Нечеткая логика и нейронные сети лекции. Современные проблемы науки и образования. Интеграция с интеллектуальными парадигмами

Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов.

Прежде чем нечеткий подход к моделированию сложных систем получил признание во всем мире, прошло не одно десятилетие с момента зарождения теории нечетких множеств. И на этом пути развития нечетких систем принято выделять три периода.

Первый период (конец 60-х–начало 70 гг.) характеризуется развитием теоретического аппарата нечетких множеств (Л. Заде, Э. Мамдани, Беллман). Во втором периоде (70–80-е годы) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). Одновременно стало уделяться внимание вопросам построения экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений находят широкое применение в медицине и экономике. Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других.

Триумфальное шествие нечеткой логики по миру началось после доказательства в конце 80-х Бартоломеем Коско знаменитой теоремы FAT (Fuzzy Approximation Theorem). В бизнесе и финансах нечеткая логика получила признание после того как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах. И количество успешных фаззи-применений в настоящее время исчисляется тысячами.

Математический аппарат

Характеристикой нечеткого множества выступает функция принадлежности (Membership Function). Обозначим через MF c (x) – степень принадлежности к нечеткому множеству C, представляющей собой обобщение понятия характеристической функции обычного множества. Тогда нечетким множеством С называется множество упорядоченных пар вида C={MF c (x)/x}, MF c (x) . Значение MF c (x)=0 означает отсутствие принадлежности к множеству, 1 – полную принадлежность.

Проиллюстрируем это на простом примере. Формализуем неточное определение "горячий чай". В качестве x (область рассуждений) будет выступать шкала температуры в градусах Цельсия. Очевидно, что она будет изменяется от 0 до 100 градусов. Нечеткое множество для понятия "горячий чай" может выглядеть следующим образом:

C={0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100}.

Так, чай с температурой 60 С принадлежит к множеству "Горячий" со степенью принадлежности 0,80. Для одного человека чай при температуре 60 С может оказаться горячим, для другого – не слишком горячим. Именно в этом и проявляется нечеткость задания соответствующего множества.

Для нечетких множеств, как и для обычных, определены основные логические операции. Самыми основными, необходимыми для расчетов, являются пересечение и объединение.

Пересечение двух нечетких множеств (нечеткое "И"): A B: MF AB (x)=min(MF A (x), MF B (x)).
Объединение двух нечетких множеств (нечеткое "ИЛИ"): A B: MF AB (x)=max(MF A (x), MF B (x)).

В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный в так называемых треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.

Для описания нечетких множеств вводятся понятия нечеткой и лингвистической переменных.

Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.
Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:

  • названия;
  • множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных;
  • универсального множества X;
  • синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;
  • семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Рассмотрим такое нечеткое понятие как "Цена акции". Это и есть название лингвистической переменной. Сформируем для нее базовое терм-множество, которое будет состоять из трех нечетких переменных: "Низкая", "Умеренная", "Высокая" и зададим область рассуждений в виде X= (единиц). Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

$$MF\,(x) = \,\begin{cases} \;1\,-\,\frac{b\,-\,x}{b\,-\,a},\,a\leq \,x\leq \,b &\ \\ 1\,-\,\frac{x\,-\,b}{c\,-\,b},\,b\leq \,x\leq \,c &\ \\ 0, \;x\,\not \in\,(a;\,c)\ \end{cases}$$

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

$$MF\,(x)\,=\, \begin{cases} \;1\,-\,\frac{b\,-\,x}{b\,-\,a},\,a\leq \,x\leq \,b & \\ 1,\,b\leq \,x\leq \,c & \\ 1\,-\,\frac{x\,-\,c}{d\,-\,c},\,c\leq \,x\leq \,d &\\ 0, x\,\not \in\,(a;\,d) \ \end{cases}$$

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Функция принадлежности гауссова типа описывается формулой

$$MF\,(x) = \exp\biggl[ -\,{\Bigl(\frac{x\,-\,c}{\sigma}\Bigr)}^2\biggr]$$

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке 3 приведен пример описанной выше лингвистической переменной "Цена акции", на рисунке 4 – формализация неточного понятия "Возраст человека". Так, для человека 48 лет степень принадлежности к множеству "Молодой" равна 0, "Средний" – 0,47, "Выше среднего" – 0,20.

Количество термов в лингвистической переменной редко превышает 7.

Нечеткий логический вывод

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

  1. Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.
  2. Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида:
R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1

R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i

R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m ,
где x k , k=1..n – входные переменные; y – выходная переменная; A ik – заданные нечеткие множества с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

  1. Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.
  2. Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    $$alfa_i\,=\,\min_i \,(A_{ik}\,(x_k))$$

    $$B_i^*(y)= \min_i \,(alfa_i,\,B_i\,(y))$$

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

    $$MF\,(y)= \max_i \,(B_i^*\,(y))$$

    где MF(y) – функция принадлежности итогового нечеткого множества.

    Дефазификация, или приведение к четкости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:
    $$MF\,(y)= \max_i \,(B_i^*\,(y))$$

Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рисунок 6 графически показывает процесс нечеткого вывода по Мамдани для двух входных переменных и двух нечетких правил R1 и R2.

Интеграция с интеллектуальными парадигмами

Гибридизация методов интеллектуальной обработки информации – девиз, под которым прошли 90-е годы у западных и американских исследователей. В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления" (soft computing), который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.

Влияние нечеткой логики оказалось, пожалуй, самым обширным. Подобно тому, как нечеткие множества расширили рамки классической математическую теорию множеств, нечеткая логика "вторглась" практически в большинство методов Data Mining, наделив их новой функциональностью. Ниже приводятся наиболее интересные примеры таких объединений.

