Технические особенности применения светодиодов. Технико-экономические показатели светодиодных светильников

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.


Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.


1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.


Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования (электронного стабилизирующего блока).

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке . На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.


Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиода Материал Прямое напряжение при 20 мА
Типовое значение (В) Диапазон (В)
ИК GaAs, GaAlAs 1,2 1,1-1,6
Красный GaAsP, GaP, AlInGaP 2,0 1,5-2,6
Оранжевый GaAsP, GaP, AlGaInP 2,0 1,7-2,8
Желтый GaAsP, AlInGaP, GaP 2,0 1,7-2,5
Зеленый GaP, InGaN 2,2 1,7-4,0
Голубой ZnSe, InGaN 3,6 3,2-4,5
Белый Синий/УФ диод с люминофором 3,6 2,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.


Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 120 0 . По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I × U , где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.


Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.


Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.


Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

Параметр Китайский 2835 2835 0,2W 2835 0,5W 2835 1W
Сила светового потока, Лм 8 20 50 100
Потребляемая мощность, Вт 0,09 0,2 0,5 1
Температура, в градусах С +60 +80 +80 +110
Ток потребления, мА 25 60 150 300
Напряжение, В 3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 120 0 .


Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.


Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.


Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).


Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.


Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в коде Назначение Обозначения Расшифровка обозначения
1 Источник света LED Светодиод
2 Цвет свечения R Красный
G Зеленый
B Синий
RGB Любой
CW Белый
3 Способ монтажа SMD Surface Mounted Device (Устройство, монтируемое на поверхность)
4 Размер чипа 3028 3,0 х 2,8 мм
3528 3,5 х 2,8 мм
2835 2,8 х 3,5 мм
5050 5,0 х 5,0 мм
5 Количество светодиодов на метр длины 30
60
120
6 Степень защиты: IP International Protection
7 От проникновения твердых предметов 0-6 Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8 От проникновения жидкости 0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.


Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО "АСП Северо-Запад"

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”


Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.


Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.


Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.


В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.


Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).


Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Сделать это можно по формуле:

R = (VS – VL ) / I , где

  • VS – напряжение питания;
  • VL номинальное напряжение для светодиода;
  • I – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.


Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.


В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

При использовании светодиодов в качестве основного источника света возникает вопрос — какая мощность светильников для этого необходима. Чтобы на него ответить, нужно знать от чего зависит КПД светодиодов.

КПД светодиодного элемента

В идеальном светодиоде с КПД 100% каждый поступивший электрон излучает фотон света. Такая эффективность недостижима. В реальных устройствах она оценивается по соотношению светового потока к подведённой (потребляемой) мощности.

На этот показатель влияет несколько факторов:

  • Эффективность излучения . Это количество фотонов, излучаемых на p-n переходе. Падение напряжения на нём составляет 1,5-3В. При дальнейшем повышении напряжения питания, оно не растёт, а увеличивается ток через прибор и яркость света. В отличие от лампы накаливания, она имеет линейную зависимость от протекающего тока только до определённой величины. При дальнейшем повышении тока дополнительная электрическая мощность расходуется только на нагрев, что ведёт к падению КПД.
  • Оптический выход . Все выделенные фотоны должны излучаться в окружающее пространство. Именно это является главным сдерживающим фактором для увеличения КПД светодиодов.
  • Некоторые светодиоды для лучшей передачи цвета покрываются слоем люминофора. В этом случае на КПД устройства дополнительно влияет эффективность преобразования света .

В начале XXI века нормой считался КПД 4%, а сейчас поставлен рекорд в 60%, что в 10 раз больше, чем у лампы накаливания.

«Средний по больнице» КПД для топовых производителей типа Philips или Cree колеблется 35-45%. Точные параметры можно увидеть в даташите конкретной модели. КПД для бюджетных китайских светодиодов — это всегда рулетка с разбросом 10-45%.

Но это теоретические показатели, на которые мы повлиять не можем. На практике ключевую роль играют ток, подаваемый на диод и температурный режим. Прекрасную работу проделал пользователь ютуба под ником berimor76, показав на практике зависимость светового потока от подаваемого тока и температуры. Смотрим видео.

