Стабилитрон на 3 вольта схема подключения. Стабилитрон - это что такое и для чего он нужен? Как правильно подключать светодиоды

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус "-". При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

  • 6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
  • 7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
  • 22. Характеристики выключения тиристора, время выключения (восстановление).
  • 8. Классификация исполнительных сэу.
  • 9. Классификация преобразовательных сэу.
  • 10. Простые и комбинированные преобразователи и их структурные схемы.
  • 17. Определение основных потерь в вентилях на низких частотах.
  • 11. Роль эвм, микропроцессорной техники в развитии сэу.
  • 12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
  • 13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
  • 14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
  • 15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
  • 16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
  • 18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
  • 20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
  • 23. Система параметров тиристора по току и напряжению.
  • 24. Система динамических параметров тиристора.
  • 21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
  • 34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
  • 25. Характеристики управляющего перехода тиристора и параметры цепи управления.
  • 26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
  • 27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
  • 29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
  • 28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
  • 33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
  • 30. Структура и вах тиристора-диода.
  • 32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
  • 36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
  • 38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
  • 37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
  • 39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
  • 41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
  • 42.Режимы работы спп в сэу и их характеристика.
  • 44. Исполнительные сэу, классификация, области использования.
  • 45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
  • 54. Преобразовательные сэу, классификация, области использования.
  • 46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
  • 51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
  • 52. Регулировочная характеристика последовательных шир, расчет основных элементов.
  • 53. Регулировочная характеристика параллельных шир, расчет основных элементов.
  • 55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
  • 56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 1. Схема однополупериодного выпрямления
  • 2. Двухполупериодная схема выпрямления с выводом нулевой точки
  • 3. Однофазная мостовая схема выпрямления
  • 57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
  • 61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
  • 66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
  • 67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
  • 68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
  • 40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
  • 72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.

    В настоящее время созданы силовые диоды на токи свыше 1000 А и напряжения свыше 1000 В.

    При последовательном и параллельном соединениях диодов из-за несовпадения их ВАХ возникают неравномерные распределения напряжений или токов между отдельными диодами. На рис. 1.3 представлены схемы: последовательного (рис. 1.3, а) и параллельного (рис; 1.3, 6) соединения двух диодов. Там же представлены прямые (рис. 1.3, г) и обратные (рис. 1.3, в) ветви ВАХ соединяемых диодов. Согласно приведенным ВАХ при последовательном соединении диодов, приложенное к ним обратное напряжение U R при одинаковых обратных токах I R распределяется между диодами неравномерно: к диоду VD1 прикладывается напряжение U R 1 , а к диоду VD 2 - напряжение U R 2 (рис. 1-3,в). При параллельном соединении диодов протекающий через них общий ток I F при одинаковых прямых падениях напряжения U F распределяется также неравномерно: через диод VD 1 протекает ток I F 1 , а чёрtp диод VD2 ток I F 2 (рис. 1.3,г). Для исключения выхода из строя диодов из-за перегрузки по току или перенапряжений принимают специальные меры по выравниванию указанных параметров между отдельными диодами. При последовательном соединении диодов для выравнивания напряжений обычно используются резисторы, включенные параллельно диодам, а при параллельном соединении - индуктивные делители различных типов.


    Рис. 1.3. Последовательное и параллельное соединение диодов

    20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.

    Стабилитрон (диод Зенера) - полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока). В основе работы стабилитрона лежат два механизма: Лавинный пробой p-n перехода

    Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе). Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом[источник не указан 304 дня], выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом[источник не указан 304 дня]. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения[источник не указан 321 день]. Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

    Виды стабилитронов: прецизионные - обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520); двусторонние - обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А); быстродействующие - имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).

    Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.

