Недостатками полупроводниковых терморезисторов, существенно снижающими их эксплуатационные качества, являются нелинейность зависимости сопротивления от температуры (рис. 11) и значительный разброс от образца к образцу как номинального сопротивления, так и постоянной В

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 12 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эмалевой краской, с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.

Терморезисторы типов ММТ-4а и КМТ-4а заключены в металлические капсулы и герметизированы, благодаря чему они могут быть использованы при любой влажности и даже в жидкостях, не являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Для герметизации чувствительный элемент в них оплавлен стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный! элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5--0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Терморезистор СТ4-16, в котором для герметизации термочувствительный элемент в виде бусинки оплавлен стеклом, обладает повышенной стабильностью и относительно малым разбросом номинального; сопротивления (менее ±5%). Терморезистор СТ17-1 предназначен для работы в диапазоне низких температур (от --258 до +60 °С)." При температуре кипения жидкого азота (--196 °С) его ТКС составляет от --0,06 до

0,12К -1 при температуре --252,6 °С ТКС возрастает и достигает значения от --0,15 до --0,30 К -1 , постоянная времени при погружении в жидкий азот не превышает 3 с. Терморезистор СТ18-1 рассчитан на работу в температурном диапазоне от +200 до +600 "С, его ТКС при +250 °С составляет --0,034 К -1 , при 600 °С равен --0,011 К -1 " 1 .

В табл. 11-5 приведены характеристики для некоторых типов ПТР, взятые из соответствующих стандартов. В графе «номинальное сопротивление» приведены крайние значения рядов номинальных сопротивлений.

Таблица 5

Номинальное

сопротивление

при 20С, кОм

Диапазон рабочих температур, °С

Мощность рассеяния

при 20 °С, К -1 "

Постоянная времени, с

60 ... +180 -45 ... +70

0,042...--0,084

0,024…--0,05

0,001-0,047 0.056--0,100 0,120--1,000

20,6--27,5 22,3--29,2 22,3-34,3

0,024…--0,032

0,024…--0,034

0,026…--0,04

0,024...--0,05

2,2; 2,7; 3,3; 3,9; 4,7 Ом

0,0305. ..0,0375

СТЗ-17 CT1-I7

0,033--0,330 0,330--22

25,8-38,6 36--60

0,03 ..--0,045

0,042... --0,07

Минимальной мощностью рассеяния Р min называется мощность, при которой у терморезистора, находящегося в спокойном воздухе при температуре (20 ± 1) °С, сопротивление уменьшается от разогревания током не более чем на 1 %. Максимальной называется мощность Ртах, при которой терморезистор, находящийся в тех же условиях, разогревается током до верхней допустимой температуры. Кроме этого, указывается допустимая мощность Р доп при максимальной допустимой температуре. По стандартам для большинства терморезисторов допускаются отклонения от номинальных значений начальных сопротивлений в пределах ± 20%, при длительной выдержке ПТР при максимальной допустимой температуре допускается изменение сопротивления в пределах ± 3%, при хранении в течение 18 месяцев изменение сопротивления не должно превышать ± (1 3)%, при хранении до 10 лет изменение сопротивления может достигать ±30%. Однако опыт работы с ПТР показывает, что стабильность характеристик ПТР оказывается в большинстве случаев значительно выше указываемой в стандартах.

В настоящее время не на все типы выпускаемых ПТР имеются стандарты. Основные характеристики некоторых из этих типов ПТР, не вошедших в табл. 5, даны в табл. 6. В графе «постоянная В» приводятся два диапазона возможных значений В: первая строка относится к низким температурам, а вторая -- к высоким. Номинальные сопротивления ПТР типов КМТ-14, СТ1-18, СТ1-19 нормируются для 150 °С, остальные -- для 20 °С.

Таблица 6

Номинальное сопротивление, кОм

Постоянная В, 10* К

Диапазон рабочих температур, "С

Коэффициент рассеяния, мВт/К

Постоянная времени (не более), с

ММТ-6 СТЗ-6

СТ4-17 КМТ-14 СТЗ-14

СТ1-18 СТЗ-19 СТЗ-25

6,8-8,2 100--3300 2,1-3,0

1,5--2,2 0,51--7500 1,5-2,2

1,5--2200 2,2--15

36,3--41,2 23,5--26,5 29,3--32,6 32,6--36 41--70

26--33 27,5--36 40,5--90

90...+125 0...125

Здесь приведены характеристики малогабаритных терморезисторов которые могут применяться в устройствах контроля температуры ПК и разрабатываемых Вами конструкциях.