КПД источника питания

Кроме КПД самих светодиодов, на энергоэффективность светодиодных ламп и светильников оказывает влияние источник питания. Они есть двух типов:

  • Блок питания. Подаёт на светодиоды постоянное, заранее заданное напряжение, независимо от потребляемого тока.
  • Драйвер. Обеспечивает постоянное значение тока. Напряжение при этом значения не имеет.

Блок питания

Блок питания подаёт на светодиод напряжение, превышающее необходимое для открытия p-n перехода. Но сопротивление открытого диода очень мало. Поэтому для ограничения тока последовательно с источником света устанавливается резистор. Мощность, выделяющаяся на нём, полностью превращается в тепло, что понижает КПД светодиодного светильника. Например, в led-ленте потери составляют около 25%.

Более совершенным и экономичным устройством является электронный драйвер.

Драйвер

Драйвер для питания светодиодов обеспечивает их током постоянной величины. Диоды подключаются к устройству последовательно в количестве, которое зависит от рабочего напряжения светодиодов и максимального напряжения устройства.


В светодиодных лампах вместо драйвера используется токоограничивающий конденсатор. При прохождении через него электрического тока выделяется так называемая реактивная мощность. Она не превращается в тепло, но электросчётчик её всё равно учитывает. КПД такого «драйвера» зависит от количества диодов, включённых последовательно с ним.


Электронный драйвер устанавливается в светильниках большой мощности или в переносных устройствах, где экономия электроэнергии или ёмкости батарей важнее цены за устройство.

КПД светильника

При организации освещения, в том числе светодиодного, имеет значение КПД форм-фактора светильника. Это соотношение всего света, выходящего из светильника к световому потоку, излучаемому самой лампой.

Любая конструкция светильника, даже сделанная из зеркал или прозрачного стекла, поглощает свет. Идеальный вариант без потерь — это патрон с лампочкой, подвешенный на проводах.

Но это редкий случай, когда идеальный не значит лучший. Световой поток от лампочки на проводе направлен во все стороны, а не только в нужную. Конечно, свет, попавший на потолок или стены отражается от них, но далеко не весь, особенно под открытым небом или в комнате с тёмными обоями.


Этим же недостатком обладает светодиодная лампа с разносторонним расположением элементов («кукуруза») или с матовым рассеиванием. В последнем случае рассеиватель дополнительно поглощает свет.

В отличие от таких светильников, led-лампа с односторонним расположением диодов направляет свет в одну сторону. КПД светильника с такой лампой близка к 100%. Освещённость, создаваемая ею выше, чем у другой, с таким же световым потоком, но направленным в разные стороны.


Это связано с конструктивными особенностями светодиодов — в отличие от ламп накаливания и люминесцентных (энергосберегающих), имеющих круговую направленность излучения, они излучают свет в диапазоне 90-120 градусов. Теми же свойствами обладают светодиодные ленты и прожектора, излучающие свет только в одном направлении.

Таким образом, максимальный световой поток на ватт мощности излучают светодиоды в прожекторах со встроенным электронным драйвером.

Традиционный подход к светодиодным светильникам часто приводит к непониманию принципиальных обстоятельств. Речь идет о КПД светильников и влиянии конструкции светильников светодиодных и обычных на КПД.

КПД светильника — это отношение выходящего из светильника светового потока ко всему световому потоку, создаваемому источником света. Например, светильник в виде лампочки без осветительной арматуры, в первую очередь без отражателя, имеет КПД — 100 %. Это вовсе не значит, что это идеал, к которому надо стремиться, для светильников — меньше КПД, это ещё не значит хуже. Любые попытки сконцентрировать свет (направить) приводит к уменьшению КПД. Но способ концентрации и качество отражателя могут быть разными, и светильники будут иметь разный КПД. Сравнивать светильники по КПД можно только те, которые имеют похожее светораспределение (КСС), в этом случае КПД будет определяться качеством оптической системы светильника (отражателя, стекла). Светильники с разными КСС сравнивать по КПД не имеет смысла!

Принципиальное отличие светодиодов от ламп в том, что они светят только в одной полуплоскости. То есть светодиодный светильник без осветительной арматуры (100 % КПД) будет направленным! Угол излучения у светодиодов без вторичной оптики 90-120 градусов. Например, если сравнивать два «светильника» в виде лампочки и светодиода (100 % КПД) с одинаковым световым потоком, то на оси лампы на одинаковом расстоянии освещенность будет примерно в 2 раза меньше, чем на оси светодиода. Если же попытаться собрать световой поток лампы при помощи отражателя (добиться того же угла излучения), то в любом случае получить такую же освещенность, которую даёт светодиод не удастся из-за потерь на отражении. В этой связи замена источника света в виде лампочки на светодиодный источник в направленных светильниках будет иметь смысл, даже если эти источники имеют одинаковую световую эффективность (лм / Вт).