    Типовая схемавключения стабилитрона

    Обозначение стабилитрона на принципиальных схемах

    Обозначение двуханодного стабилитрона на принципиальных схемах

    Параметры. Напряжение стабилизации - значение напряжения на стабилитроне при прохождении заданного тока стабилизации. Пробивное напряжение диода, а значит, напряжение стабилизации стабилитрона зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Поэтому разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 В). Температурный коэффициент напряжения стабилизации - величина, определяемая отношением относительного изменения температуры окружающей среды при постоянном токе стабилизации. Значения этого параметра у различных стабилитронов различны. Коэффициент может иметь как положительные так и отрицательные значения для высоковольтных и низковольтных стабилитронов соответственно. Изменение знака соответствует напряжению стабилизации порядка 6В. Дифференциальное сопротивление - величина, определяемая отношением приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот. Максимально допустимая рассеиваемая мощность - максимальная постоянная или средняя мощность, рассеиваемая на стабилитроне, при которой обеспечивается заданная надёжность.

    Простейший параллельный стабилизатор состоит из балластного резистора, включенного последовательно между источником питания и нагрузкой, и стабилитрона, шунтирующего нагрузку на общий провод («на землю»). Его можно рассматривать как делитель напряжения , в котором в качестве нижнего плеча используется стабилитрон. Разница между напряжением питания и напряжением пробоя стабилитрона падает на балластном резисторе, а протекающий через него ток питания разветвляется на ток нагрузки и ток стабилитрона. Стабилизаторы такого рода называются параметрическими: они стабилизируют напряжение за счёт нелинейности вольт-амперной характеристики стабилитрона, и не используют цепи обратной связи.

    Расчёт параметрического стаилизатора на полупроводниковых стабилитронах аналогичен расчёту стабилизатора на газонаполненных приборах, с одним существенным отличием: газонаполненным стабилитронам свойственен гистерезис порогового напряжения. При емкостной нагрузке газонаполненный стабилитрон самовозбуждается, поэтому конструкции таких стабилизаторов как правило не содержат емкостных фильтров, а конструктору не нужно учитывать переходные процессы в этих фильтрах. В стабилизаторах на полупроводниковых стабилитронах гистерезис отсутствует, фильтрующие конденсаторы подключаются непосредственно к выводам стабилитрона и нагрузки - как результат, конструктор обязан учитывать броски тока заряда (разряда) этих емкостей при включении (выключении) питания. Наихудшими случаями, при которых вероятен выход из строя элементов стабилизатора или срыв стабилизации, являются:

    • Подача на вход стабилизатора максимально возможного напряжения питания при коротком замыкании выхода стабилизатора на общий провод - к примеру, на время зарядки разряженного конденсатора, подключенного непосредственно к выходу стабилизатора, или при катастрофическом отказе стабилитрона. Допустимая мощность рассеивания балластного резистора должна быть достаточной, чтобы выдержать подобное замыкание. В противном случае вероятно разрушение балластного резистора.
    • Подача на вход стабилизатора максимально возможного напряжения питания при отключении нагрузки от выхода стабилизатора. Допустимый ток стабилитрона должен превышать расчётный ток через балластный резистор, определяемый по закону Ома. В противном случае при разогреве кристалла стабилитрона свыше +175 °С стабилитрон разрушается. Соблюдение паспортной области безопасной работы так же важно для стабилитронов, как и для транзисторов .
    • Отбор нагрузкой максимально возможного тока при подаче на вход стабилизатора минимально возможного напряжения питания. Сопротивление балластного резистора должно быть достаточно мало, чтобы и в этих условиях ток через резистор превышал ток нагрузки на величину, равную минимально допустимому току стабилитрона. В противном случае ток стабилитрона прерывается, стабилизация прекращается.

    На практике часто оказывается, что соблюсти все три условия нельзя как по соображениям себестоимости компонентов, так и из-за ограниченного диапазона рабочих токов стабилитрона. В первую очередь можно поступиться условием защиты от короткого замыкания, доверив её плавким предохранителям или тиристорным схемам защиты, или положиться на внутреннее сопротивление источника питания, которое не позволит ему выдать и максимальное напряжение, и максимальный ток одновременно.

    Последовательное и параллельное включение

    В документации на стабилитроны иностранного производства возможность их последовательного или параллельного включения обычно не рассматривается. В документации на советские стабилитроны встречаются две формулировки:

    • для приборов малой и средней мощности «допускается последовательное или параллельное соединение любого числа стабилитронов» [одной серии];
    • для приборов средней и большой мощности «допускается последовательное соединение любого числа стабилитронов [одной серии]. Параллельное соединение допускается при условии, что суммарная рассеиваемая мощность на всех параллельно включенных стабилитронах не превосходит максимально допустимой мощности для одного стабилитрона».