Нечеткие нейронные сети

Нечеткие нейронные сети (fuzzy-neural networks) осуществляют выводы на основе аппарата нечеткой логики, однако параметры функций принадлежности настраиваются с использованием алгоритмов обучения НС. Поэтому для подбора параметров таких сетей применим метод обратного распространения ошибки, изначально предложенный для обучения многослойного персептрона. Для этого модуль нечеткого управления представляется в форме многослойной сети. Нечеткая нейронная сеть как правило состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя.

Наибольшее распространение в настоящее время получили архитектуры нечеткой НС вида ANFIS и TSK. Доказано, что такие сети являются универсальными аппроксиматорами.

Быстрые алгоритмы обучения и интерпретируемость накопленных знаний – эти факторы сделали сегодня нечеткие нейронные сети одним из самых перспективных и эффективных инструментов мягких вычислений.

Адаптивные нечеткие системы

Классические нечеткие системы обладают тем недостатком, что для формулирования правил и функций принадлежности необходимо привлекать экспертов той или иной предметной области, что не всегда удается обеспечить. Адаптивные нечеткие системы (adaptive fuzzy systems) решают эту проблему. В таких системах подбор параметров нечеткой системы производится в процессе обучения на экспериментальных данных. Алгоритмы обучения адаптивных нечетких систем относительно трудоемки и сложны по сравнению с алгоритмами обучения нейронных сетей, и, как правило, состоят из двух стадий: 1. Генерация лингвистических правил; 2. Корректировка функций принадлежности. Первая задача относится к задаче переборного типа, вторая – к оптимизации в непрерывных пространствах. При этом возникает определенное противоречие: для генерации нечетких правил необходимы функции принадлежности, а для проведения нечеткого вывода – правила. Кроме того, при автоматической генерации нечетких правил необходимо обеспечить их полноту и непротиворечивость.

Значительная часть методов обучения нечетких систем использует генетические алгоритмы. В англоязычной литературе этому соответствует специальный термин – Genetic Fuzzy Systems.

Значительный вклад в развитие теории и практики нечетких систем с эволюционной адаптацией внесла группа испанских исследователей во главе с Ф. Херрера (F. Herrera).

Нечеткие запросы

Нечеткие запросы к базам данных (fuzzy queries) – перспективное направление в современных системах обработки информации. Данный инструмент дает возможность формулировать запросы на естественном языке, например: "Вывести список недорогих предложений о съеме жилья близко к центру города", что невозможно при использовании стандартного механизма запросов. Для этой цели разработана нечеткая реляционная алгебра и специальные расширения языков SQL для нечетких запросов. Большая часть исследований в этой области принадлежит западноевропейским ученым Д. Дюбуа и Г. Праде.

Нечеткие ассоциативные правила

Нечеткие ассоциативные правила (fuzzy associative rules) – инструмент для извлечения из баз данных закономерностей, которые формулируются в виде лингвистических высказываний. Здесь введены специальные понятия нечеткой транзакции, поддержки и достоверности нечеткого ассоциативного правила.

Нечеткие когнитивные карты

Нечеткие когнитивные карты (fuzzy cognitive maps) были предложены Б. Коско в 1986 г. и используются для моделирования причинных взаимосвязей, выявленных между концептами некоторой области. В отличие от простых когнитивных карт, нечеткие когнитивные карты представляют собой нечеткий ориентированный граф, узлы которого являются нечеткими множествами. Направленные ребра графа не только отражают причинно-следственные связи между концептами, но и определяют степень влияния (вес) связываемых концептов. Активное использование нечетких когнитивных карт в качестве средства моделирования систем обусловлено возможностью наглядного представления анализируемой системы и легкостью интерпретации причинно-следственных связей между концептами. Основные проблемы связаны с процессом построения когнитивной карты, который не поддается формализации. Кроме того, необходимо доказать, что построенная когнитивная карта адекватна реальной моделируемой системе. Для решения данных проблем разработаны алгоритмы автоматического построения когнитивных карт на основе выборки данных.

Нечеткая кластеризация

Нечеткие методы кластеризации, в отличие от четких методов (например, нейронные сети Кохонена), позволяют одному и тому же объекту принадлежать одновременно нескольким кластерам, но с различной степенью. Нечеткая кластеризация во многих ситуациях более "естественна", чем четкая, например, для объектов, расположенных на границе кластеров. Наиболее распространены: алгоритм нечеткой самоорганизации c-means и его обобщение в виде алгоритма Густафсона-Кесселя.

Литература

  • Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. – М.: Мир, 1976.
  • Круглов В.В., Дли М.И. Интеллектуальные информационные системы: компьютерная поддержка систем нечеткой логики и нечеткого вывода. – М.: Физматлит, 2002.
  • Леоленков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. – СПб., 2003.
  • Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. – М., 2004.
  • Масалович А. Нечеткая логика в бизнесе и финансах. www.tora-centre.ru/library/fuzzy/fuzzy-.htm
  • Kosko B. Fuzzy systems as universal approximators // IEEE Transactions on Computers, vol. 43, No. 11, November 1994. – P. 1329-1333.
  • Cordon O., Herrera F., A General study on genetic fuzzy systems // Genetic Algorithms in engineering and computer science, 1995. – P. 33-57.









Пример «Горячий чай" X= 0 C C; С = 0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100.


Пересечение двух нечетких множеств (нечеткое "И"): MF AB (x)=min(MF A (x), MF B (x)). Объединение двух нечетких множеств (нечеткое "ИЛИ"): MF AB (x)=max(MF A (x), MF B (x)).


Согласно Лотфи Заде лингвистической называется переменная, значениями которой являются слова или предложения естественного или искусственного языка. Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная.


