Что такое частота колебаний? Циклическая частота колебаний Формула связи циклической частоты и периода колебаний

Угловая частота выражается в радианах в секунду , её размерность обратна размерности времени (радианы безразмерны). Угловая частота является производной по времени от фазы колебания:

Угловая частота в радианах в секунду выражается через частоту f (выражаемую в оборотах в секунду или колебаниях в секунду), как

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

Наконец, при использовании оборотов в секунду угловая частота совпадает с частотой вращения:

Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна тогда как обычная резонансная частота . В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители и , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Wikimedia Foundation . 2010 .

  • Циклитирас Константинос
  • Циклическая последовательность

Смотреть что такое "Циклическая частота" в других словарях:

    циклическая частота - kampinis dažnis statusas T sritis fizika atitikmenys: angl. angular frequency; cyclic frequency; radian frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f; циклическая частота, f pranc. fréquence… … Fizikos terminų žodynas

    ЦИКЛИЧЕСКАЯ ЧАСТОТА - то же, что угловая частота … Большой энциклопедический политехнический словарь

    Частота периодического процесса

    Частота ядра - Частота физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах, или. Единицей частоты в Международной системе единиц (СИ) в общем случае… … Википедия

    Частота - У этого термина существуют и другие значения, см. Частота (значения). Частота Единицы измерения СИ Гц Чaстота физическая в … Википедия

    ЧАСТОТА - (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

    циклическая инвентаризация Справочник технического переводчика

    Частота - колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

    Циклическая инвентаризация (CYCLE COUNT) - Метод точной ревизии наличных складских запасов, когда запасы инвентаризуются периодически по циклическому графику, а не раз в год. Циклическая инвентаризация складских запасов обычно производится на регулярной основе (как правило, чаще для… … Словарь терминов по управленческому учету

    Угловая частота - Размерность T −1 Единицы измерения … Википедия

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Угловая частота выражается в радианах в секунду , её размерность обратна размерности времени (радианы безразмерны). Угловая частота является производной по времени от фазы колебания:

Угловая частота в радианах в секунду выражается через частоту f (выражаемую в оборотах в секунду или колебаниях в секунду), как

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

Наконец, при использовании оборотов в секунду угловая частота совпадает с частотой вращения:

Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна тогда как обычная резонансная частота . В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители и , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Циклическая частота" в других словарях:

    циклическая частота - kampinis dažnis statusas T sritis fizika atitikmenys: angl. angular frequency; cyclic frequency; radian frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f; циклическая частота, f pranc. fréquence… … Fizikos terminų žodynas

    То же, что угловая частота … Большой энциклопедический политехнический словарь

    Частота физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах, или. Единицей частоты в Международной системе единиц (СИ) в общем случае… … Википедия

    У этого термина существуют и другие значения, см. Частота (значения). Частота Единицы измерения СИ Гц Чaстота физическая в … Википедия

    ЧАСТОТА - (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

    циклическая инвентаризация Справочник технического переводчика

    Частота - колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

    Циклическая инвентаризация (CYCLE COUNT) - Метод точной ревизии наличных складских запасов, когда запасы инвентаризуются периодически по циклическому графику, а не раз в год. Циклическая инвентаризация складских запасов обычно производится на регулярной основе (как правило, чаще для… … Словарь терминов по управленческому учету

    Размерность T −1 Единицы измерения … Википедия

Определение

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний .

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим ${\omega }_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2\ $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол ${\varphi }_0$. Через некоторый промежуток времени этот угол изменится на величину ${\omega }_0t$ и будет равен ${\omega }_0t+{\varphi }_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ - это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О - центра окружности), называется амплитудой колебаний.

Параметр ${\omega }_0$ - циклическая частота колебаний. $\varphi =({\omega }_0t+{\varphi }_0$) - фаза колебаний; ${\varphi }_0$ - начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

При ${\varphi }_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна ${\varphi }_0=\frac{\pi }{2}$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ - это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

\[{\omega }_0=\frac{2\pi }{T}\left(5\right).\]

Циклическую частоту с частотой $?$$?$ свяжем выражением:

\[{\omega }_0=2\pi \nu \ \left(6\right).\]

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Размерность циклической частоты:

\[{\dim \left({\omega }_0\right)=\frac{1}{t},\ }\]

где $t$ - время.

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник - идеальная модель) совершает гармонические колебания с круговой частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(7\right),\]

$k$ - коэффициент упругости пружины; $m$ - масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(8\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(9\right),\]

где $l$ - длина подвеса.

Угловая частота затухающих колебаний находится как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(10\right),\]

где $\delta $ - коэффициент затухания; в случае с затуханием колебаний ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна ${\dot{x}}_{max}=10\ \frac{см}{с}$, а ее максимальное ускорение ${\ddot{x}}_{max}=100\ \frac{см}{с^2}$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

\[{\dot{x}}_{max}=A{\omega }_0\to A=\frac{{\dot{x}}_{max}}{{\omega }_0};;\ {\ddot{x}}_{max}=A{щ_0}^2=\frac{{\dot{x}}_{max}}{щ_0}{щ_0}^2\to щ_0=\frac{{\ddot{x}}_{max}}{{\dot{x}}_{max}}.\]

Вычислим циклическую частоту:

\[щ_0=\frac{100}{10}=10(\frac{рад}{с}).\]

Ответ: $щ_0=10\frac{{\rm рад}}{{\rm с}}$

Пример 2

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(2.1\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $\frac{m}{2}$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

\[{\omega }_0=\sqrt{\frac{mg\frac{3}{4}l\ }{\frac{5}{8}ml^2}}=\sqrt{\frac{6g}{5l}}.\]

Ответ: ${\omega }_0=\sqrt{\frac{6g}{5l}}$



Просмотров