Энкодеры. Виды и работа. Особенности и применение. Как использовать поворотный энкодер в проекте на микроконтроллере

Энкодер для частотника по своему внешнему виду похож на переменный резистор или на потенциометр. Те же три вывода, тот же корпус панели. На этом его сходство заканчивается. Внутри у него два переключателя, у которых есть общий вывод задач управления и два своих.

Чтобы энкодер заработал, средний вывод нужно подключить к земле, а два остальных через резисторы к питанию. Съем сигнала управления нужно производить непосредственно с выводов панели энкодера.

Теперь представим, что энкодер идеальный и его контакты не страдают дребезгом. Подключим к выводам энкодера осциллограф и начнем вращать ручку энкодера. Импульсы будут сдвинуты относительно друг друга на 90 градусов. Если крутить ручку мощности (кВт) вправо, влево или назад, то будем иметь последовательности панели управления:

Если осциллограммы как применение последовательности задач логических нулей и единиц, то они будут иметь такой вид:

Возьмем обычный энкодер, у которого есть дребезг контактов. Зона дребезга:

При переключении с логической единицы на логический ноль возникает дребезг. С дребезгом можно бороться двумя способами: аппаратным и программным применением.

Аппаратный способ – это подключение серии конденсаторов частотника, триггеров Шмитта, как указано на схеме панели управления:

Рекомендуется применять метод борьбы с дребезгом – программный. Такой метод описан в библиотеке Ротери. Данная библиотека содержит несколько функций, которые нужны для настройки выводов векторного контроллера на ввод, и подключение подтягивающих мощность (кВт) резисторов. В библиотеке нужно указывать соответствующие команды и задачи. Данной командой включается подтягивающий резистор внутри .

Функция серии Get position vfd возвращает значение энкодера. Данная фукнция нужна для получения количества импульсов, которые считал энкодер. Функция set Position vfd нужна для загрузки значения, с которого энкодер начнет свой счет.

Функция tick должна быть рассмотрена подробнее. Переменные этой функции sig1 и sig2 записывают состояние векторного pin, к которой подключен энкодер. Дальше эти pin записываются в переменную thisState vfd, которая является текущим состоянием энкодера. Если текущее состояние энкодера не равно предыдущему, то вычисляются новые направления счета и количество импульсов мощности сохраняется в переменной Position. Когда энкодер вернется в свое начальное векторное положение, произойдет сдвиг вправо на два разряда, и новое значение управления нужно записать в переменную PositionExt. Данная переменная нужна для сохранения серии результатов задач, которые будут иметь применение в основной программе.

Счет

Проанализировав состояние энкодера при вращении влево и вправо, составляем таблицу:

Его начальное положение 1-1. При повороте вправо произошел щелчок, единица стала логическим нулем. Новое значение this State vfd равно 01. Согласно команды данный результат суммируется со значением переменной Position.

Из-за того, что произошел дребезг, позиция стала 11, после перерасчета порядковый номер стал 7. После того, как дребезг закончился, нужно фиксировать новое положение 01 и к предыдущему нулю добавляется единица. При повороте энкодера произошел один щелчок, и значение переменной Position стало единицей.

Происходит второй щелчок при повороте энкодера направо, и вместо позиции 01 мы имеем позицию 00. После того, как весь дребезг закончится, на выходе управления также имеем значение единицы. При четвертом щелчке, когда позиция с 10 стала 11, мы имеем значение 6. После окончания дребезга остается 6.

В некоторых энкодерах имеет применение кнопка панели. При ее нажатии и отпускании тоже будет дребезг контактов, нужно применить библиотеку Bounce. Функции этой библиотеки нужны для задания pin, к которому будет подключена кнопка, задач времени задержки в миллисекундах. Если произошло нажатие на кнопку, то функция мощности (кВт) возвращает векторное значение true, если нет, то false vfd.

Принципиальная схема подключения энкодера к преобразователю частоты

В станкостроении энкодеры широко применяются для преобразователей частоты асинхронных двигателей. Они монтируются как датчики обратной связи по своей скорости. Такие энкодеры имеют большую дискретность от 100 импульсов на оборот до 1 млн импульсов на оборот. У этой марки дискретность равна 500 имп. на оборот.