Каждая лингвистическая переменная состоит из: названия; множества своих значений, которое также называется базовым терм- множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных; универсального множества X; синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка; семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.










Описание лингвистической переменной "Цена акции" X= Базовое терм-множество: "Низкая", "Умеренная", "Высокая"


Описание лингвистической переменной "Возраст"








«Мягкие вычисления" (Soft computing) нечёткая логика, искусственн ые нейронные сети, вероятностн ые рассуждени я эволюционн ые алгоритмы


























Построение сети (после выбора входных переменных) Выбрать начальную конфигурацию сети Провести ряд экспериментов с различными конфигурациями, запоминая при этом лучшую сеть (в смысле контрольной ошибки). Для каждой конфигурации следует провести несколько экспериментов. Если в очередном эксперименте наблюдается недообучение (сеть не выдаёт результат приемлемого качества), попробовать добавить дополнительные нейроны в промежуточный слой (слои). Если это не помогает, попробовать добавить новый промежуточный слой. Если имеет место переобучение (контрольная ошибка стала расти), попробовать удалить несколько скрытых элементов (а возможно и слоёв).


Задачи Data Mining, решаемые с помощью нейронных сетей Классификация (обучение с учителем) Прогнозирование Кластеризация (обучение без учителя) распознавание текста, распознавание речи, идентификация личности найти наилучшее приближение функции, заданной конечным набором входных значений (обучающих примеров задача сжатия информации путем уменьшения размерности данных


Задача "Выдавать ли кредит клиенту" в аналитическом пакете Deductor (BaseGroup) Обучающий набор - база данных, содержащая информацию о клиентах: – Сумма кредита, – Срок кредита, – Цель кредитования, – Возраст, – Пол, – Образование, – Частная собственность, – Квартира, – Площадь квартиры. Необходимо построить модель, которая сможет дать ответ, входит ли Клиент, желающий получить кредит, в группу риска невозврата кредита, т.е. пользователь должен получить ответ на вопрос "Выдавать ли кредит?" Задача относится к группе задач классификации, т.е. обучения с учителем.







Нечёткая логика и нейронные сети

Введение

Нечёткая логика (англ. fuzzy logic) - раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента к множеству, принимающей любые значения в интервале , а не только 0 или 1. На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах.

Направления исследований нечёткой логики

В настоящее время существует, по крайней мере, два основных направления научных исследований в области нечёткой логики:

Нечёткая логика в широком смысле (теория приближенных вычислений);

Нечёткая логика в узком смысле (символическая нечёткая логика).

Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы . После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Характеристическая функция

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует приналежность элементов фундаментальногомножества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.

Нечёткое множество и классическое, четкое (crisp ) множество

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода - {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при­надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х - возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } – множе­ство марок автомобилей, а Е" = - универсальное множество «Сто­имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при­надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни­версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е - множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

Логические операции

Включение. Пусть А и В - нечеткие множества на универсальном множестве Е. Говорят, что А содержится в В, если

Обозначение: А В.

Иногда используют термин доминирование, т.е. в случае, ко­гда А В, говорят, что В доминирует А.

Равенство. А и В равны, если

Обозначение: А = В.

Дополнение. Пусть М = , А и В – нечеткие множества, заданные на Е. А и В дополняют друг друга, если

Обозначение:

Очевидно, что (дополнение определено для М = , но очевидно, что его можно определить для любого упорядоченногоМ).

Пересечение. А В - наибольшее нечеткое подмножество, содержащееся одновременно в А и В:

Объединение. A В - наименьшее нечеткое подмножество, включающее как А, так и В, с функцией принадлежности:

Разность. с функцией принадлежности:

Дизъюнктивная сумма

А В = (A - B ) ∪ (B - A ) = (A ̅ B ) ∪ (̅A ⋂ B)

с функцией принадлежности:

Примеры. Пусть

Здесь:

1) А ⊂ В, т. е. А содержится в B или B доминирует А С несравнимо ни с A , ни с В, т.е. пары {А, С } и {А, С } - пары недоминируемых нечетких множеств.

2) A B C

3) ̅A = 0,6/x 1 + 0,8/x 2 + 1/x 3 + 0/x 4 ; ̅B = 0,3/x 1 + 0,1/x 2 + 0,9/x 3 +0/x 4 .

4) А В = 0,4/x 1 + 0,2/x 2 + 0/x 3 + 1 /х 4 .

5) A В = 0,7/x 1 + 0,9/x 2 + 0,1/x 3 + 1/x 4 .

6) А - В = А ̅В = 0,3/x 1 + 0,l/x 2 + 0/x 3 + 0/x 4 ;

В - А= ̅А В = 0,6/x 1 + 0,8/x 2 + 0,l/x 3 + 0/x 4 .

7) А В = 0,6/x 1 + 0,8/x 2 + 0,1/x 3 + 0/x 4 .

Наглядное представление логических операций над нечеткими множествами. Для нечетких множеств можно строить визуальное представление. Рассмотрим прямоуголь­ную систему координат, на оси ординат которой откладываются значения μ А (х), на оси абсцисс в произвольном порядке распо­ложены элементы Е (мы уже использовали такое представление в примерах нечетких множеств). Если Е по своей природе упо­рядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает нагляд­ными простые логические операции над нечеткими множествами (см. рис. 1.3).

Рис. 1.3. Графическая интерпретация логических операций:
α - нечеткое множество А; б - нечеткое множество̅А, в - А ̅А; г -A ̅А

На рис. 1.3α заштрихованная часть соответствует нечеткому множеству А и, если говорить точно, изображает область значений А и всех нечетких множеств, содержащихся в А. На рис. 1.3б , в, г даны ̅А, А ̅A, A U ̅А.