Терморезисторы или термисторы (ТР) - полупроводниковые резисторы с нелинейной Вольт Амперной Характеристикой (ВАХ), которые имеют явно выраженную зависимость электро сопротивления от температуры. Производятся терморезисторы с отрицательным и положительным Температурным Коэффициентом Сопротивления (ТКС).

Номинальное сопротивление R н - электрическое сопротивление, значение которого обозначено на корпусе или указано в нормативной документации, измеренное при определенной температуре окружающей среды (обычно 20º С). Значения устанавливаются по ряду Е6 либо Е12.

Температурный коэффициент сопротивления ТКС - характеризует, как и обычно, изменение (обратимое) сопротивления на один градус Кельвина или Цельсия.

Максимально допустимая мощность рассеяния P max - наибольшая мощность, которую длительное время может рассеивать ТР, не вызывая необратимых изменений характеристик. При этом его температура не должна превышать максимальную рабочую температуру.

Коэффициент температурной чувствительности В - определяет характер температурной зависимости данного типа ТР. Известен как постоянная В, зависящая от физических свойств полупроводникового материала, из которого выполнен термочувствительный элемент.

Постоянная времени t - характеризует тепловую инерционность.

Она равна времени, в течении которого сопротивление ТР изменяется на 63% при перенесении его из воздушной среды температурой 0º С в воздушную среду с температурой 100º С.