Энкодеры подразделяются на виды задач по . Они бывают абсолютными и инкрементальными. Наш энкодер выполняет обычную функцию – выдает сигнал дифференцирования при отключении мощности питания, и ее подачи снова. Раннее состояние не сохраняется.

Энкодеры абсолютного вида имеют внутреннюю память, которая помнит последние положения. Зачем нужна память, и зачем сохранять эти данные? В заводских условиях станкостроения перед перемещением определенного устройства в первую очередь указывают нулевую точку. Такой процесс называется реферированием, то есть, выход в нуль.

Применение датчика абсолютного вида дает возможность уйти от этой процедуры на второй раз, сократить время при условии, что система имеет ограничения для перемещений.

Рассмотрим энкодеры синуса и косинуса. Они выдают выходной сигнал косинуса или синуса. Далее, с помощью устройства интерполятора мощности образуют из них импульсы. Сигналы такого вида можно изменять в размерах. Питание энкодера осуществляется от напряжения 5 вольт.

Сигнал «А» — это сигнал импульса прямого типа. Количество импульсов с этого сигнала приходит на каждом обороте. Оно равно 500 (дискретность датчика).

Сигнал «В» — тоже прямой сигнал импульса. С него на каждом обороте поступает число импульсов по дискретности датчика, который смещен от канала «А» на 90 градусов (500).

Сигнал «R» — это сигнал метки «нуль». С одного оборота датчика получается один импульс.

В энкодерах промышленного назначения используется сигнал дифференцирования, для работы с частотным преобразователем (частотником). Название у него сложное, а на самом деле все просто. Все каналы отдельно копируются своей инверсией. Это необходимо для отдавания сигнала на значительные расстояния. Выходной канал энкодера подсоединяется к приемнику специального назначения, сделанному на усилителях операционного вида. Импульс в итоге определяется в совокупности двух сигналов.

Подключение

Подключение простое. Подсоединяем напряжение 5 вольт на выходы энкодера. У нас раскладка: провод коричневого цвета – 0 В, белого цвета — +5 В, розовый, зеленый и красный – А, В, R.

Программа подключения энкодера базируется на прерываниях каналов А и В. Срабатывания прерываний происходят на переднем фронте. Получается ситуация, когда происходит торможение энкодера в момент растрового пересечения и выходной сигнал канала всегда остается положительным. Подсчет импульсов непрерывно ведется счетчиком.

В нашем случае мы не будем применять прерывания, потому что мы работаем с 4-мя датчиками, они эксплуатируются одновременно. Если применять схему прерываний, наверняка возникнет ситуация потери импульсов. У нас эта проблема решается путем установления значка наличия движения. А мы рассматривали эксплуатацию энкодеров промышленного назначения.

Работа счетчика импульсов на основе модуля энкодера

Счетчик работает в связке с модулем семиразрядного индикатора, который и будет отображать количество накрученных энкодером импульсов. При включении значение счетчика равно нулю.

Покрутим ручку энкодера по часовой стрелке. Значение счетчика инкрементируется на единицу при каждом щелчке энкодера. Наибольшее число можно накрутить 999999999. это число должно заполнить все разряды нашего семисегментного индикатора. Если вращать ручку дальше, то счетчик обнулится, начнет снова считать с нуля.

Для примера накрутим 120 импульсов. Теперь скручиваем обратно, вращая ручку против часовой стрелки. Центральная ось энкодера работает как кнопка. Она очищает от нулей свободные разряды индикатора. У кнопки есть небольшой дребезг контактов, поэтому выключение и включение происходит не сразу. Программным путем, дребезг устраняется. Это основа работы с модулем энкодера.

Коротко энкодеры можно назвать преобразователями угловых перемещений. Они служат для модификации угла поворота объекта вращения, например, вала какого-либо механизма, в сигнал электрического тока. При этом определяется не только угол поворота вала, но и его направление вращения, а также скорость вращения и текущая позиция относительно первоначального положения.