Свойства операций и

Пусть А, В, С - нечеткие множества, тогда выполняются сле­дующие свойства:

В отличие от четких множеств, для нечетких множеств в общем

A ̅A ≠ ∅, A ∪ ̅A ≠ E

(что, в частности, проиллюстрировано выше в примере наглядного представления нечетких множеств).

Замечание . Введенные выше операции над нечеткими мно­жествами основаны на использовании операций maxи min. В те­ории нечетких множеств разрабатываются вопросы построения обобщенных, параметризованных операторов пересечения, объеди­нения и дополнения, позволяющих учесть разнообразные смысло­вые оттенки соответствующих им связок «и», «или», «не».


Треугольные нормы и конормы

Один из подходов к операторам пересечения и объединения за­ключается в их определении в классе треугольных норм и конорм.

Треугольной нормой(t-нормой) называется бинарная операция (двуместная действительная функция)

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Примеры треугольных норм

min(μ A , μ B )

произведение μ A · μ B

max(0, μ A + μ B - 1 ).

Треугольной конормой (сокращенно -конормой) называется двухместная действительная функция

удовлетворяющая следующим условиям:

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Треугольная конорма является архимедовой , если она непрерывна
и для любого нечеткого множества выполнено неравенство .

Она называется строгой, если функция строго убывает по обоим аргументам.


Примеры t-конорм

max(μ A , μ B )

μ A + μ B - μ A · μ B

min(1, μ A + μ B ).

Примерами треугольных конорм являются следующие операторы :

Треугольная норма T и треугольная конорма S называются дополнительными бинарными операциями, если

T(a ,b ) + S (1 − a ,1 − b ) = 1

Наибольшей популярностью в теории Заде пользуются три пары дополнительных треугольных норм и конорм.

1) Пересечение и объединение по Заде:

T Z (a ,b ) = min{a ,b }, S Z (a ,b ) = max{a ,b }.

2) Пересечение и объединение по Лукасевичу:

3) Вероятностное пересечение и объединение:

Операторы дополнения

В теории нечетких множеств оператор дополнения не является единственным.

Помимо общеизвестного

существует целый набор операторов дополнения нечеткого множества .

Пусть задано некоторое отображение

.

Это отображение будет называться оператором отрицания в теории нечетких множеств , если выполняются следующие условия:

Если кроме этого выполняются условия:

(3) - строго убывающая функция

(4) - непрерывная функция

то она называется строгим отрицанием .

Функция называется сильным отрицанием или инволюцией , если наряду с условиями (1) и (2) для нее справедливо:

(5) .

Приведем примеры функции отрицания:

Классическое отрицание: .

Квадратичное отрицание: .

Отрицание Сугено: .

Дополнение порогового типа: .

Будем называть любое значение , для которого , равновесной точкой . Для любого непрерывного отрицания существует единственная равновесная точка.

Нечеткие числа

Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел ℝ с функцией принадлежности μ А (х ) ϵ , где х - действительное число, т.е. х ϵ ℝ.

Нечеткое число А нормально, если тах μ А (x ) = 1; выпуклое, если для любых х у z выполняется

μ А (х) μ А (у ) ˄ μ A (z ).

Множество α -уровня нечеткого числа А определяется как

Аα = {x /μ α (x ) ≥ α }.

Подмножество S A ⊂ ℝ называется носителем нечеткого числа А, если

S A = { x/μ A (x) > 0 }.

Нечеткое число А унимодально, если условие μ А (х ) = 1 спра­ведливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем, если

μ А (0) = sup (μ A (x )).

Нечеткое число А положительно, если ∀x ϵ S A , х > 0 и отрицательно, если ∀х ϵ S A , х < 0.

Нечеткие числа (L-R)-Tипа

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Функции принадлежности нечетких чисел (L-R)-типa задаются с помощью невозрастающих на множестве неотрицательных дей­ствительных чисел функций действительного переменного L(x ) и R(x ), удовлетворяющих свойствам:

а) L(-x ) = L(x ), R(-x ) = R(x );

б) L(0) = R(0).

Очевидно, что к классу (L-R)-функций относятся функции, графики которых имеют вид, приведенный на рис. 1.7.

Рис. 1.7. Возможный вид (L-R)-функций

Примерами аналитического задания (L-R)-функций могут быть

Пусть L(у )и R(у )- функции (L-R)-типа (конкретные). Уни­модальное нечеткое число А с модой а (т. е. μ А (а ) = 1) с помощью L(у )и R(у ) задается следующим образом:

где а - мода; α > 0, β > 0 - левый и правый коэффициенты нечеткости.

Таким образом, при заданных L(у )и R(у ) нечеткое число (уни­модальное) задается тройкой А = (а , α, β ).

Толерантное нечеткое число задается, соответственно, четвер­кой параметров А = (a 1 , а 2 , α, β ), где а 1 иа 2 - границы толе­рантности, т.е. в промежутке [a 1 , а 2 ] значение функции принад­лежности равно 1.

Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены на рис. 1.8.

Рис. 1.8. Примеры графиков функций принадлежности нечетких чисел (L-R)-типа

Отметим, что в конкретных ситуациях функции L(у), R(у), а также параметры а, β нечетких чисел , α, β ) и (a 1 , а 2 , α, β ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизи­тельно равен нечеткому числу с теми же L(у) и R(у), а параметры α" и β" результата не выходили за рамки ограничений на эти па­раметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.

Замечание . Решение задач математического моделирова­ния сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удоб­ства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стан­дартного вида.

Нечеткие множества, которыми приходится оперировать в боль­шинстве задач, являются, как правило, унимодальными и нор­мальными. Одним из возможных методов аппроксимации унимо­дальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.