Если в светильнике с лампой имеется плоское стекло, то есть весь источник света «погружен» внутрь светильника, КПД светильника значительно уменьшится из-за того, что основная часть света, выходящая из светильника, будет отраженной, то есть с потерями на отражении. Для светодиодного светильника такой конструкции уменьшение КПД практически не происходит (только потери в стекле порядка 5 %), хотя интуитивно кажется, что по аналогии с ламповыми светильниками КПД должно уменьшиться.

Ламповый светильник с плоским стеклом будет иметь КПД порядка 50-60 %.

Светодиодный светильник с плоским стеклом будет иметь КПД порядка 95 %.

Это и есть основное принципиальное отличие светодиодных светильников от ламповых. Направленные светодиодные светильники гораздо более эффективны направленных ламповых светильников. Это связано в значительной степени с конструктивными особенностями светодиодов, а не только с их высокой световой эффективностью.

Понимание этого обстоятельства должно привести к пересмотру подходов в расчетах осветительных установок с применением светодиодных светильников.

Насколько на самом деле эффективны светодиоды и как продлить их срок службы?

Каким образом измерить в домашних условиях их КПД и повысить эффективность, а также увеличить долговечность светодиодных светильников?

Чтобы ответить на все эти вопросы, достаточно провести несколько наглядных экспериментов, причем без использования каких-то сложных лабораторных приборов.
Светодиод – это один из самых эффективных и простых в использовании источников света. Однако при этом, большую часть потребляемой энергии он все равно расходует впустую, преобразуя ее не в свет, а в тепло.

Сравнивать светодиоды с обычной лампочкой конечно же не нужно, тут они убежали далеко вперед. Но как вы думаете, насколько высок у них реальный КПД?

Как измерить КПД светодиода

Давайте это проверим в живую, не по надписям на упаковках и данным таблиц в интернете, а колориметрическим методом в домашних условиях.

Если опустить светодиод в воду и замерить разницу температур до его включения и спустя некоторое время после, то можно выяснить, сколько энергии от него перейдет именно в тепло.

Зная общее количество затраченной энергии и энергии ушедшей в тепло, можно реально узнать сколько пользы от данного источника света перешло именно в свет.

Емкость в которой будут производиться измерения, должна быть изолирована от колебаний температуры снаружи и внутри. Для этого подойдет обычная колба от термоса.

При определенной доработке, у вас получится вполне годный самодельный колориметр.

Чтобы изолировать и предотвратить утечки тока, все провода и выводы на светодиоде следует покрыть толстым слоем электроизоляционного лака.

Перед экспериментом заливаете во внутрь колбы 250мл дистиллированной воды.

Опускаете светодиод в воду, так чтобы она полностью его покрывала. При этом свет должен беспрепятственно выходить наружу.

Включаете питание и начинаете отсчет времени.

Через 10 минут выключаете напряжение и опять замеряете температуру воды.

При этом не забудьте хорошенько ее перемешать.

Теперь нужно повторить эксперимент, но на этот раз, плотно заклейте матрицу каким-нибудь непрозрачным материалом. Это необходимо, дабы энергия не могла покинуть систему в виде света.

Опыт с заклеенным экземпляром повторяется опять в той же последовательности:

  • 250мл дистиллированной воды
  • замер начальной температуры
  • 10 минут ”свечения”
  • замер конечной температуры

1 of 4





После всех измерений и экспериментов, можно переходить к расчетам.

Расчет эффективности

Допустим, для данной модели среднее потребление источника света равняется 47,8Вт. Время работы – 10минут.

Если подставить эти данные в формулу, то получим, что за время в 600 секунд, на свечение светодиода было затрачено 28 320 Дж.

В случае с заклеенной моделью, вода нагрелась с 27 до 50 градусов. Теплоемкость воды 4200Дж, а масса – 0,25кг.