Терморезисторы с отрицательным ТКС
Тип Диапазон
номинальных сопротивлений
при 20º С, кОм
Допуск % Максимальная мощность 20º С,
мВт
Диапазон
рабочих температур,
º С
ТКС при 20º С,
%/º С
Постоянная
В, К
Постоянная времени t ,
сек
Вид и область применения
КМТ-1 22 -:- 1000 ±20 1000 -60-:-180 4,2-:-8,4 3600 -:-7200 85 С, Измерения Т
КМТ-4 22-:-1000 ±20 650 -60 -:- 125 4,2-:-8,4 3600 -:-7200 115 С, Измерения Т
КМТ-8 0,1-:-10 ± 10,±20 600 -60-:-+70 4,2-:-8,4 3600-:-7200 909 Термо
компенсация
КМТ-10 100-:-3300 ± 20 250 в теч. 2сек 0-:-125 > 4,2 > 3600 75 C, Контроль Т
KMT-11 100 -:-3300 ± 20 250 в теч. 2сек 0-:-125 > 4,2 > 3600 10 C, Контроль Т
КМТ-12 100Ом-:-10 ± 30 700 -60 -:-125 4,2 -:-8,4 3600-:-7200 - Д, Изм - Т Комп.
КМЕ-14 510,680, 910 Ом
160, 200, 330 КОм
4,3, 75 МОм
при 150°С
± 20 100 -10-:-300 2,1-:-2,5
3,4-:-4,2
3,5-:-4,3
3690-:-4510
6120-:-7480
6300-:-7700
10-:-60 Б, Измерения Т
КМТ-17в 0,33-:-22 ± 10,±20 300 -60-:-155 4,2-:-7 3600-:-6000 30 Д, Измерение Т
ММТ-1 12 - :- 220 ±20 500 -60 -:- 125 2,4 -:- 5 2060 -:- 4300 85 С, Измерения Т
ММТ-4 1-:-220 ±20 560 -60 -:- 125 2,4 -:- 5 2060 -:- 4300 115 С, Измерения Т
ММТ-6 10-:-100 ± 20 50 -60 -:- 125 2,4-:-5 2060-:-4300 35 С, Измерение Т
ММТ-8 1 Ом -:- 1 ± 10,±20 600 -60 -:- 70 2,4 -:- 4 2060-:-3430 900 Термо
компенсация
ММТ-9 10 Ом -:-4,7 ± 10,±20 900 -60 -:- 125 2,4-:-5 2060-:-4300 - Д
ММТ-12 0,0047 - 1 ± 30 700 -60 -:- 125 2,4-:-4 2060-3430 - Д,Термо
компенсация
ММТ-15 750Ом-:-1,21 - - -60 -:- 125 2,6-:-4 2230-:-3430 Д
ММЕ-13 0,01 - 2,2 ± 20 600 -60 -:- 125 2,4-:-5 2060-4300 - Д, Термо
компенсация
ПТ-1 400 Ом-:-900 Ом - - -60 -:- 150 4,1-:-5,1 3500-:-4400 - Д, Измерение Т
ПТ-2 80 Ом-:- 400 Ом ± 20 - -60 -:- 150 4,4-:-4,8 3800-:-4100 - Д, Измерение Т
ПТ-3 400 Ом-:- 900 Ом ± 20 - -60 -:- 150 4,3-:-4,8 3700-:-4700 - Д, Измерение Т
ПТ-4 0,6-:-0,8 - - -60-:-150 4,1-:4,9 3500-:-4200 - Д, Измерение Т
СТ3-14 1,5; 2,2 ±20 30 -60-:-125 3,2-:-4,2 2600-:-3600 4 Б, Измерение Т
МКМТ-16 2,7; 5,1 ± 30 40 -60-:-125 3,8-:-4,2 3250-:-3600 10 Б, Измерение Т
СТ1-18 1,5; 2,2; 22; 33; 1500; 2200 при 150º С ±20 45 -60-:-300 2,25-:-5
при 150º С
4050-:-9000 1 Б, Измерение Т
СТ3-1 0,68 -:- 2,2 ± 10, ±20 600 -60 -:- 125 3,35 -:- 3,95 2870-:-3395 85 С, Измерения Т
СТ3-14 1,5; 2,2 ±20 30 -60 -:- 125 3,2-:-4,2 2600-:-3600 4 Б, Измерение Т
СТ3-17 33Ом-:-330 Ом ± 10, ±20 300 -60 -:- 100 3-:-4,5 2580-:-3850 30 Д, Изм - Т Комп.
СТ3-18 0,68-:-3,3 ±20 15 -90-:-125 2,6-:-4,1 2250-:-3250 1 Б, Измерение Т
СТ3-3 6,8; 8,2 ± 10 150 -90-:-125 2,8 -:- 3,2 1200 -:- 2400 35 С, Измерения Т
СТ1-2 82, 91,100, 110 ом ± 5 700 -60-:-+85 4,4-:-4,9 3800-:-4200 60-:-100 Д, Измерение Т
СТ1-17 330Ом-:-22 ± 10, ±20 300 -60-:-155 4,2-:-7 3600-:-6000 30 Д, Изм - Т Комп.
СТ1-19 3,3-:-10 ±20 60 -60-:-300 2,35-:-4
при 150º С
4230-:-7200 3 Б, Измерение Т
СТ1-30 33 - < 120 ма ток подогрева -60-:-85 4,2-:-5,1 3600-:-4400 6-:-12 Измерение скоростей газов и жидкостей
СТ3-19 2,2; 10; 15 ± 20 45 -90-:-125 3,4-:-4,5 2900-:-3850 3 Б, Измерение Т
СТ3-22 1 при 25°С ± 30 8 -60-:-85 3,1-:-4,2 2700-:-3700 15 Б, Измерение Т
СТ3-23 2,2 Ом-:-4,7 Ом ± 10, ±20 - 0-:-125 3,1-:-3,8 2600-:-3200 - Д, Термо
компенсация
СТ3-25 1,5-:-6,8 ± 20 8 -100-:-125 3,05-:-4,3 2500-:-3700 0,4 Б, Измерение Т
СТ3-28 150Ом-:-3,3 ± 20 - -60 -:- 125 3-:-4,6 2580-:-3970 - Д, Термо
компенсация
СТ4-2 2,1-:-3,0 - - -60 -:- 125 4,2-:-4,8 3170-:-4120 -
CT4-15 880 Ом -1,12 - - -60 -:- 125 3,4 -:-3,8 2350- 3250 - Д, Изм.Т, авто-трактон двигателей
СТ4-16 10-:-27 ± 5; ± 10 150 -60-:-155 3,45-:-4,45 2720-:-3960 30 Б, Измерение Т
СТ4-16А 6,8; 10; 15 ± 1; ± 2; ± 5 180 -60-:-+200 4,05-:-4,45 3250-:-4100 Б, Измерение Т
СТ4-17 1,5-:-2,2 ± 10 500 -80-:-+100 3,8-:-4,2 3260-:-3600 30 Д, Измерение Т
СТ9-1А 0,15-:-450 - 800 -60-:-+100 - 1600-:-2000 110 С, Термостаты
ТР-1 15; 33 ± 10; ± 20 20; 50 -60-:-+155 3,8-:-4,4 3200-:-3900 5-:-10 Б, Измерение Т
ТР-2 15; 33 ± 10; ± 20 20; 50 -60-:-+155 3,8-:-4,4 3200-:-3900 5-:-10 Б, Измерение Т
ТР-3 1,2; 12 ± 10 1000 -60 -:- 125 3,9-:-4,8 3470-:-4270 - Д, Датчик рег. Т
ТР-4 1 ± 20 70 -60-:-+200 1,8-:-2,2 1500-:-1960 3 Б, Измерение Т