Примеры (L-R)-представлений некоторых лингвистических пе­ременных приведены в табл. 1.2.

Таблица 1.2. Возможное (L-R)-представление некоторых лингвистических переменных

Нечеткие отношения

Нечеткие отношения играют фундаментальную роль в теории нечетких систем. Аппарат теории нечетких отношений используется при построении теории нечетких автоматов, при моделировании структуры сложных систем, при анализе процессов принятия решений.

Основные определения

Теория нечетких отношений находит также приложение в задачах, в которых традиционно применяется теория обычных (четких) отношений. Как правило, аппарат теории четких отношений используется при качественном анализе взаимосвязей между объектами исследуемой системы, когда связи носят дихотомический характер и могут быть проинтерпретированы в терминах "связь присутствует", "связь отсутствует", либо когда методы количественного анализа взаимосвязей по каким-либо причинам неприменимы и взаимосвязи искусственно приводятся к дихотомическому виду. Например, когда величина связи между объектами принимает значения из ранговой шкалы, выбор порога на силу связи позволяет преобразовать связь к требуемому виду. Однако, подобный подход, позволяя проводить качественный анализ систем, приводит к потере информации о силе связей между объектами либо требует проведения вычислений при разных порогах на силу связей. Этого недостатка лишены методы анализа данных, основанные на теории нечетких отношений , которые позволяют проводить качественный анализ систем с учетом различия в силе связей между объектами системы.

Обычное неразмытое -арное отношение определяется как подмножество декартова произведения множеств

Подобно нечеткому множеству, нечеткое отношение можно задать с помощью его функции принадлежности

где в общем случае будем считать, что - это полная дистрибутивная решетка. Таким образом, - это частично упорядоченное множество, в котором любое непустое подмножество имеет наибольшую нижнюю и наименьшую верхнюю грани иоперации пересечения и объединения в удовлетворяют законам дистрибутивности. Все операции над нечеткими отношениями определяются с помощью этих операций из . Например, если в качестве взять ограниченное множество вещественных чисел, то операциями пересечения и объединения в будут, соответственно, операции и , и этиоперации будут определять и операции над нечеткими отношениями .

Если множества и конечны, нечеткое отношение между и можно представить с помощью его матрицы отношения , первой строке и первому столбцу которой ставятся в соответствие элементы множеств и , а на пересечении строки и столбца помещается элемент (см. табл.2.1).

Таблица 2.1.
0,5 0,8
0,7 0,6 0,3
0,7 0,4

В случае, когда множества и совпадают, нечеткое отношение называют нечетким отношением на множестве X.

В случае конечных или счетных универсальных множеств очевидна интерпретация нечеткого отношения в виде взвешенного графа , в котором каждая пара вершин из соединяется ребром с весом .

Пример . Пусть и , тогда нечеткий граф , изображенный на рис рис. 2.1, задает некотороенечеткое отношение .

Рис. 2.1.

Свойства нечетких отношений

Различные типы нечетких отношений определяются с помощью свойств, аналогичных свойствам обычных отношений, причем для нечетких отношений можно указать различные способы обобщения этих свойств.

1. Рефлексивность :

2. Слабая рефлексивность :

3. Сильная рефлексивность :

4. Антирефлексивность :

5. Слабая антирефлексивность :

6. Сильная антирефлексивность :

7. Симметричность :

8. Антисимметричность :

9. Асимметричность :

10. Сильная линейность :

11. Слабая линейность :

12. Транзитивность :

Проекции нечетких отношений

Важную роль в теории нечетких множеств играет понятие проекции нечеткого отношения . Дадим определение проекции бинарного нечеткого отношения .

Пусть - функция принадлежности нечеткого отношения в . Проекции и отношения на и - есть множества в и с функцией принадлежности вида

Условной проекцией нечеткого отношения на , при произвольном фиксированном , называется множество с функцией принадлежности вида .

Аналогично определяется условная проекция на при заданном :

Из данного определения видно, что проекции и не влияют на условные проекции и , соответственно. Дадим далее определение , которое учитывает их взаимосвязь.

1

Мищенко В.А. 1 Коробкин А.А. 2

1 Воронежский государственный педагогический университет, Воронеж

2 Воронежский государственный университет, Воронеж

В данной статье рассмотрены принципы построения систем, основанных на нечеткой логике, кроме того, определен принцип построения логического вывода. Также рассматривается структура организации нечетких нейронных сетей на примере сети Ванга – Менделя. Описывается схема организации такой сети, ее структура, в частности, определены слои нейронной сети и описаны принципы функционирования каждого слоя. Кроме того, рассмотрен процесс обучения нечеткой нейронной сети Ванга – Менделя, включающий в себя подстройку весовых коэффициентов сети и настройку параметров функции Гауса. А также рассмотрен процесс обучения сети в случае, когда нахождения решения процесса обучения невозможно, а поиск параметров осуществляется таким образом, что все условия выполняются в некоторой степени. Также в статье проведен сравнительный анализ различных типов архитектур интеллектуальных систем.

нечеткая логика

нечеткие нейронные сети

1. Аксенов С.В., Новосельцев В.Б. Организация и использование нейронных сетей (методы и технологии) / Под общ. ред. В.Б. Новосельцева. – Томск: Изд-во НТЛ, 2006. – 128 с.

2. Батыршин И.З. Нечеткие гибридные системы. Теория и практика / Под ред. Н.Г. Ярушкиной. – М.ФИЗМАТЛИТ, 2007. – 208 с.

3. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. – М.: Финансы и статистика, 2002. – 344 с.

5. Яхъева Г.Э. Нечеткие множества и нейронные сети: Учебное пособие / Г.Э. Яхъева. – М.: Интернет-Университет Информационных технологий; БИНОМ. Лаборатория знаний, 2006. – 316 с.