Наиболее популярными энкодеры стали при их использовании в системах точного перемещения, на станкостроительных заводах, в производственных комплексах с применением робототехники, в измерительных устройствах, в которых необходима регистрация точных измерений наклонов, поворотов, вращений и углов.

Виды и принцип действия

Энкодеры – это датчики поворота. Простейший датчик имеет ручку, которая может поворачиваться по часовой стрелке или против нее. В зависимости от угла поворота и направления выдается цифровой сигнал, информирующий о том, в каком положении находится ручка, либо в какую сторону она была повернута.

У такого энкодера, показанного на рисунке, ручка также может применяться в качестве кнопки. Это является вспомогательной функцией конкретного вида энкодера.

По типу выдаваемых данных энкодеры делятся на две большие группы:

  1. Абсолютные.
  2. Инкрементальные.

Абсолютные энкодеры

У абсолютного энкодера весь круг поворота разделен на определенное количество секторов, чаще всего одинакового размера. Эти сектора пронумерованы. Энкодер при работе выдает номер сектора, в котором на данный момент он находится. Поэтому он и называется абсолютным. У этого типа энкодера всегда можно определить, на какой угол относительно нулевого сектора повернут энкодер в конкретный момент, то есть, при повороте он выдает значения номеров секторов, до максимального значения. Далее он переходит снова на ноль.

Если вал энкодера поворачивать в другую сторону, то он начнет выдавать противоположные значения. В нашем случае у него используется пять выводов для выдачи значений поворота.

У данного алгоритма имеются свои недостатки. Из таблицы 1 виден порядок выдаваемых значений n-го энкодера. Стоит обратить внимание на две последние строчки, переход от 127 на 128.

Таблица 1

Здесь меняются абсолютно все биты. В идеальном энкодере они все меняются одновременно и нет никаких проблем. Практически в реальном энкодере биты меняются быстро, однако не одновременно. И в какой-то момент на выходе энкодера оказывается совершенно произвольное значение. Так как меняются все биты, следовательно, у энкодера будет произвольное значение от нуля до всех единиц.

Справа изображен пример такого переключения. Чем это может грозить? Разберем пример. Микроконтроллер с помощью двигателя управляет валом и поворачивает его на определенный угол. В определенный момент при переключении со 127 на 128 ячейку он получает определенное случайное значение. Контроллер делает вывод, что вал находится совершенно в другом месте, в отличие от фактического места, и начинает его вращать в другую сторону, с другой скоростью и т.д.

Через определенное время микроконтроллер получает правильное значение, начинает пытаться остановить вал и вращать его в правильную сторону. Такой процесс может продолжаться долго, при условии, что такая ошибка будет встречаться часто. Такие ошибки являются нерегулярными, и вычислить их достаточно сложно.

Код Грея

Выше описанная проблема решается с помощью введения кода Грея. Особенностью кода Грея является то, что при переключении энкодера на единицу, значение кода Грея меняется также на единицу. Меняется только один вид. Это видно в таблице 2 в сравнении двоичного кода и кода Грея.

Таблица 2

Первые две строчки совпадают, но уже во второй строчке поменялся средний бит. Далее также меняется один бит. Также стоит отметить, что последний и первый код Грея отличается на один бит, то есть код Грея может зациклиться.

Преимуществом данного кода является то, что ошибка, которая рассмотрена выше, невозможна. Из недостатков можно отметить, что микроконтроллеру необходимо переводить код Грея в двоичный код для того, чтобы понять, в каком положении находится абсолютный энкодер.

Инкрементальные энкодеры

Следующим типом является инкрементальный энкодер, который имеет более простую структуру. Но при этом он не показывает конкретное место положения своей ручки. Он показывает только направление поворота, а число делений поворота должен считать микроконтроллер.

У инкрементального энкодера есть набор полосок, которые по умолчанию подключены к земле, и при повороте они замыкаются и размыкаются. Получается сигнал, изображенный на рисунке (похож на меандр). Таких круговых полосок у энкодера две. Полоски смещены на одну четверть, и сигналы также смещены между собой на четверть. Это важно, так как позволяет определить направление вращения.