Еще 130 Дж на каждый градус, ушло на нагрев колбы, плюс нужно прибавить энергию на нагрев самого светодиода. Он весит 27 грамм и в основном состоит из меди. В итоге получается цифра в 27377 Дж.

Отношение выделившейся энергии и затраченной будет равняться 96,7%. То есть, не хватает более 3%. Это как раз таки и есть тепловые потери.

В случае с открытым светодиодом, вода нагрелась с 28 до 45 градусов. Все остальные переменные остались прежними. Расчет здесь будет выглядеть следующим образом:

Какой же итог можно сделать из всех этих опытов и вычислений?

Как видно из этого небольшого эксперимента, непосредственно в виде света, систему покинуло около 28% энергии. А если учесть 3% тепловых потерь, то и вовсе остается всего 25%.

Как видите, до идеальных источников света, как их представляют многие продавцы, светодиодам еще очень далеко.

Хуже того, на рынке зачастую встречаются модели, крайне низкого качества с еще меньшим КПД.

Яркость и мощность

Давайте теперь сравним яркость разных моделей и посмотрим от чего она зависит и можем ли мы как то на это влиять. Чтобы провести достоверное сравнение, воспользуйтесь обычным куском трубы и люксометром.

Допустим, испытанный ранее качественный образец, обеспечивает освещенность 1100 люкс. И это при потребляемой мощности в 50 Вт.

А если взять более дешевую модель? Данные могут получиться в два раза ниже – менее 5500 Лк.

И это при одинаковой мощности! Получается, что заплатите вы за свет столько же как и в первом случае, а получите его на 50% меньше.

А можно ли получить в 3 раза больше света, затрачивая как можно меньше энергии?

Можно, но для этого понадобится светодиод работающий в немного другом режиме. Чтобы понять как это сделать, нужно провести еще немного измерений.

В первую очередь, вас должен интересовать момент зависимости яркости от потребляемой мощности. Постепенно повышайте мощность и следите за показаниями люксометра.

В итоге вы выйдите на такую вот нелинейную зависимость.

Если бы она была линейной, вы бы получили что-то вроде этого.

Получится еще интересней, если посчитать относительную эффективность светодиода, за 100% взяв значение мощности в 50Вт.

Видите, как прослеживается ухудшение его эффективности. Такое ухудшение с повышением мощности, присуще всем светодиодам. И причин этому несколько.

Почему ухудшается эффективность светодиодов

Одна из них, конечно же нагрев. С повышением температуры, снижается вероятность образования фотонов в p-n переходе.

К тому же уменьшается и энергия этих фотонов. Даже при хорошем охлаждении корпуса, температура p-n перехода может быть на десятки градусов выше, так как он отделен от металла подложкой из сапфира.

А она не очень хорошо проводит тепло. Разницу температур можно посчитать, зная размеры кристалла и выделяемую на нем теплоту.

При выделяющейся теплоте в 1Вт, учитывая толщину и площадь подложки, температура перехода будет на 11,5 градусов выше.

В случае с дешевым светодиодом все намного хуже. Здесь результат – более 25 градусов.

Высокая температура перехода приводит к быстрой деградации кристалла, сокращая его срок службы. Отсюда и возникают моргания, мигания и т.п.

Интересно, производители не знают про эту разницу в температуре или намеренно создают обреченные устройства?

Нередко компоненты, казалось бы в нормальных, дорогих светильниках, работают в предельных режимах, на максимальных температурах без какого-либо запаса прочности.

Пока ток небольшой, оно не заметно. Но из-за квадратичной зависимости, с увеличением тока все большая часть энергии превращается в бесполезное тепло.

Как увеличить эффективность

То есть, подключить параллельно еще один светодиод, тем самым в два раза уменьшив потери на сопротивление. И этот метод, конечно работает.

Подключив в светильник параллельно два светодиода вместо одного, вы получите больше света с меньшими затратами энергии и соответственно меньше нагрева.

Безусловно, это продлевает и срок службы светодиода.

Можно не останавливаться и подключить 3,4 диода вместо одного, хуже не будет.

А если места для нескольких светодиодов недостаточно, то можно поставить светодиод изначально рассчитанный на большую мощность. Например 100 ваттный, в 50 ваттный светильник.

Именно таким образом можно поднять эффективность светильника в несколько раз, при тех же затратах энергии, что и на первоначальном источнике, но меньшей мощности, и работающего на пределе своих возможностей.