Используемая в различных видах систем модель на основе нечеткой логики представляет собой базу знаний, построенную специалистами предметной области как множество нечетких правил вида:

Если x есть A 1 , то y есть B 1 ,

Если x есть A 2 , то y есть B 2 ,

Если x есть A n , то y есть B n ,

где х и y - входная и выходная переменная соответственно, а А и В - функции принадлежности .

Нечеткий логический вывод формируется в несколько шагов:

  • введение нечеткости: на этом этапе функции принадлежности применяются к фактическим значениям входных переменных;
  • логический вывод: вычисляется значение истинности для предпосылок каждого правила и применяется к заключениям каждого правила. Это приводит к одному нечеткому подмножеству, которое будет назначено каждой переменной вывода для каждого правила;
  • композиция: нечеткие подмножества, назначенные каждой переменной вывода, объединяют в одно множество для всех переменных вывода;
  • приведение к четкости: используется в случаях, когда необходимо преобразовать нечеткий набор выводов в четкое число.

На этих принципах построено большое количество сетей, рассмотрим подробнее одну из них - сеть Ванга - Менделя. Структура такой сети представляет собой четырехслойную нейронную сеть, в которой первый слой выполняет фазификацию входных переменных, второй - агрегирование значений активации условия, третий - агрегирование М правил вывода (первый нейрон) и генерацию нормализующего сигнала (второй нейрон), тогда как состоящий из одного нейрона выходной слой осуществляет нормализацию, формируя выходной сигнал .

В этой сети первый и третий слой являются параметрическими: первый слой содержит M* N*2 параметров функции Гаусса, а третий - М параметров w i.

Выходной сигнал сети Ванга - Менделя рассчитывается по формуле:

, (1)

где w i - весовой коэффициент, μ ij () - функция Гаусса с параметрами математического ожидания, которое определяет центр c ij и параметрами разброса, которые определяются средним квадратическим отклонением d ij ,

- функция Гаусса.

Рис. 1. Структура сети Ванга - Менделя

Задача сети состоит в построении такого отображения пар данных (x, d ), чтобы ожидаемое значение, соответствующее входному вектору x , формировалось выходной функцией y(x) .

Обучение нечетких сетей, также как и классических сетей, может проводиться по алгоритму с учителем, основанному на минимизации целевой функции, задаваемой с использованием евклидовой нормы как

, где p - количество обучающих пар (x, d ).

Для обучения нечеткой нейронной сети применяют алгоритм, включающий последовательное чередование следующих шагов:

  • для фиксированных значений параметров c ij и d i j первого слоя вычисляются значения параметров w i третьего слоя сети;
  • при зафиксированных значениях параметров w i третьего слоя уточняются параметры c ij и d ij первого слоя сети.

Таким образом, на первом этапе для K обучающих выборок , k=1, 2, ... K , получаем систему K линейных уравнений , где W - вектор, составленный из линейных коэффициентов w i , D - вектор эталонных ответов сети, . Количество строк K матрицы PV значительно больше количества ее столбцов. Решение этой системы линейных алгебраических уравнений может быть получено за один шаг следующим образом: , где - псевдообратная матрица для матрицы PV .

На втором этапе фиксируются значения коэффициентов полиномов третьего слоя и осуществляется уточнение (обычно многократное) коэффициентов функции Гаусса для первого слоя сети стандартным методом градиента: , , где k - номер очередного цикла обучения, v c - скорость обучения для коэффициентов c ij , v d - скорость обучения для коэффициентов d ij , - ошибка сети, где L - общее число обучающих выборок, y l - выход сети Ванга-Менделя для данной выборки, - эталонное значение выхода сети Ванга - Менделя .

Производные и вычисляются по формулам:

, .

Производные и можно найти по формулам:

, ,

где - функция Гаусса

Поскольку в череде этапов этап уточнения параметров функции Гаусса имеет много меньшую скорость сходимости, то в ходе обучения реализацию этапа 1, как правило, сопровождает реализация нескольких этапов 2.

Часто требуется найти «решение» системы, которая решений (в обычном смысле) не имеет. Выходом из ситуации является нахождение таких значений неизвестных параметров, что все условия системы выполняются «в некоторой степени».

Матрица A + называется псевдообратной матрицей для матрицы A , если . Отсюда сразу вытекает, что если матрица A имеет размер m x n , то псевдообратная матрица A + имеет размер n x m .

Опишем и другой, часто встречающийся в литературе подход к определению этого понятия. Сначала введём понятие псевдорешения системы уравнений. Пусть нам дана система уравнений

где A - матрица размера m x n , b - вектор из m элементов.

Любое решение этой системы является также и решением системы

Псевдорешением системы (2) называется решение системы (3) с минимальной нормой среди всех столбцов, имеющих минимальную невязку (норма вектора равна квадратному корню из суммы квадратов компонент вектора, а невязкой решения системы (2) называется норма вектора Ax-b ).

Псевдообратной матрицей для матрицы A размера m x n называется матрица A + , столбцы которой - псевдорешения систем вида Ax=e i ,

где e i - i -ый столбец единичной матрицы порядка m .

К универсальным способам нахождения псевдообратной матрицы относятся рекуррентные алгоритмы Гревиля и Фадеева. В данной работе приведем алгоритм Гревиля для псевдообращения матриц.

Пусть дана матрица A R min и a k - ее k -й столбец, k = 1, . . ., n .

Пусть A k - матрица, составленная из k первых столбцов матрицы A :

При k = 1: A 1 = a 1 , а при k = 2, . . . , n : ; A n =A.

Матрица A + R min может быть вычислена с помощью рекуррентного алгоритма:

1. Инициализация.