ТР имеют разную конструкцию:

Конструкция Обозначение Внешний вид
стержневые С
дисковые Д
бусинковые Б
New!
Терморезисторы на основе монокристаллов полупроводникового алмаза
типа ТРА-1, ТРА-2.

Это новые полупроводниковые приборы имеющие существенные преимущества по сравнению с ранее выпускавшимися терморезисторами.

Использование полупроводниковых монокристаллов алмаза в качестве термо чувствительных элементов (ТЧЭ) имеет существенные преимущества, которые определяются следующими его уникальными свойствами:

  • полное отсутствие диффузионных эффектов (работоспособность) до температуры около 1000°С;
  • исключительная стойкость к агрессивным средам и радиации;
  • абсолютная твердость,
  • малая инерционность.

параметр при размерность величина Примечание
TPA-1 TPA-2
Номинальное сопротивление 25° С кОм 0,01 - 10000 Выпускаются по: ДИЛС.434121.001 ТУ,
ОЖ0468051ТУ
Коэффициент температурной чувствительности -200...+300° С К 300...2500 600...6000
Температурный коэффициент сопротивления 25° C %/град -0,2...-2,3 -0,5...-0,6
Максимальная рассеиваемая мощность - мВт 500
Диапазон рабочих температур - С -200...+330
Постоянная времени - сек 1...5
Пиковое ускорение многократного механического удара - g 150
Повышенное атмосферное давление - Па/кг*см 2 297200/3
Атмосферные конденсированные осадки - иней, роса
Специальные факторы - группа

Терморезисторы типа ТРА-1 и ТРА-2 могут применяться в следующих электронных устройствах:

  1. аналоговые и цифровые термометры с пределом измерения от - 60°С до 300°С (причем эксплуатация при максимальных значениях температуры в течение 500 часов не приводила к заметному изменению градуировки);
  2. термокомпенсированные генераторы частоты;
  3. терморегуляторы с различной мощностью нагревателей;
  4. расходомеры жидкости и газа термоанемометрического типа;
  5. сигнализаторы минимального уровня жидкостей,
  6. и другие где применяются ТР с отрицательным ТКС.

Стеклянный корпус и массивные по сравнению с алмазным кристаллом (~0,2…0,3 мм) существенно ограничивают максимальную рабочую температуру ТРА (< 400°С) и тепловую инерционность (> 1 с). При этом использование в качестве выводов медной проволоки диаметром 0,1 мм позволяет уменьшить постоянную времени примерно в 2 раза.

Разрабатываются опытные конструкции алмазных терморезисторов в бескорпусном исполнении, в которых размер кристалла составляет 0,5…0,6 мм, а диаметр серебряных выводов 0,05 - 0,1 мм. Для таких терморезисторов максимальная рабочая температура повышается до 600°С, и одновременно на порядок снижается тепловая инерционность.

Производитель:

ООО «Диамант», 601655, Владимирская обл., г. Александров, ул. Институтская 24, Полянский Е. В.