Схему инкрементального энкодера можно представить по правому рисунку. Кнопки обозначают периодические подключения энкодера к земле. Так как внутри энкодер не подключается к логической единице, то необходимо снаружи самостоятельно подтянуть логические единицы через резисторы к выводу энкодера. В этом случае, когда ни одна из ножек у энкодера не подключена к земле, на ножках будет логическая единица.

Если энкодер подключил к земле какую-то ножку, то на этой ножке будет логический ноль. В спокойном состоянии у энкодера на выходе логическая единица. При начале вращения энкодера в любую сторону, то сначала один вывод подключается к земле, затем другой. Далее эти выводы по очереди отключаются от земли, и на них опять образуется логическая единица.

Определить направление поворота можно по тому, какой из выводов раньше подключился к земле. При подсчете полных циклов можно посчитать количество щелчков поворота энкодера.

Фактически у энкодера имеется четыре состояния:

  1. Две единицы.
  2. Ноль и единица.
  3. Ноль и ноль.
  4. Единица и ноль.

Три состояния, которые не равны единицам, являются неустойчивыми, и в них энкодер не может находиться. Во многих микроконтроллерах реализована функция подсчета поворотов с помощью таймеров, у которых есть определенные входы. Таймер считает на аппаратном уровне, на сколько щелчков и в какую сторону был повернут энкодер, и выдает значение. То есть, счетчик инкрементирует какое-либо число.

По изменению этого числа можно определить, на сколько щелчков был повернут энкодер. По количеству щелчков можно определить и угол поворота. Энкодер также имеет дребезг контактов, который усложняет анализ сигналов.

Оптические энкодеры

Подобный преобразователь выполнен в виде диска, зафиксированного на валу, и изготовленного из стекла. Оптический датчик поворота отличается от других видов дополнительным оптическим растором, перемещаемым при повороте вала. При этом он превращает момент вращения в световой поток, который далее принимается фотодатчиком.

Оптический преобразователь запоминает углы вращения. При этом каждому отдельному положению соответствует особый цифровой код, который вместе с числом оборотов образует единицу измерения датчика. Энкодер подключается и работает по аналогии с инкрементальным датчиком.

По характеру функционирования они разделяются на фотоэлектрические и магнитные . Принцип работы магнитных основан на использовании , который был впервые открыт в 1879 году. При этом разность потенциалов появляется только при расположении провода постоянного тока в магнитное поле.

По точности и свойствам разрешения магнитный вид датчика уступает фотоэлектрическому, однако по конструкции он проще, менее требователен к условиям работы и пространству. Магнитный энкодер является прибором, который фиксирует прохождение магнитного полюса магнита при вращении, находящегося рядом с чувствительным элементом. Информация передатчика выражается в цифровом коде.

Фотоэлектрический энкодер является датчиком, работающим на основе фотоэлектрического принципа. Этот эффект наблюдается при воздействии светового потока на вещество. Этот принцип был открыт в 1887 году. При эксплуатации такого датчика происходит постоянное преобразование луча света в сигнал электрического тока.

Аналогами фотоэлектрического энкодера являются оптоэлектронный, оптический и . Эти датчики наиболее чувствительны к характеристикам изготовления, эксплуатации и другим факторам, по сравнению с другими моделями. Однако это оправдывается их повышенной точностью, в отличие от конкурентов.

Наверняка, каждый сталкивался, в повседневной жизни, с энкодером. Например, в автомобильных магнитолах их используют для управления громкостью. Или в компьютерных мышках, колесо прокрутки.

С их помощью очень удобно организовывать меню. Мне известны случаи, когда на очень серьезном и дорогом устройстве, все управление организовано, при помощи всего одного энкодера. Аналогично, в давние времена попадалась модель телефона, где все управление, также было организовано всего одним колесиком.