    Последовательное соединение стабилитронов разных серий возможно при условии, что рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии. Шунтировать стабилитроны высокоомными выравнивающими резисторами так, как это делается в выпрямительных столбах, нет необходимости. «Любое число» последовательно соединённых стабилитронов возможно, но на практике ограничено техническими условиями на электробезопасность высоковольтных устройств. При соблюдении этих условий, при подборе стабилитронов по ТКН и их термостатировании возможно построение прецизионных высоковольтных эталонов напряжения. К примеру, в 1990-е годы лучшие в мире показатели стабильности имел стабилитронный эталон на 1 миллион В, построенный российской компанией «Мегавольт-Метрология» по заказу канадского энергетического института IREQ. Основная погрешность этой установки не превышала 20 ppm, а нестабильность по температуре - не более 2,5 ppm во всём рабочем диапазоне температур.

    Составной стабилитрон

    Если схема требует снимать со стабилитрона большие токи и мощности, чем это допустимо по техническим условиям, то между стабилитроном и нагрузкой включают буферный усилитель постоянного тока . В схеме «составного стабилитрона» коллекторный переход единственного транзистора, усиливающего ток, включен параллельно стабилитрону, а эмиттерный переход - последовательно со стабилитроном. Сопротивление, задающее смещение транзистора, выбирается таким образом, чтобы транзистор плавно окрывался при токе стабилитрона, примерно равном его номинальному току стабилизации. Например, при I ст.ном. =5 мА и U бэ.мин. =500 мВ сопротивление R=500 мВ/5 мA=100 Ом, а напряжение на «составном стабилитроне» равно сумме U ст.ном. и U бэ.мин. . При больших токах тразистор открывается и шунтирует стабилитрон, а ток стабилитрона прирастает незначительно - на величину, равную току базы транзистора, поэтому в первом приближении дифференциальное сопротивление схемы уменьшается в раз (- коэффициент усиления транзистора по току). ТКН схемы равен алгебраической сумме ТКН стабилитрона при I ст.ном. и ТКН прямо смещённого диода (примерно -2 мВ/°C), а её область безопасной работы на практике ограничена ОБР применяемого транзистора.

    Схема составного стабилитрона не предназначена для работы на «прямом токе», но легко преобразуется в двустороннюю («двуханодный стабилитрон») с помощью диодного моста .

    Базовая схема последовательного стабилизатора

    Простейшая схема последовательного стабилизатора также содержит только стабилитрон, транзистор и балластное сопротивление, но транзистор в ней включен по схеме с общим коллектором (эмиттерным повторителем). Температурный коэффициент такого стабилизатора равен алгебраической разнице U ст.ном. стабилитрона и U бэ.мин. транзистора; для нейтрализации влияния U бэ.мин. в практических схемах последовательно со стабилитроном включают прямо включенный диод VD2. Минимальное падение напряжения на регулирующем транзисторе можно снизить, заменив балластный резистор на транзисторный источник тока.

    Умножение напряжения стабилизации

    Для стабилизации напряжения, превосходящего максимальное напряжение типовых малогабаритных стабилитронов, можно собрать составной «высоковольтный стабилитрон», например, набрать напряжение 200 В из последовательно соединённых стабилитронов на 90, 90 и 20 В. Но в тоже время напряжение шумов и нестабильность такой схемы могут оказаться неприемлемо высоки, а фильтрация шума высоковольтной цепочки потребует дорогих, массивных конденсаторов . Существенно лучшие характеристики имеет схема с умножением напряжения единственного малошумящего низковольтного стабилитрона на напряжение 5…7 В. В этой схеме, также как и в обычном термокомпенсированном стабилитроне, опорное напряжение равно сумме напряжения пробоя стабилитрона и напряжения перехода база-эмиттер биполярного транзистора. Коэффициент умножения опорного напряжения определяется делителем R2-R3. Действительный коэффициент умножения несколько больше расчётного из-за ответвления тока в базу транзистора.