Терморезисторы прямого подогрева - стабилизаторы напряжения.
Тип Ном.
напряжение,
В
Диапазон
стабилизации,
В
Макс. изменения
напряжения,
В
Средний
раб. ток,
ма
Рабочая область
по току,
ма
Предельный
ток (2с),
ма
ТП 2/0,5 2 1,6-:-3 0,4 0,5 0,2-:-2 4
ТП 2/2 2 1,6-:-3 0,4 2 0,4-:-6 12
ТП 6/2 6 4,2-:-7,8 1,2 2 0,4-:-6 12
Терморезисторы с положительным ТКС, позисторы.
Тип Диапазон
номинальных сопротивлений
при 20º С,
кОм
Макс. мощность,
Вт
Диапазон
рабочих температур,
º С
Диапазон
температур положит. ТКС,
º С
Макс. ТКС при 20º С,
%/º С
Кратность изм.
сопротивления в обл. положительного ТКС.
Постоянная времени,
сек
Назначение
СТ5-1 0,02-:-0,15 0,7 -20-:-+200 100-200 20 1000 20 ПП сигнализация
СТ6-1А 0,04-:-0,4 1,1 -60-:-+155 40-:-155 10 1000 (при 25-140°С) 20 -"-
СТ6-1Б 0,18; 0,27 0,8 -60-:-+125 20-:-125 15 1000 (при 25-100°С) 20 -"-
СТ6-4Г 5-:-25 0,8 -60-:-+125 -20-:-+125 2-:-6 5-:-15 40 Д,
Измерение Т
СТ6-6Б 5-:-25 2,5 -60-:-+125 20-:-125 15 1000 180 -
СТ10-1 30-:-300 0,5 -60-:-+175 100-:-175 - - - Термокомпенсация
СТ5-2-127В 15-:-35 Ом 3 -60-:-+60 60-:-150 15 10000 (при 25-160°С) - Системы размагничивания масок кинескопов.
СТ5-2-220В 20-:-50 Ом 3 -60-:-+85 60-:-150 15 10000 (при 25-160°С) -

Если Вам нужны параметры терморезисторы специального назначения - пишите .

Справочную таблицу в полном виде (формат pdf ) из приведенного ниже справочника можно скачать .

Справочную таблицу "Терморезисторы на основе монокристаллов полупроводникового алмаза" в формате pdf можно скачать отсюда.

Литература:

1. Справочник разработчика и конструктора РЭА, Элементная база, Книга II , Москва, изд ТОО"Прибор", 2000?

По материалам справочника и др. источникам
подготовил А. Сорокин
2008 г.

Для измерения температуры применяют металлические и полу­проводниковые резисторы. Большинство химически чистых металлов обладает положительным температурным коэффициентом сопротивления (ТКС), колеблющимся (в интервале 0-100° С) от 0,35 до 0,68 %/К.

Для измерения температур используются материалы, обладающие высокостабильной ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до + 650° С выражается соотношением R Т =R 0 (1 +A Θ +B Θ 2 ), гдеR 0 - сопротивление при 0° С; Θ - температура в градусах Цельсия. Для платиновой проволоки, применяемой в промышленных термометрах сопротивления,A = 3,96847∙10 -12 1/К;В = - 5,847∙10 7 1/К 2 . В интервале от 0 до - 200° С зависимость сопротивления платины от температуры имеет видR т =R 0 , гдеС = - 4,22∙10 12 1/К 3 .

При расчете сопротивления медных проводников в диапазоне от - 50 до + 180° С можно пользоваться формулой R Т =R 0 (1 + aΘ), где a = 4,26∙10 3 1/К.

Если для медного терморезистора требуется определить сопротивление R T2 (при температуре Θ 2) по известному сопротивлению R T2 (при температуре Θ 1), то следует пользоваться формулой

или более удобным соотношением

где Θ = 1/a - постоянная, имеющая размерность температуры и равная Θ 0 = 234,7° С (по физическому смыслу Θ 0 - это такое значение температуры, при котором сопротивление меди должно было бы стать равным нулю, если бы ее сопротивление уменьшалось все время по линейному закону, чего нет на самом деле).

В значительной степени сопротивление металлов зависит от их химической чистоты и термообработки. ТКС сплавов обычно меньше, чем у чистых металлов, и для некоторых сплавов может быть даже отрицательным в определенном температурном диапазоне.

Выбор металла для терморезистора определяется в основном химической инертностью металла к измеряемой среде в интересующем интервале температур. С этой точки зрения медный преобразователь можно применять только до температур порядка 200° С в атмосфере, свободной от влажности и коррелирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен - 50° С хотя при введении индивидуальной градуировки возможно их применение вплоть до - 260° С.

Промышленные платиновые термометры используются в диапазоне температур от -200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от -264 до +1000° С.

Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250-300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.