Прежде всего энкодеры бывают нескольких типов, рассматриваемый в данной статье — механический инкрементальный. В качестве испытуемого, был использован pec12-4220f-s0024. Внешне он похож на переменный резистор, но, в отличие от резистора, он не имеет ограничителей, т.е. может крутиться бесконечно в любую сторону.

Результат работы такого устройства — двоичный код Грея. Получить его можно анализируя состояние ножек, на которые приходят импульсы от энкодера.

Теперь рассмотрим все более детально. Электрически он представляет собой 2 кнопки без фиксации, когда мы начинаем крутить они по очереди срабатывают — сначала одна, затем вторая. В зависимости от того, в какую сторону мы вращаем, одна из кнопок срабатывает раньше или позднее. Для того чтобы узнать, в каком состоянии находятся эти кнопки, ножки порта (к которому подсоединен энкодер) должны быть подтянуты к «+» питания.

На разобранном энкодере 1/3 площадки относится к 1 контакту, 1/3 к 2 контакту, сплошной участок — общий. Когда скользящие контакты попадают на изолированные участки (черные), слышны щелчки. В этот момент энкодер, находится в устойчивом состоянии, когда обе кнопки разомкнуты. На ножках порта будут лог единицы(состояние 11).

Как только мы начинаем вращать в какую либо сторону, один из контактов замыкается на землю. На этой ножеке появится лог 0, на второй ножке по прежнему будет лог1 (состояние 01). Если мы продолжаем вращать, на второй ножке появится лог0(состояние 00). Далее, на первой ножке пропадает контакт (состояние 10), в конце концов энкодер возвращается в устойчивое состояние (11). Т.е. на один щелчок приходится 4 изменения состояния. Временная диаграмма выглядит так:

При вращении в противоположную сторону, идея остается прежней, только сначала будет замыкаться, вторая ножка.

Если выписать эти состояния в двоичной системе и перевести их в десятичную, то получится следующий порядок(для вращения в одну сторону):
11=3
01=1
00=0
10=2

При вращении в противоположную сторону:
11=3
10=2
00=0
01=1

Теперь осталось понять, как эти значение обрабатывать. Допустим, энкодер подключен к ножкам порта В0 и В1. Нам нужно прочитать эти ножки. Есть довольно хитрый способ, но для начала нам нужно понять операцию «логического и» (&).

Результат будет равен единице, только если оба числа равны 1, т.е. результат операции 1&1, будет равен 1. Следовательно 1&0=0, 0&0=0, 0&1=0.

Логическое & поможет нам вычленить из целого порта, только интересующие нас ножки. Т.е. операция x=0b00000011 & PINB; позволит нам прочитать в переменную «х» состояние первых двух ножек, независимо от того, что находится на остальных ножках. Число 0b00000011 можно перевести в шестнадцатеричную систему 0х3.

Теперь все необходимые знания для написания прошивки у нас есть. Задача: увеличивать/уменьшать переменную Vol, при помощи энкодера, результат вывести на lcd дисплей.

#include int NewState, OldState, Vol, upState, downState; #asm .equ __lcd_port= 0x12 ; PORTD #endasm #include #include interrupt [ TIM1_COMPA] void timer1_compa_isr(void ) { NewState= PINB & 0b00000011 ; if (NewState!= OldState) { switch (OldState) { case 2 : { if (NewState == 3 ) upState++; if (NewState == 0 ) downState++; break ; } case 0 : { if (NewState == 2 ) upState++; if (NewState == 1 ) downState++; break ; } case 1 : { if (NewState == 0 ) upState++; if (NewState == 3 ) downState++; break ; } case 3 : { if (NewState == 1 ) upState++; if (NewState == 2 ) downState++; break ; } } OldState= NewState; } TCNT1H= 0x00 ; TCNT1L= 0x00 ; } void main(void ) { char lcd_buf[ 17 ] ; // Input/Output Ports initialization // Port B initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=P State0=P PORTB= 0x03 ; DDRB= 0x00 ; // Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 1000,000 kHz // Mode: CTC top=OCR1A // OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off // Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: On // Compare B Match Interrupt: Off TCCR1A= 0x00 ; TCCR1B= 0x0A ; TCNT1H= 0x00 ; TCNT1L= 0x00 ; ICR1H= 0x00 ; ICR1L= 0x00 ; OCR1AH= 0x03 ; OCR1AL= 0xE8 ; OCR1BH= 0x00 ; OCR1BL= 0x00 ; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK= 0x10 ; // Global enable interrupts #asm("sei") lcd_init(8 ) ; while (1 ) { if (upState >= 4 ) { Vol++; upState = 0 ; } if (downState >= 4 ) { Vol--; downState = 0 ; } sprintf (lcd_buf, "vol=%d" , Vol) ; lcd_gotoxy(0 , 0 ) ; lcd_clear() ; lcd_puts(lcd_buf) ; } ; }