Более того, используя не больше трети мощности от максимальной, вы навсегда забудете, что такое замена сгоревших светодиодов.

При этом эффективность их работы и КПД заметно возрастут.

Поэтому при покупке светодиодов, всегда интересуйтесь размером кристаллов. Ведь от этого зависит их охлаждение и внутреннее сопротивление.

Здесь действует правило – чем больше, тем лучше.

Путем соответствующего выбо­ра полупроводникового материала и присадки можно целенаправленно воздействовать на характеристики светового излучения светодиодно­го кристалла, прежде всего на спект­ральную область излучения и эффек­тивность преобразования подводимой энергии в свет:

  • GaALAs - арсенид галлия алюминия; на его базе - красные и инфракрас­ные светодиоды.
  • GaAsP - фосфид арсенида галлия; AlInGaP - фосфид алюминий-ин­дий-галлий; красные, оранжевые и желтые светодиоды.
  • GaP - фосфид галлия; зеленые све­тодиоды.
  • SiC - карбид кремния; первый, ком­мерчески доступный голубой светодиод с низкой световой эффектив­ностью.
  • InGaN - нитрид индия-галлия; GaN - нитрид галлия; УФ голубые и зеле­ные светодиоды.

Для получения белого излучения с той или иной цветовой температурой имеются три принципиальные возмож­ности:

1. Преобразование излучения голубо­го светодиода желтым люминофо­ром (рисунок 1а).

2. Преобразование излучения УФ-све-тодиода тремя люминофорами (ана­логично люминесцентным лампам с так называемым трехполосным спектром) (рисунок 1б).

3.Аддитивное смешение излучений красного, зеленого и голубого светодиодов (RGB-принцип, аналогичный технологии цветного TV). Цветовой оттенок излучения белых светодиодов может быть охарактеризо­ван значением коррелированной цвето­вой температуры.

Большинство типов современных белых светодиодов выпускается на базе голубых в комбинации с конвер­сионными люминофорами, которые позволяют получить белое излучение с широким диапазоном цветовой температуры - от 3000 К (тепло-белый свет) до 6000 К (холодный дневной свет).

Работа светодиодов в схемах питания

Кристалл светодиода начинает излучать, когда в нем протекает ток в прямом направлении. Светодиоды имеют экспоненциально возрастающую вольтамперную характеристику. Обычно они питаются постоянным стабилизированным током или постоянным напряжением с предвключенным ограничивающим сопротивлением. Это предотвращает нежелательные измене­ния номинального тока, которые влияют на стабильность светового потока, а в худшем случае могут даже привести к повреждению светодиода.
При небольших мощностях используются аналоговые линейные регуляторы, для питания мощных диодов - сетевые блоки со стабилизированным током или напряжением на выходе. Обычно светодиоды включаются последовательно, параллельно или в последовательно-параллельные цепочки (см. рисунок 2).

Плавное снижение яркости (диммирование) светодиодов осуществляется регуляторами с широтно-импульсной модуляцией (ШИМ) или уменьшени­ем прямого тока. Посредством сто­хастической ШИМ можно добиться минимизации спектра помех (проблема электромагнитной совместимости). Но в данном случае при ШИМ может наблюдаться мешающая пульсация излучения светодиода.
Величина прямого тока варьируется в зависимости от модели: например, 2 мА - у миниатюризированных светодиодов плоскостного монтажа (SMD-LED), 20 мА - у светодиодов диаметром 5 мм с двумя внешними токовводами, 1 А.- у мощных светодиодов для целей освещения. Прямое напряжение UF обычно лежит в пределах от 1,3 В (ИК-диоды) до 4 В (светодио-ды на базе нитрида индия-галлия - белые, голубые, зеленые, УФ).
Между тем уже созданы схемы питания, позволяющие подсоединять светодиоды непосредственно к сети переменного тока 230 В. Для этого две ветви светодиодов включаются антипарал-лельно и подсоединяются к стандартной сети через омическое сопротивление. В 2008 году профессор П. Маркс получил патент на схему регулирования яркости светодиодов, питаемых стабилизированным переменным током (см. рисунок 3).
Южнокорейская фирма Seoul Semiconductors интегрировала схему (рисунок 3) с двумя антипараллельными цепочками, (в каждой из которых большое количество светодиодов) непосредственно в одном чипе (Acriche-LED). Прямой ток светодиодов (20 мА) ограничивается омическим сопротивлением, подключенным последовательно к антипараллельной схеме. Прямое напряжение на каждом из светодиодов составляет 3,5 В.