Высокий ТКС имеют вольфрам и тантал, но при температуре свыше 400° С они окисляются и применяться не могут. Для низкотемпературных измерений хорошо зарекомендовали себя некоторые фосфористые бронзы. Кроме того, для измерений низких температур находят применение индиевые, германиевые и угольные терморезисторы.

Некоторые характеристики металлов, используемых в терморезисторах, приведены в табл. 3.

Таблица 3:

Материал

ТКС в диапазоне 0-100°С

Удельное сопротивление при 20 °С, Оm∙mm 2 /m

Температура плавления, °С

Термо-э.д.с. в паре с медью (0-500 °С), мкВ/К

Вольфрам

Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.

Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.

Полупроводниковые терморезисторы отличаются отметаллических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B /Θ 2 . При 20° С величина ТКС составляет 2-8 проц/К.

Температурная зависимость сопротивления ПТР (рис. 7 , кривая2) достаточно хорошо описывается формулой R T =Ae B /Θ , где Θ - абсолютная температура;А - коэффициент, имеющий размерность сопротивления;В - коэффициент, имеющий размерность температуры. На рис.рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая1 ). Для каждого конкретного ПТР коэффициентыА иВ, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последнихВ может принимать два разных значения в зависимости от диапазона измеряемых температур.

Если для применяемого ПТР не известны коэффициенты А иВ, но известны сопротивленияR 1 иR 2 при Θ 1 и Θ 2 , то величину сопротивления и коэффициентВ для любой другой температуры можно определить из соотношений

"

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эма­левой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,

Терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5-0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Рис. 8

В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов

Таблица 4

Номинальное сопротивление, кОм

Постоянная В,

K∙ 10 12

Диапазон рабочих температур, o С

Коэффициент рассеяния, мВт/К

Постоянная времени (нe более), с

КМТ-1

.22-1000

От -60 до +180

ММТ-1

От -60 до +125

СТЗ-1

0,68-2,2

От -60 до +125

КМТ-4

От -60 до +125

ММТ-4

От -60 до +125

ММТ-6

От -60 до +125

СТЗ-6

От -90 до +125

КМТ-10

100-3300

КМТ-1 Оа

100-3300

КМТ-11

100-3300

34,7-36,3

36,3-41,2

От -60 до +125

СТ4-15

23,5-26,5

29,3-32,6

От -60 до +180

КМТ-17 (а, б)

От -60 до +155

КМТ-17в

От -60 до +100

СТ1-17

От -60 до +100

СТЗ-17

0,033-0,33

25,8-38,6

От -60 до +100

СТ4-17

От -80 до +100

КМТ-14

0,51-7500

От -10 до +300

СТЗ-14

От -60 до +125

СТ1-18

1,5-2200

От -60 до +300

СТЗ-18

0,68-3.3

22,5-32,5

От -90 до +125

СТ1-19

3,3-2200

От -60 до +300

СТЗ-19

29, 38, 5

От -90 до +125

СТЗ-25

От -100 до+125

КМТ-14, СТ1-18, СТ1-19, номинальные сопротивления которых нормируются для температуры 150° С. В графе «постоянная В» для некоторых типов ПТР приводятся два диапазона возможных значенийВ, первая строчка при этом относится к низким температурам, а вторая - к высоким. Перелом характеристики для ПТР типа СТЗ-6 происходит при - 28° С, для СТ4-2 и СТ4-15 - при 0° С и Для СТЗ-14- при 5° С.

Точность измерения температуры с помощью ПТР может быть весьма высокой. В настоящее время разработаны также ПТР для измерений низких и высоких температур. В частности, ПТР типа СТ7-1 может измерять температуру в диапазоне от - 110 до - 196° С. Высокотемпературный ПТР типа СТ12-1 предназначен для применения при температурах 600-1000° С.

Недостатками полупроводниковых терморезисторов, существенно снижающими их эксплуатационные качества, являются нелинейность зависимости сопротивления от температуры (см. рис. 14-12) и значительный разброс от образца к образцу как номинального значения сопротивления, так и постоянной В. Согласно ГОСТ 10688-63 допуск на величину номинального сопротивления может составлять ±20%. Допуск на величину постояннойВ не нормируется. Практически он достигает± 17% от номинального.