    По соображениям безопасности и простоты монтажа в стабилизаторе положительного напряжения удобнее применять pnp-транзистор, в стабилизаторе отрицательного напряжения - npn-транзистор. В таких конфигурациях коллектор силового транзистора электрически соединён с общим проводом и его можно крепить непосредственно к шасси без изолирующих прокладок. По соображениям доступности и себестоимости в стабилизаторах любой полярности проще и дешевле применять npn-транзисторы. При напряжениях и токах, типичных для ламповых усилителей, ёмкость конденсатора, шунтирующего стабилитрон, должна составлять несколько тысяч мкФ. При том она не только фильтрует низкочастотный шум стабилитрона, но и обеспечивает плавное нарастание напряжения при запуске схемы. Как результат, при включении питания возрастает тепловая нагрузка на последовательное сопротивление R1.

    ИОН на термокомпенсированном стабилитроне

    Термокомпенсированные стабилитроны обычно питаются постоянным током от транзисторного или интегрального источника тока. Использование базовой схемы с балластным резистором не имеет смысла, поскольку даже при питании схемы стабилизированным напряжением нестабильность по току будет неприемлемо велика. Слаботочные стабилитроны на ток 1 мА обычно запитываются от источников тока на биполярных транзисторах, полевых транзисторах с p-n-переходом, стабилитроны на ток 10 мА - от источников тока на МДП-транзисторах со встроенным каналом в режиме обеднения. Интегральные источники тока семейства LM134/LM334 допускают токи до 10 мА, но не рекомендуются к применению в схемах с током более 1 мА из-за высокой нестабильности по температуре (+0,336 %/°C).

    Высокоомные нагрузки с постоянным, относительно термостабильным, сопротивлением можно подключать непосредственно к выводам стабилитрона. В иных случах между стабилитроном и нагрузкой включается буферный усилитель на прецизионном операционном усилителе или на дискретных биполярных транзисторах. В грамотно спроектированных схемах такого рода, прошедших длительную электротермотренировку, нестабильность при длительной работе составляет порядка 100 ppm в месяц - существенно выше того же показателя прецизионных интегральных ИОН.

    Генератор белого шума на стабилитроне

    Собственные шумы стабилитрона лавинного пробоя имеют спектр, близкий к спектру белого шума. В стабилитронах на напряжение 9…12 В уровень шума достаточно высок для того, чтобы его можно было использовать для целенаправленной генерации шума. Частотный диапазон такого генератора определяется полосой пропускания усилителя напряжения и может простираться до сотен МГц. На приведённых иллюстрациях показаны две возможные конструкции усилителей: в первом случае верхняя граничная частота усилителя (1 МГц) задаётся ёмкостью С2, во втором она определяется полосой пропускания интегральных усилителей (900 Мгц) и качеством монтажа.

    Уровень шума конкретного стабилитрона мало предсказуем и может быть определён только опытным путём. Отдельные ранние серии стабилитронов отличались особо высоким уровнем шума, но по мере совершенствования технологии их вытеснили малошумящие приборы. Поэтому в серийных изделиях более оправдано применение не стабилитронов, а высокочастотных биполярных транзисторов в обратном включении, например, разработанного ещё в 1960-е годы транзистора 2N918 - спектр его шума простирается до 1 ГГц.

    Программируемые перемычки на стабилитронах

    Стабилитрон на базе обратно-смещённого эмиттерного перехода интегрального планарного npn-транзистора («поверхностный стабилитрон») отличается от дискретных стабилитронов малым предельным током стабилизации. Максимальный обратный ток, допустимый в типовой эмиттерной структуре с металлизацией алюминием , не превышает 100 мкА. При больших токах в приповерхностном слое происходит видимая глазу вспышка и под слоем оксида возникает алюминиевая перемычка, навсегда превращающая погибший стабилитрон в резистор с сопротивлением около 1 Ом.