2. Цикл по k =2, ..., n.

, где I - единичная матрица порядка m ,

Полученная на последнем шаге матрица A + n и есть псевдообратная матрица, которая является искомым решением.

Принцип нечеткой логики достаточно давно используется для решения задач, в которых исходные данные являются слабо формализованными или же ненадежными. Основными преимуществами сетей с такой структурой являются:

  • удобство представления информации: описание постановки задачи и условий производится на языке близком к естественному;
  • универсальность: согласно теореме нечеткой аппроксимации, любая математическая модель может быть аппроксимирована системой, построенной на нечеткой логике;
  • эффективность: ряд теорем, подобных теоремам о полноте для искусственных нейронных сетей, показывают высокую эффективность работы таких сетей.

Однако, такой организации нейронных сетей присущ и ряд недостатков:

  • исходный набор нечетких правил формируется человеком, что не всегда является объективным, а иногда неполным или даже противоречивым;
  • вид и параметры данных, связывающих вход и выход, также определяются субъективно и не всегда отражают действительность.

Каждый тип архитектуры интеллектуальных систем обладает своими особенностями в части обучения сети, обработки данных и вычисления конечного результата, что позволяет использовать одни типы архитектур для решения задач, к которым не применимы другие. Так, например, использование искусственных нейронных сетей в задачах по распознаванию образов имеет широкое применение, однако, объяснить принцип работы сетей достаточно сложно. Сети могут самостоятельно получать данные и обрабатывать их, однако, процесс обучения сетей достаточно долог, кроме того, анализ полученной в конечном итоге сети достаточно сложен. При этом, ввод в нейронную сеть какой-либо заранее достоверной информации не возможен .

Рассматривая системы, построенные на нечеткой логике, можно утверждать обратное - данные, получаемые на выходе таких систем, легки в понимании, однако, такие системы не могут самостоятельно получать информацию, которую можно использовать в дальнейшем при формировании выходных данных.

Как мы видим, искусственные нейронные сети и системы с нечеткой логикой схожи между собой, однако, каждая из них имеет свои достоинства и недостатки. Данный вывод был взят за основу при создании нечетких нейронных сетей. Такие сети строят решение на основе аппарата нечеткой логики, однако функции принадлежности настраиваются с помощью алгоритмов обучения искусственных нейронных сетей . Кроме того, такие сети не только могут обучаться, но и способны учитывать априорную информацию. По своей структуре нечеткие нейронные сети схожи с многослойными сетями, например, с сетью, обучающейся по алгоритму обратного распространения, но скрытые слои в нечетких сетях соответствуют этапам работы нечеткой системы: первый слой производит введение нечеткости, исходя из заданных признаков входов; второй слой определяет множество нечетких правил; третий слой выполняет функцию приведения к четкости. В каждом из указанных слоев имеется набор параметров, настройка которых производится так же, как и настройка обычной нейронной сети.

Рецензенты:

  • Шашкин А.И., д.ф.-м.н., зав. кафедрой математического и прикладного анализа ФГБОУ ВПО «Воронежский государственный университет», г. Воронеж.
  • Кургалин С.Д., д.ф.-м.н., зав. кафедрой цифровых технологий ФГБОУ ВПО «Воронежский государственный университет», г. Воронеж.

Библиографическая ссылка

Мищенко В.А., Коробкин А.А. ПРИНЦИПЫ НЕЧЕТКОЙ ЛОГИКИ НА ПРИМЕРЕ НЕЧЕТКИХ НЕЙРОННЫХ СЕТЕЙ // Современные проблемы науки и образования. – 2012. – № 1.;
URL: http://science-education.ru/ru/article/view?id=5321 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Нейронечеткие или гибридные системы, включающие в себя нечеткую логику, нейронные сети, генетические алгоритмы и экспертные системы, являются эффективным средством при решении большого круга задач реального, мира.

Каждый интеллектуальный метод обладает своими индивидуальными особенностями (например, возможностью к обучению, способностью объяснения решений), которые делают его пригодным только для решения конкретных специфических задач.

Например, нейронные сети успешно применяются в распознавании моделей, они неэффективны в объяснении способов достижения своих решений.

Системы нечеткой логики, которые связаны с неточной информацией, ус­тно применяются при объяснении своих решений, но не могут автоматически пополнять систему правил, которые необходимы для принятия этих решений.

Эти ограничения послужили толчком для создания интеллектуальных гибридных систем, где два или более методов объединяются для того, чтобы преодолеть ограничения каждого метода в отдельности.

Гибридные системы играют важную роль при решении задач в различных приикладных областях. Во многих сложных областях существуют проблемы, связанные с отдельными компонентами, каждый из которых может требовать своих методов обработки.

Пусть в сложной прикладной области имеется две отдельные подзадачи, например задача обработки сигнала и задача вывода решения, тогда нейронная сеть и экспертная система будут использованы соответственно для ре этих отдельных задач.

Интеллектуальные гибридные системы успешно применяются во многих областях, таких как управление, техническое проектирование, торговля, о кредита, медицинская диагностика и когнитивное моделирование. Кроме того, диапазон приложения данных систем непрерывно растет.

В то время, как нечеткая логика обеспечивает механизм логического вывода из когнитивной неопределенности, вычислительные нейронные сети обладают такими заметными преимуществами, как обучение, адаптация, отказоустойчивость, параллелизм и обобщение.

Для того чтобы система могла обрабатывать когнитивные неопределенности так, как это делают люди, нужно применить концепцию нечеткой логики в нейронных сетях. Такие гибридные системы называются нечеткими нейронными или нечетко-нейронными сетями.

Нейронные сети используются для настройки функций принадлежи нечетких системах, которые применяются в качестве систем принятия решений.

