Расчет нагрузки трансформаторов. Как узнать мощность трансформатора? Определение мощности силового трансформатора

Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.

Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу - «земле» схемы.

Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю - малое количество витков и толстый провод.

Рис. 1. Схема обмоток трансформатора (пример)

Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки. У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой. Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

Рис. 2. Трансформатор ТПП-281

Как измерить ток холостого хода трансформатора

Ток холостого хода следует измерить амперметром переменного тока. При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть. Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, - напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

Рисунок 3. Схема испытания вторичной обмотки трансформатора

Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

Для питания усилителя требуется одна обмотка со средней точкой (см. статью ). Соединяем последовательно две вторичные обмотки и измеряем напряжение. Должно получиться 48В, точка соединения обмоток будет средней точкой. Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.

В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.

Содержание:

Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример - ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.

Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.

Немного теории

Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).

Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.

  • Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.

Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.

  • Основа свойств трансформатора - это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.

Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) - пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц - это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.

Выбор магнитопровода

Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода - это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит - в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.

Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:

Пример расчета

Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт - W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:

Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:

Во вторичной обмотке сила тока составит:

Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:

Для первичной обмотки диаметр провода получается 0,59 мм, для вторичной - 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.

Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.

Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:

Для рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50

Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:

S0 – площадь окна в магнитопроводе,

Sc – сечение материала магнитопровода по витку,

Рг – габаритная мощность,

kф – коэффициент формы напряжения на первичной обмотке,

f – частота напряжения на первичной обмотке,

j – плотность тока в проводе обмотки,

Bm – индукция насыщения магнитопровода,

k0 – коэффициент заполнения окна магнитопровода,

kс – коэффициент заполнения стали.

Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.

Электрический аппарат - трансформатор используется для преобразования поступающего переменного напряжения в другое - исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет ш-образного трансформатора

  1. Рассмотрим на примере процесс расчета обычного Ш-образного трансформатора. Предположим, даны параметры: сила тока нагрузки i2=0,5А, выходное напряжение (напряжение вторичной обмотки) U2=12В, напряжение в сети U1=220В.
  2. Первым показателем определяется мощность на выходе: P2=U2ˣi2=12ˣ0,5=6 (Вт). Это значит, что подобная мощность предусматривает использование магнитопровода сечением порядка 4 см² (S=4).
  3. Потом определяют количество витков, необходимых для одного вольта. Формула для данного вида трансформатора такая: К=50/S=50/4=12,5 (витков/вольт).
  4. Затем, определяют количество витков в первичной обмотке: W1=U1ˣK=220ˣ12,5=2750 (витков). А затем количество витков, расположенных во вторичной обмотке: W2=U2ˣK=12ˣ12,5=150.
  5. Силу тока, возникающую в первичной обмотке, рассчитайте так: i1=(1,1×P2)/U1=(1,1×6)/220=30мА.Это позволит рассчитать размер диаметра провода, заложенного в первичную обмотку и не оснащенного изоляцией. Известно, что максимальная сила тока для провода из меди равна 5-ти амперам на мм², из чего следует, что: d1=5А/(1/i1)=5A/(1/0,03А)=0,15 (мм).
  6. Последним действием будет расчет диаметра провода вторичной обмотки с использованием формулы d2=0,025ˣ√i2 , причем значение i2 используется в миллиамперах (мА): d2=0,025ˣ22,4=0,56 (мм).

Как рассчитать мощность трансформатора

  1. Напряжение, имеющееся на вторичной обмотке, и max ток нагрузки узнайте заранее. Затем умножьте коэффициент 1,5 на ток максимальной нагрузки (измеряемый в амперах). Так вы определите обмотку второго трансформатора (также в амперах).
  2. Определите мощность, которую расходует выпрямитель от вторичной обмотки рассчитываемого трансформатора: умножьте максимальный ток, проходящий через нее на напряжение вторичной обмотки.
  3. Подсчитайте мощность трансформатора посредством умножения максимальной мощности на вторичной обмотке на 1,25.

Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить.

Как рассчитать трансформатор тока

Основной характеризующей чертой трансформатора является коэффициент трансформации, который указывает, насколько изменятся основные параметры тока, вследствие его прохождения через это устройство.

Если коэффициент трансформации превышает 1, значит, трансформатор является понижающим, а если меньше этого показателя, то повышающим.

  1. Обычный трансформатор образован из двух катушек. Определитесь с количеством витков катушек N1 и N2, которые соединены магнитопроводом. Узнайте коэффициент трансформации k посредством деления количества витков первичной катушки N1, подключенной к источнику тока, на число витков катушки N2, к которой подключена нагрузка: k=N1/N2.
  2. Проведите измерение электродвижущей силы (ЭДС) на обоих трансфорсматорных обмотках ε1 и ε2, если отсутствует возможность узнать число витков в них. Сделать это можно так: к источнику тока подключите первичную обмотку. Получится так называемый холостой ход. Используя тестер, определите напряжение на каждой обмотке. Оно будет соответствовать ЭДС измеряемой обмотки. Не забывайте, что возникающие потери энергии из-за сопротивления обмоток настолько малы, что ими можно пренебречь. Коэффициент трансформации рассчитывается через отношение ЭДС первичной обмотки к ЭДС вторичной: k= ε1/ε2.
  3. Узнайте коэффициент трансформации находящегося в работе трансформатора, когда потребитель присоединен к вторичной обмотке. Определите его путем деления тока в первичной I1 обмотке, на возникший ток во вторичной I2 обмотке. Измерьте ток посредством последовательного присоединения тестера (переключенного в режим работы амперметра) к обмоткам: k=I1/I2.