    Этот недостаток интегральных стабилитронов широко используется в производстве аналоговых интегральных схем для точной подстройки их параметров. В технологии пережигания стабилитронов (англ. zener zapping ) параллельно с коммутируемыми сопротивлениями формируются элементарные стабилитронные ячейки. При необходимости скорректировать величину сопротивления цепи или коэффициент делителя напряжения ненужные стабилитронные ячейки пережигаются импульсами тока длительностью 5 мс и силой 0,3-1,8 A, закорачивая соответствующие им резисторы. Тот же приём может применяться и в цифровых ИС с металлизацией алюминием.

    Стабилитрон, он же диод Зенера, назван в честь первооткрывателя туннельного пробоя Кларенса Зенера и на схемах обозначается следующим образом.

    Но в отличие от выпрямительного диода ток через него может течь в обоих направлениях.


    Для лучшего понимания его работы, можно представить его как два диода, включённых встречно-параллельно, но с разным падением напряжения.


    Для любого стабилитрона, падение напряжение на одном из его диодов равно примерно 0.7 вольт, а падение напряжение на другом зависит от выбранного стабилитрона, так как разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 вольт). Например, для BZX55C3V3 прямое падение напряжение равно 0.7 вольта, а напряжение пробоя, по нашей аналогии падение напряжения на втором диоде, равно 3.3 вольта.

    Описанное выше становится более понятно если посмотреть на вольт - амперную характеристику(ВАХ) стабилитрона.


    Правая ветвь ВАХ аналогична ВАХ диода, а левая отвечает за тот самый туннельный пробой. Пока обратное напряжение не достигло напряжения пробоя, ток через стабилитрон практически не течёт, не считая утечки. При дальнейшем увеличении обратного напряжения, в определенный момент начинается пробой, он характеризуется загибом ВАХ. Дальнейшее увеличение обратного напряжения приводит к туннельному пробою, в этом состоянии ток через стабилитрон растёт, а напряжение нет.

    Отличительной чертой туннельного пробоя является, его обратимость, то есть после снятия приложенного напряжение стабилитрон вернётся в исходное состояние. Если же максимально допустимый ток будет превышен и произойдёт тепловой пробой, стабилитрон выйдет из строя.

    Простейшая схема стабилизатора на стабилитроне выглядит следующим образом.


    Давайте соберём её, подключив осциллограф вместо нагрузки и подадим на вход треугольный сигнал амплитудой 10 вольт. Напряжение генератора - первый канал, напряжение на стабилитроне - второй канал.


    На осциллограмме видно, что напряжение на стабилитроне изменяется от -0,88 до 3,04 вольта.

    Для того чтобы понять почему так происходит, давайте заменим схему выше двумя эквивалентными.
    При прямом включения стабилитрона, когда на аноде плюс, на катоде минус.


    При обратном включении стабилитрона, когда на аноде минус, на катоде плюс.

    До этого мы не учитывали величину сопротивление нагрузки. Прежде чем рассматривать как поведёт себя схема под нагрузкой, необходимо ознакомиться с основными характеристиками стабилитрона.

    • Vz - напряжение стабилизации , обычно указывается минимальное и максимальное значение
    • Iz и Zz - минимальный ток стабилизации и сопротивление стабилитрона
    • Izk и Zzk - ток и сопротивление в точке, где начинается "излом" характеристики
    • Ir и Vr - обратный ток и напряжение при заданной температуре
    • Tc - температурный коэффициент
    • Izrm - максимальный ток стабилизации
    Что же произойдёт когда мы подключим нагрузку?
    Ток, протекающий через стабилитрон уменьшиться, так как часть его потечёт через нагрузку. Вопрос в том насколько уменьшится, если ток через стабилитрон станет меньше минимального тока стабилизации стабилитрон перестанет стабилизировать напряжение и всё напряжение питания окажется приложенным к нагрузке. Из этого можно сделать вывод, что при отключенной нагрузке ток через стабилитрон должен быть равен сумме 2-х токов, минимального тока стабилизации и тока нагрузки.
    Эта сумма токов задается с помощью гасящего резистора, в нашей схеме его номинал 1К.

    Формула для его вычисления выглядит следующим образом



    Просмотров