Нелинейность характеристики и технологический разброс параметров терморезисторов затрудняет получение линейных шкал термометров, построение многоканальных приборов, обеспечение взаимозаменяемости терморезисторов, необходимой при массовом производстве термометров с терморезисторами. Чтобы улучшить вид шкалы и обеспечить взаимозаменяемость терморезисторов, приходится применять специальные унифицирующие и линеаризующие цепи, как пассивные, так и активные.

Позисторы изготавливаются также из полупроводниковых материалов, но имеют положительный температурный коэффициент сопротивления. Для температурных зависимостей сопротивления позисторов характерно увеличение сопротивления при повышении температуры в определенном интервале температур. Ниже и выше этого интервала сопротивление с ростом температуры уменьшается. Положительные ТКС позисторов могут достигать величины порядка 30-50 проц/К, графики изменения их сопротивления в зависимости от температуры приведены нарис. 9 .

Возможно также создание других видов полупроводниковых Датчиков температуры. В частности, для измерения температуры Можно применять датчики из органических полупроводников и Датчики на основе открытых или запертыхр -n -переходов. Например, при заданном токе напряжение на открытомр - п- переходе или на стабилитроне линейно изменяется с температурой, чричем ТКС для открытогор -n -перехода отрицателен и составляет 2-3 мВ/К, а для стабилитрона положителен и достигает 8 мВ/К.

Измерительные цепи. Отличия измерительных цепей для терморезисторов от обычных цепей омметров заключаются в более узком диапазоне изменения измеряемого сопротивления и в необходимости учета сопротивлений проводов, соединяющих термометр сопротивления с измерительной цепью. Если используется простейшая двухпроводная соединительная линия, то может возникнуть погрешность от температурного изменения сопротивления этой линии. При применении высокоомных термометров (например, полупроводниковых) эта погрешность может быть пренебрежимо мала, однако в большинстве практических случаев, когда используются стандартные термометры сопротивления, ее приходится принимать во вни­мание.

Е
сли, например, сопротивление медной линии равно 5 Ом и используется термометр сRo = 53 Ом, то изменение температуры линии на 10° С приведет к изменению показаний прибора примерно на ГС. Для уменьшения погрешности от изменения сопротивления соедини­тельной линии часто применяют трехпроводную линию. При этом термометр подключают к мостовой цепи так, чтобы два провода линии вошли в разные плечи моста, а третий оказался подключен­ным последовательно с источником питания или указателем. На рис. 10, а показана схема моста, содержащего термометр сопротивления, присоединенный трехпроводной линией.

Исключить влияние сопротивлений соединительной линии можно, используя четырехпроводное включение терморезистора, как это показано на рис. 10 а , б , и вольтметр с большим входным сопротивлением для измерения падения напряженияU Θ = IR на терморезисторе. Ток через терморезистор должен быть задан, поэтому "и такой схеме включения терморезистор питают от стабилизатора тока. Возможно также построение мостовых цепей с четырехпроводным подключением термометра.

Страница 5

Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.

Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.

Полупроводниковые терморезисторы отличаются от металлических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B/Θ2. При 20° С величина ТКС составляет 2-8 проц/К.

Температурная зависимость сопротивления ПТР (рис. 7 , кривая 2) достаточно хорошо описывается формулой RT = AeB/Θ, где Θ - абсолютная температура; А - коэффициент, имеющий размерность сопротивления; В - коэффициент, имеющий размерность температуры. На рис. рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая 1). Для каждого конкретного ПТР коэффициенты А и В, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последних В может принимать два разных значения в зависимости от диапазона измеряемых температур.

Если для применяемого ПТР не известны коэффициенты А и В, но известны сопротивления R1 и R2 при Θ1 и Θ2, то величину сопротивления и коэффициент В для любой другой температуры можно определить из соотношений

"

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эма­левой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,

Терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5-0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Рис. 8

В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов

Таблица 4

Номинальное сопротивление, кОм

Постоянная В,

Диапазон рабочих температур, oС

Коэффициент рассеяния, мВт/К

Постоянная времени (нe более), с

От -60 до +180

От -60 до +125

От -60 до +125

От -60 до +125

От -60 до +125

От -60 до +125

От -90 до +125

От -60 до +125

От -60 до +180

КМТ-17 (а, б)

От -60 до +155

От -60 до +100

От -60 до +100

От -60 до +100

От -80 до +100



Просмотров