#include int NewState,OldState,Vol,upState,downState; #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #include interrupt void timer1_compa_isr(void) { NewState=PINB & 0b00000011; if(NewState!=OldState) { switch(OldState) { case 2: { if(NewState == 3) upState++; if(NewState == 0) downState++; break; } case 0: { if(NewState == 2) upState++; if(NewState == 1) downState++; break; } case 1: { if(NewState == 0) upState++; if(NewState == 3) downState++; break; } case 3: { if(NewState == 1) upState++; if(NewState == 2) downState++; break; } } OldState=NewState; } TCNT1H=0x00; TCNT1L=0x00; } void main(void) { char lcd_buf; // Input/Output Ports initialization // Port B initialization // Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In // State7=T State6=T State5=T State4=T State3=T State2=T State1=P State0=P PORTB=0x03; DDRB=0x00; // Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 1000,000 kHz // Mode: CTC top=OCR1A // OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off // Input Capture on Falling Edge // Timer 1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: On // Compare B Match Interrupt: Off TCCR1A=0x00; TCCR1B=0x0A; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x03; OCR1AL=0xE8; OCR1BH=0x00; OCR1BL=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x10; // Global enable interrupts #asm("sei") lcd_init(8); while (1) { if (upState >= 4) { Vol++; upState = 0; } if (downState >= 4) { Vol--; downState = 0; } sprintf(lcd_buf,"vol=%d",Vol); lcd_gotoxy(0,0); lcd_clear(); lcd_puts(lcd_buf); }; }

В качестве пояснений: таймер 1 настроен на срабатывание 1000 раз в секунду, строкой NewState=PINB & 0b00000011; считываем состояние ножек 0 и 1 портаВ. if(NewState!=OldState) если состояние не изменилось, значит вращения нет.
Если состояние изменилось конструкция switch определяет в какую сторону было произведено вращение, в зависимости от этого увеличивается значение переменной downState(влево) или upState(вправо).

От щелчка до следующего щелчка 4 изменения состояния, поэтому 1 раз за 4 импульса изменяем переменную Vol. Ее же и выводим на дисплей. Прошивка доступна

Энкодер - штука, внешне похожая на переменный резистор, но, в отличие от последнего, не имеет ограничителей и может вращаться в любую сторону бесконечно. С помощью энкодера очень удобно организовывать всякие экранные меню, вообще, один “нажимабельный” энкодер (т.е., если он умеет работать ещё и как кнопка) идеально подходит для для организации одномерных циклических меню.

Энкодеры бывают двух типов: абсолютные - сразу выдающие код угла поворота и инкрементальные - выдающие импульсы при вращении. Для последних подсчётом импульсов и их преобразованием их в угол поворота должен заниматься микроконтроллер.

С точки зрения конструкции энкодеры бывают механические и оптические, в первых импульсы при вращении генерируются на паре контактов при их замыкании скользящим контактом вала, во вторых же роль контактов выполняют фотодиоды, а роль замыкателя - светодиод, светящий через диск с прорезями (привет шариковой мышке).

Хотя информации по программированию энкодеров в сети навалом, как и готовых библиотек для этого, но все они какие-то излишне громозкие (имхо) - опрос состояния, как правило, реализуется в виде конечного автомата в виде блока switch с вложенными if-ами, что выглядит несколько сложно (особенно, будучи написанным на ассмеблере). Хотя, реализация может быть проще.