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором. Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания , начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность , входное напряжение ,выходное напряжение , а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (I н на напряжение питания прибора (U н ). Думаю, многие знакомы с этой формулой ещё по школе.

P=U н * I н

Где U н – напряжение в вольтах; I н – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД ). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и являетсяориентировочным , но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см .) и ширину центрального лепестка пластины (1,7 см .). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

Где S - площадь сечения магнитопровода; P тр - мощность трансформатора; 1,3 - усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов - «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Расчет силового трансформатора

Трансформатор – это пассивный преобразователь энергии. Его коэффициент полезного действия (КПД) всегда меньше единицы. Это означает, что мощность потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети. Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети.

Параметры и характеристики трансформатора.

Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток. Но если нагрузка первого трансформатора потребляет больший ток, а второго маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью. Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще. Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника. Поэтому габариты трансформатора зависят от его мощности. И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора. Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах. Но это напряжение зависит также и от количества витков первичной обмотки. При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки количеству витков первичной. Это отношение и называется коэффициентом трансформации. Если напряжение на вторичной обмотке зависит от коэффициента трансформации нельзя произвольно выбирать количество витков одной из обмоток. Чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки. Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя. Эта характеристика называется количеством витков на один вольт..

Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети. КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95. Более высокие значения имеют трансформаторы большей мощности.

Электрический расчет трансформатора

Перед расчетом трансформатора необходимо сформулировать требования, которым он должен удовлетворять. Они и будут являться исходными данными для расчета. Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками. Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов. Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они являются техническими требованиями к трансформатору. Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой из вторичных обмоток и сложить их, учитывая также КПД трансформатора. Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:

P– мощность, потребляемая от обмотки, Вт;

U– эффективное значение напряжения, снимаемого с этой обмотки, В;

I– эффективное значение силы тока, протекающего в этой же обмотке, А.

Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

P S =U 1 I 1 +U 2 I 2 +U 3 I 3

Для определения габаритной мощности трансформатора, полученное значение суммарной мощности P S нужно разделить на КПД трансформатора:P г = , где

P г – габаритная мощность трансформатора; η – КПД трансформатора.

Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали). И те и другие параметры становятся известными только после расчета трансформатора. Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из таблицы 6.1.

Таблица 6.1

Суммарная мощность, Вт

КПД трансформатора

Наиболее распространены две формы сердечника: О – образная и Ш – образная. На сердечнике О – образной формы обычно располагаются две катушки, а на сердечнике Ш – образной формы - одна. Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка:

Сечением рабочего керна сердечника является произведение ширины рабочего керна а и толщины пакета с. Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах.

После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника. Сначала находят приблизительную ширину рабочего керна сердечника по формуле: a= 0,8

Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а. после чего определяют толщину пакета сердечника с:

Количество витков, приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле: n=k/S, гдеN– количество витков на 1 В;k– коэффициент, определяемый свойствами сердечника;S- сечение рабочего керна сердечника, см 2 .

Из приведенной формулы видно, что чем меньше коэффициент k, тем меньше витков будут иметь все обмотки трансформатора. Однако произвольно выбирать коэффициентkнельзя. Его значение обычно лежит в пределах от 35 до 60. В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник. Для сердечников С-образной формы, витых из тонкой ленты, можно братьk= 35. Если используется сердечник О - образной формы, собранный из П- или Г – образных пластин без отверстий по углам, берутk= 40. Такое же значениеkи для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна.. Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины крайних кернов, целесообразно взятьk= 45, а если Ш – образные пластины имеют отверстия, тоk= 50. Таки образом, выборkв значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшениеkоблегчает намотку, но ужесточает режим трансформатора. При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать.

Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножим эти величины: W=Un

Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки: W=mUn

Коэффициент mзависит от силы тока, протекающего по данной обмотке (см. таблицу 6.2). Если сила тока меньше 0,2 А, можно приниматьm= 1. Толщина провода, которым наматывается обмотка трансформатора определяется силой тока, протекающей по этой обмотке. Чем больше ток, тем толще должен быть провод, подобно тому как для увеличения потока воды требуется использовать более толстую трубу. От толщины провода зависит сопротивление обмотки. Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая в ней мощность и она сильнее нагревается. Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции. Поэтому диаметр провода может быть определен по формуле:d=p, гдеd– диаметр провода по меди, м;I- сила тока в обмотке, А;p- коэффициент, (таблица 6.3) который учитывает допустимый нагрев той или иной марки провода.

Таблица 6.2: Определение коэффициента m

Таблица 6.3: Выбор диаметра провода.

Марка провода

Выбрав коэффициент pможно определить диаметр провода каждой обмотки. Найденное значение диаметра округляют до большего стандартного.

Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети:

Практическая работа:

U 1 = 6,3 В,I 1 = 1,5 А;U 2 = 12 В,I 2 = 0,3 А;U 3 = 120 В,I 3 = 59 мА



Просмотров