Нечеткая логика может описывать научные знания напрямую, используя правила лингвистических меток, однако много времени обычно занимает процесс проектирования и настройки функций принадлежности, которые определяют эти метки.

Обучающие методы нейронных сетей автоматизируют этот процесс, существенно сокращая время разработки и затраты на получение данных функций.

Теоретически нейронные сети и системы нечеткой логики равноценны, поскольку они взаимно трансформируемы, тем не менее на практике каждая из них имеет свои преимущества и недостатки.

В нейронных сетях знания автоматически приобретаются за счет применения алгоритма вывода с обратным ходом, но процесс обучения выполняется относительно медленно, а анализ обученной сети сложен ("черный ящик").

Невозможно извлечь структурированные знания (правила) из обученной нейронной сети, а также собрать особую информацию о проблеме для того, чтобы упростить процедуру обучения.

Нечеткие системы находят большое применение, поскольку их поведение может быть описано с помощью правил нечеткой логики, таким образом, можно управлять, регулируя эти правила. Следует отметить, что приобретение знаний - процесс достаточно сложный, при этом область измене каждого входного параметра необходимо разбивать на несколько интервалов; применение систем нечеткой логики ограничено областями, в которых допустимы знания эксперта и набор входных параметров достаточно мал.

Для решения проблемы приобретения знаний нейронные сети дополняются свойством автоматического получения правил нечеткой логики из числовых данных.

Вычислительный процесс представляет собой использование следующих нечетких нейронных сетей. Процесс начинается с разработки "нечеткого нейро­на", который основан на распознавании биологических нейронных морфоло­гии согласно механизму обучения. При этом можно выделить следующие три этапа вычислительного процесса нечеткой нейронной сети:

    разработка нечетких нейронных моделей на основе биологических ней­ронов;

    модели синоптических соединений, которые вносят неопределенность в нейронные сети;

    разработка алгоритмов обучения (метод регулирования синоптических весовых коэффициентов).

На рис. П1.1 и П1.2 представлены две возможные модели нечетких нейрон­ных систем.

Полученное лингвистическое утверждение интерфейсный блок нечеткой ло­гики преобразует во входной вектор многоуровневой нейронной сети. Ней­ронная сеть может быть обучена вырабатывать необходимые выходные команды или решения

Многоуровневая нейронная сеть запускает интерфейсный механизм нечеткой логики.

Основные обрабатываемые элементы нейронной сети называют искусственными нейронами, или просто нейронами. Сигнал с нейронных входов xj считается однонаправленным, направление обозначено стрелкой, то же касается нейронного выходного сигнала

Рис. П1.2. Вторая модель нечеткой нейронной системы

Простая нейронная сеть представлена на рис. П1.3. Все сигналы и веса задаются вещественными числами.

Рис. П1.3. Простая нейронная сеть

Входные нейроны не изменяют входной сигнал, поэтому выходные и входные параметры совпадают.

При взаимодействии с весовым коэффициентом w t для сигнала х, получаем результат p = wi xi, i = 1, …, n. Элементы входной информации pi складываются и в результате дают входное значение для нейрона:

Нейрон применяет свою передаточную функцию, которая может быть сигмоидальной функцией вида:

Для вычисления выходного значения:

Эту простую нейронную сеть, которая производит умножение, сложение и вычисляет сигмоидальную функцию, назовем стандартной нейронной сетью.

Гибридная нейронная сеть - это нейронная сеть с нечеткими сигналами и весами, и нечеткими передаточными функциями. Однако: (1) можно объединить Xj и w h используя другие непрерывные операции; (2) сложить компонен­ты р1 с помощью других непрерывных функций; (3) передаточная функция может иметь вид любой другой непрерывной функции.

Обрабатывающий элемент гибридной нейронной сети называется нечетким нейроном.

Следует отметить на то, что все входные, выходные параметры и веса гиб­ридной нейронной сети представляют собой вещественные числа из интерва­ла .

Рис. П.4. Передаточная функция гибридной нейронной сети

П1.2. Нечеткие нейроны

Определение 1 - нечеткий нейрон И. Сигналы х, и w, объединяются опе­ратором максимума и дают:

Элементы входной информации р, объединяются с помощью оператора ми­нимума и в результате дают выходную информацию нейрона:

Определение 2 - нечеткий нейрон ИЛИ . Сигнал х, и вес w , объединяются оператором минимума:

Элементы входной информации р, объединяются с помощью оператора максимума и в результате дают выходную информацию нейрона:

Определение 3 - нечеткий нейрон ИЛИ (максимум Произведения)

Сигнал х, и вес w, объединяются оператором умножения:

Элементы входной информации р, объединяются с помощью оператора максимума и в результате дают выходную информацию нейрона:

Рис. П1.5. Передаточная функция нечеткого нейрона ИЛИ

Нечеткие нейроны И и ИЛИ осуществляют стандартные логические операции над значениями множества. Роль соединений заключается в том, чтобы различить конкретные уровни воздействия, которое может быть оказано отдельными входными параметрами на результат их объединения.

Известно, что стандартные сети являются универсальными аппроксиматорами, т. е. они могут аппроксимировать любую непрерывную функцию на компактном множестве с любой точностью. Задача с таким результатом является; неконструктивной и не дает информации о том, как построить данную сеть.

Гибридные нейронные сети применяются для реализации правил нечеткой логики IF-THEN конструктивным путем.

Хотя гибридные нейронные сети не способны использовать напрямую стан­дартный алгоритм вывода с обратным ходом, они могут быть обучены мето­дами наискорейшего спуска распознавать параметры функций принадлежно­сти, представляющих собой лингвистические термины в правилах



Просмотров