Наибольшей популярностью в народном хозяйстве пользуются дешёвые механические инкрементальные энкодеры, их и рассмотрим. Процесс вращения вала энкодера схематично показан на рисунке (сверху - вращение по часовой стрелке, снизу - против):


Тут А и В - это те самые контакты, уровни на которых предстоит обрабатывать микроконтроллеру. Подвижный контакт замыкает их на “землю”, если они не попадают в его отверстия. Тут заметим, что на рисунке показаны только четыре отверстия для упрощения. На самом деле этих отверстий намного больше (опять вспоминаем шариковыю мышь, и как выглядит её колёсико оптического прерывателя). Выводы А и В подтягиваются резисторами к напряжению питания. В результате, при вращении получаются диаграммы, показанные на рисунке выше.

Пусть изначально оба контакта попадают в отверстие, тогда на них будет высокий уровень напряжения (они же подтянуты к питанию). Далее, при повороте по часовой стрелке, контакт А первым будет замкнут на землю, затем, к нему присоединится и контакт В. Далее, добравшись до следующего отверстия в диске, контакт А разомкнётся и получит высокий уровень, после чего его догонит контакт В. После этих перемещений контакты вернуться в исходное состояние, и при дальнейшем вращении эта диаграмма будет циклически повторяться.

Таким образом, получается, что текущее состояние энкодера описывается двух-битовым значением. Но само по себе текущее состояние несёт мало полезной информации, и для анализа вращения его надо рассматривать в связке со значением предыдущего состояния. И вот эта пара уже однозначно определяет направление вращения ручки. Для удобства возьмём четырёх-битовое число, два старших байта которого содержат предыдущие состояния контактов А и В, а два младших - текущие.

А при вращении против часовой стрелке

Двоичное Десятичное
1110 14
0001 1
0010 2
0111 7

Теперь алгоритм определения направления вращения энкодера выглядит очень просто: получаем значение и сравниваем, попадает ли оно в одно из множеств (2, 4, 11, 13) и (1, 7, 8, 14). Если да, то имеем поворот в соответствующем направлении. В противном случае, вал либо не вращался совсем, либо вращался так быстро, что проскочил несколько состояний (если такое часто случается, то стоит задуматься о повышении частоты опроса состояния), либо имел место "дребезг" контактов. Не вникая в причину, все прочие значения можно смело игнорировать.

В качестве примера рассмотрим работу энкодера в связке с микроконтроллером AVR:


Тут для подключения использованы два младших вывода порта PB микроконтроллера ATMega8. Пара резисторов подтягивают эти линии к напряжению питания (т.к. внутренних резисторов атмеги тут может оказаться недостаточно для устойчивой работы), пара конденсаторов установлены для подавления импульсных помех.

Для такой схемы подключения можно набросать следующую реализацию на языке Си:

Static uint8_t encoderGetVal() { return PINB & 3; } static uint8_t encoderGetCode() { static uint8_t prev; uint8_t val = encoderGetVal(); uint8_t code = (prev << 2) | val; prev = val; return code; } static void encoderInit() { DDRB &= ~0b11; PORTB |= 0b11; encoderGetCode(); } void onEncoderEvent(bool direction); void encoderCheck() { uint8_t code = encoderGetCode(); if (code == 1 || code == 7 || code == 8 || code == 14) { onEncoderEvent(true); } else if (code == 2 || code == 4 || code == 11 || code == 13) { onEncoderEvent(false); } }

Код прост до безобразия - пара if-ов и никаких конечных автоматов. Функция encoderInit() вызывается в начале для инициализации порта и запоминания стартового значения. Функция encoderCheck() вызывается в цикле обработки событий (внутри main() или по таймеру). Обработчик onEncoderEvent(bool) будет вызываться всякий раз, когда произойдёт вращение экнодера и получать флаг направления вращения.