Энергетический КПД

Энергетическая эффективность светодиодов (КПД) - отношение мощности излучения (в Ваттах) к электрической потребляемой мощности (в светотехнической терминологии это энергетическая отдача излучения - т|е).
В тепловых излучателях, к которым относятся классические лампы накаливания, для генерации видимого излучения (света) необходим нагрев спирали до определенной температуры. Причем основная доля подводимой энергии преобразуется в тепловую (инфракрасное излучение), а в видимое излучение трансформируется только?е = 3% у обычных, и че - 7% - у галогенных ламп накаливания.


Светодиоды для применения в прикладной светотехнике преобразуют подводимую электроэнергию в видимое излучение в очень узкой спектральной области, причем в кристалле возникают тепловые потери. Это тепло должно отводиться от светодиода специальными конструктивными методами с тем, чтобы обеспечить необходимые световые, цветовые параметры и максимальный срок службы.
У светодиодов для целей освещения и сигнализации ИК- и УФ-составляющие в спектре излучения практически отсутствуют, и такие светодиоды имеют значительно более высокую энергетическую эффективность, чем тепловые излучатели. При благоприятном тепловом режиме у светодиодов в свет преобразуется 25% подводимой энергии. Поэтому, например, у белого светодиода мощностью 1 Вт примерно 0,75 Вт приходится на тепловые потери, что требует в конструкции светильника наличия теплоотводящих элементов или даже принудительного охлаждения. Такое управление тепловым режимом светодиодов приобретает особую значимость. Желательно, чтобы производители светодиодов и светодиодных модулей приводили в перечне характеристик своих изделий значения энергетического КПД


Управление телпловым режимом
Напомним, что почти 3/4 электроэнергии, потребляемой светодиодом, преобразуется в тепло и только 1/4 - в свет. Поэтому при конструировании светодиодных светильников решающую роль в обеспечении их максимальной эффективности играет оптимизация теплового режима светодиодов, проще говоря, интенсивное охлаждение.

Как известно, передача тепла от нагретого тела осуществляется за счет трех физических процессов:

1. Излучение


Ф = W? =5,669?10-8?(Вт/м2?К4)??А?(Тs4 – Та5)
где: W? – поток теплового излучения, Вт
? – коэффициент излучения
Тs – температура поверхности нагретого тела, К
Та – температура поверхностей, ограничивающих помещение, К
А – площадь излучающей тепло поверхности, м?

2. Конвекция


Ф = ?? А?(Тs-Та)
где: Ф – тепловой поток, Вт
А – площадь поверхности нагретого тела, м?
? – коэффициент теплопередачи,
Тs – температура граничной теплоотводящей среды, К
Та – температура поверхности нагретого тела, К
[для неполированных поверхностей? = 6…8 Вт /(м?К)].

3. Теплопроводность


Ф = ?T?(А/l) (Тs-Та) =(?T/Rth)
где: Rth= (l / ?T?A) – тепловое сопротивление, K/Вт,
Ф – тепловая мощность, Вт
A – поперечноесечение
l-длина - ?T – коэффициент теплопроводности, Вт/(м?К)
для керамических элементов охлаждения?T=180 Вт/(м?К),
для алюминия – 237 Вт/(м?К),
для меди – 380 Вт/(м?К),
для алмаза – 2300 Вт/(м?К),
для углеродных волокон – 6000 Вт/(м?К)]

4. Тепловое сопротивление


Суммарное тепловое сопротивление рассчитывается как:

Rth парал.общ.=1/[(1/ Rth,1)+ (1/ Rth, 2)+ (1/ Rth,3)+ (1/ Rth,n)]