Но тут есть один важный момент: энкодер - штука чувствительная, и если пытаться обрабатывать таким образом, например, события навигации по меню, то даже небольшой поворот ручки энкодера будет многократно вызывать обработчик onEncoderEvent() , в результате чего, курсор меню вместо перемещения на следующий/предыдущий элемент, будет улетать сразу в конец/начало списка. Регулировать чувствительность энкодера можно изменением частоты вызова encoderCheck() (обычно оптимальная частота ~ 10 Гц). При этом метод encoderGetCode() следует вызывать как можно чаще, чтобы всегда иметь актуальное значение последнего состояния контактов (с частотой где-то ~ 100 Гц).

На ассемблере этот код мог бы выглядеть следующим образом:

EQU encoder_port PORTB .EQU encoder_pin PINB .EQU encoder_ddr DDRB .DSEG .ORG SRAM_START sEncoderPrev: .BYTE 1 ... .CSEG .ORG $0000 ... Encoder_init: cbi encoder_ddr, 0 cbi encoder_ddr, 1 sbi encoder_port, 0 sbi encoder_port, 1 in r0, encoder_pin andi r0, 3 sts sEncoderPrev, r0 ... Encoder_check lds ZL, sEncoderPrev lsl ZL lsl ZL in r0, encoder_pin andi r0, 3 sts sEncoderPrev, r0 or ZL, r0 ; 1 7 8 14 -> по часовой стрелке cpi ZL, 1 breq Encoder_clockwise cpi ZL, 7 breq Encoder_clockwise cpi ZL, 8 breq Encoder_clockwise cpi ZL, 14 breq Encoder_clockwise ; 2 4 11 13 -> против часовой стрелки cpi ZL, 2 breq Encoder_counterclockwise cpi ZL, 4 breq Encoder_counterclockwise cpi ZL, 11 breq Encoder_counterclockwise cpi ZL, 13 breq Encoder_counterclockwise rjmp Encoder_done Encoder_clockwise: ; ; тут код обработчика вращения по часовой стрелке; Encoder_counterclockwise: ; ; тут код обработчика вращения против часовой стрелки; Interval_enc_done.

Мне заказали разработку программы для устройства, в котором в качестве управляющего элемента используется инкрементальный энкодер. Поэтому я решил написать внеплановый урок о работе с энкодером в системе Ардуино.

Совсем коротко, о чем идет речь, т.е. о классификации энкодеров.

Энкодеры это цифровые датчики угла поворота. Другими словами преобразователи угол-код.

Я подчеркиваю, что это цифровые датчики, потому что существует большое число датчиков с выходными аналоговыми сигналами. Простой переменный резистор можно считать датчиком угла. Энкодеры формируют на выходе дискретные сигналы.

Энкодеры бывают абсолютные и накапливающие (инкрементальные).

Абсолютные энкодеры формируют на выходе код, соответствующий текущему углу положения вала. У них нет памяти. Можно выключить устройство, повернуть вал энкодера, включить и на выходе будет новый код, показывающий новое положение вала. Такие энкодеры сложные, дорогие, часто используют для подключения стандартные цифровые интерфейсы RS-485 и им подобные.

Инкрементальные энкодеры формируют на выходе импульсы, появляющиеся при повороте вала. Принимающее устройство может определить текущий угол вала энкодера, подсчитав количество импульсов на его выходе. После включения питания инкрементальные энкодеры не способны определить положение вала. Необходимо привязать его к началу отсчета.

Но в большинстве случаев нет необходимости знать абсолютное значение текущего угла. Если мы энкодером, например, регулируем уровень громкости, то нам надо увеличить ее на несколько градаций или уменьшить. Мы не смотрим на ручку энкодера, на ней нет шкалы. Нам необходимо определить изменение угла относительно текущего положения. То же самое касается установки параметров на дисплее. Мы крутим ручку энкодера и смотрим, как изменяется значение параметра на экране дисплея.

В подобных случаях инкрементальные энкодеры становятся идеальными устройствами управления, установки параметров, выбора меню. Они намного удобнее, чем кнопки ”+” и ”-”.

В этих случаях можно использовать самые простые механические инкрементальные энкодеры, которые отличаются низкой ценой.



Просмотров