Rth последобщ. = Rth,1 + Rth, 2 + Rth,3 +....+ Rth,n

Резюме
При дизайне светодиодных светильников необходимо принять все возможные меры для облегчения теплового режима светодиодов за счет теплопроводности, конвекции и излучения. Поэтому первоочередная задача при конструировании светодиодных светильников – обеспечить отвод тепла за счет теплопроводности специальных охлаждающих элементов или конструкции корпуса. Тогда уже эти элементы будут отводить тепло излучением и конвекцией.
Материалы теплоотводящих элементов по возможности должны иметь минимальное тепловое сопротивление.
Хорошие результаты были получены с теплоотводящими узлами типа “Heatpipes”, обладающими экстремально высокими теплопроводящими свойствами.
Один из лучших вариантов теплоотвода – керамические подложки с предварительно нанесенными токоведущими трассами, непосредственно к которым подпаиваются светодиоды. Охлаждающие конструкции на базе керамики отводят примерно в 2 раза больше тепла по сравнению с обычными вариантами металлических охлаждающих элементов.
Взаимосвязь электрических и тепловых параметров светодиода проиллюстрирована на рис. 4.
На рис. 5 показана типовая конструкция мощного светодиода с алюминиевым охлаждающим элементом и цепь тепловых сопротивлений, а на рис. 6-8 – различные методы охлаждения.

Излучение

Поверхность осветительного прибора, на которой монтируется светодиод или модуль с несколькими светодиодами не должна быть металлической, поскольку металлы обладают очень низким коэффициентом излучения. Поверхности светильников, контактирующие со светодиодами, должны, по возможности, иметь высокий спектральный коэффициент излучения?.



Конвекция

Желательно иметь достаточно большую площадь поверхности корпуса светильника для беспрепятственного контакт с потоками окружающего воздуха (специальные охлаждающие ребра, шероховатая структура и т.д.). Дополнительный отвод тепла могут обеспечить принудительные меры: минивентиляторы или вибрирующие мембраны.



Теплопроводность

Из-за очень небольшой площади поверхности и объема светодиодов необходимое охлаждение за счет излучения и конвенции не достигается.

Пример расчета теплового сопротивления для белого светодиода


UF= 3,8 В
IF = 350 мА
PLED = 3,8 В? 0,35 A = 1,33 Вт
Поскольку оптический КПД светодиода равен 25%, то только 0,33 Вт преобразуется в свет, а остальные 75% (Pv=1 Вт) – в тепло. (Зачастую в литературе при расчете теплового сопротивления RthJA допускают ошибку, принимая, что Pv = UF ? IF = 1,33 Вт – это неверно!)

Максимально допустимая температура активного слоя (p-n – перехода – Junction) TJ = 125°C (398 K).

Максимальная окружающая температура ТA = 50°С (323 К).

Максимальное тепловое сопротивление между запирающим слоем и окружением:

RthJA= (TJ – TA)/ Pv = (398 K – 323K)/1 Вт = 75 К/Вт

Согласно данным производителя, тепловое сопротивление светодиода

RthJS = 15 К/Вт


Необходимое тепловое сопротивление дополнительных теплоотводящих элементов (охлаждающие ребра, теплопроводящие пасты, клеющие компаунды, плата):

RthSA= RthJA – RthJS = 75-15 = 60 К/Вт

На рис. 9 пояснены тепловые сопротивления для диода на плате.
Взаимосвязь температуры активного слоя и теплового сопротивления между запирающим (активным) слоем и точкой припоя выводов кристалла определяет формула:

TJ= UF ? IF ? ?e? RthJS + ТS

где ТS – температура, измеренная в точке припоя выводов кристалла (в данном случае она равна 105°С)

Тогда, для рассматриваемого примера с белым светодиодом мощностью 1,33 Вт температура активного слоя определится как
TJ = 1,33 Вт? 0,75 ? 15 К/Вт + 105°С = 120°С.

Деградация излучательных характеристик из-за температурной нагрузки на активный (запирающий) слой.
Зная реальную температуру в точке припоя и располагая данными, предоставленными изготовителем, можно определить тепловую нагрузку на активный слой (TJ) и ее влияние на деградацию излучения. Под деградацией понимается снижение светового потока в течение времени эксплуатации светодиодного чипа.

Влияние температуры запирающего слоя
Принципиальное требование: максимально допустимая температура запирающего слоя превышаться не должна, так как это может привести к необратимым дефектам светодиодов или к спонтанным выходам их из строя.
В связи со спецификой физических процессов, протекающих во время функционирования светодиодов, изменение температуры запирающего слоя TJ в диапазоне допустимых значений оказывает влияние на многие параметры светодиодов, в том числе на прямое напряжение, световой поток, координаты цветности и срок службы.



Просмотров