Как расшифровывается волс. Волс: основные характеристики и сферы применения

Введение

1. Основная часть

1. Волоконно-оптические линии связи как понятие

Физические особенности

Технические особенности

Есть в волоконной технологии и свои недостатки

Оптическое волокно и его виды

Волоконно-оптический кабель

Электронные компоненты систем оптической связи

Лазерные модули для ВОЛС

Фотоприемные модули для ВОЛС

Применение ВОЛС в вычислительных сетях

Заключение

Список используемой литературы


Введение

С начала развития компьютерной техники прошло немного немало шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS – DOS, а в 1990 – Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу. 1986 год – рождение Интернета, глобальной сети, охватившей практически все страны мира, поставляющей каждому пользователю текущую информацию. Получив настолько быструю обработку данных, люди пришли к выводу, что можно перестать терять время и деньги, также на передачу этих данных, а также увеличить скорость доступа, и скорость передачу данных. Это стало возможным благодаря использованию новых видов связи, таких как оптическое волокно, пришедших на замену банальным алюминиевым и медным проводам.

Тема об оптоволоконной линии связи, является актуальной на данный момент времени, так как число людей на планете растет, и потребности в улучшение жизни то же увеличиваются. Ещё с древних времён человек совершенствуется: улучшает свои знания, стремится улучшить жизнь, создавая и моделируя предметы быта. И сейчас многие фирмы создают телевизоры, телефоны, магнитофоны, компьютера и многое другое, то есть – бытовую технику, которая упрощают жизнь человека. Но для внедрения этих новых технологий нужно изменять или улучшать старое. В пример этому можно привести наши линии связи на коаксиальном (медном) кабеле, про которые уже было упомянуто выше. Их скорость мала, даже для передачи видеоинформации. А волоконная оптика как раз то, что нам нужно - её скоростью передачи информации очень велика. Плюс, низкие потери при передаче сигнала позволяет прокладывать значительные по дальности участки кабеля без установки дополнительного оборудования. Оптоволокно имеет хорошую помехозащищенность, легкость прокладки и долгие сроки работы кабеля практически в любых условиях. И, кроме того, оптоволокно не имеет смысла воровать с целью сдачи на металлолом. В настоящее время оптоволокно находит свое применение преимущественно в теле - и интернет – коммуникациях. Но считается, что сегодняшнее использование оптоволокна лишь вершина айсберга его применения.


1. Волоконно-оптические линии связи как понятие

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. К примеру, В настоящее время волоконно-оптические кабели проложены по дну Тихого и Атлантического океанов и практически весь мир "опутан" сетью волоконных систем связи (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Европейские страны через Атлантику связаны волоконными линиями связи с Америкой. США, через Гавайские острова и остров Гуам - с Японией, Новой Зеландией и Австралией. Волоконно-оптическая линия связи соединяет Японию и Корею с Дальним Востоком России. На западе Россия связана с европейскими странами Петербург - Кингисепп - Дания и С.-Петербург – Выборг - Финляндия, на юге - с азиатскими странами Новороссийск - Турция. В Европе, также, как и в Америке, давно уже нашли широкое применение практически во всех сферах связи, энергетики, транспорта, науки, образования, медицины, экономики, обороны, государственно-политической и финансовой деятельности. Итак, основания считать оптоволокно самой перспективной средой для передачи больших потоков информации вытекает из ряда особенностей, присущих оптическим волноводам.

2. Физические особенности

Широкополосность оптических сигналов, обусловленная чрезвычайно высокой несущей частотой. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1 Терабит/с.

Говоря другими словами, по одному волокну можно передать одновременно10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут. А это означает, что до сих пор при столь сильной загруженности нашего интернета не нашлось столько информации, которая при одновременной передачи привела бы к уменьшению скорости передаваемого потока данных.

Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Иными словами потеря сигнала за счет сопротивления материала проводника. Лучшие образцы российского волокна имеют столь малое затухание, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.


3. Технические особенности

Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди, отсюда и сравнительно не большая цена и практически отсутствие случаев кражи с целью сдачи на металлолом

Оптические волокна имеют диаметр около 1 – 0,2 мм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации. К примеру вы все же решили это сделать. Для обнаружения перехватываемого сигнала вам понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видимость интерференционной картины может быть ослаблена большим количеством сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие, без замены самого кабеля.

4. Есть в волоконной технологии и свои недостатки

При создании линии связи требуются активные высоконадежные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение.

Точность изготовления таких элементов линии должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Другой недостаток заключается в том, что для монтажа оптических волокон требуется дорогостоящее технологическое оборудование. а) инструменты для оконцовки. б) коннекторы. в) тестеры. г) муфты и спайс- кассеты.

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

ВНИМАНИЕ: все компоненты СКС и ВОЛС, коммутационные и электротехнические устройства поставляются только в рамках сетевых проектов, мы не занимаемся дистрибуцией оборудования.
  • Сети на основе кабеля типа "Витая пара"
  • Оптоволоконные сети
ИЦ ТЕЛЕКОМ-СЕРВИС предлагает услуги по проектированию, монтажу и сервисной поддержке корпоративных коммуникаций, построенных на основе ВОЛС. Уникальное предложение компании – в комплексном подходе к созданию корпоративных телекоммуникационных и информационных систем. Помимо прокладки оптики, мы эффективно реализуем создание офисных АТС и call-центров (в том числе на базе VOIP), а также создание центров обработки данных и СХД.

ИЦ ТЕЛЕКОМ-СЕРВИС имеет партнерские отношения с ведущими разработчиками решений по созданию структурированных кабельных систем. Компания обладает полным пакетом действующих лицензий, позволяющим осуществлять весь комплекс работ по сетевой интеграции на разноотраслевых объектах.

Специалисты компании осуществляют полный цикл проекта по построению или модернизации сетевой инфраструктуры заказчика, построению ВОЛС и СКС – начиная от аудита до запуска системы и ее последующего технического обслуживания.

В то время как возможности медных кабельных линий приближаются к своим предельным значениям и требуются все больших затрат на дальнейшее развитие этого направления, перспективы использования ВОЛС становятся все экономичнее и эффективнее. Сегодня ВОЛС, безусловно, являются одним из самых перспективных направлений в области связи. Пропускные способности оптических каналов на порядки выше, чем у информационных линий на основе медного кабеля. Кроме того волоконно-оптические линии связи невосприимчивы к электромагнитным полям, что снимает некоторые типичные проблемы медных систем связи.

Основные понятия и области применения ВОЛС

Волоконно-оптическая линия связи (ВОЛС) – это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".

Волс – это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии Волс помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

ВОЛС в основном используются при построении объектов, в которых монтаж СКС должен объединить многоэтажное здание или здание большой протяженности, а также при объединении территориально-разрозненных зданий.

Структурная схема ВОЛС, применяемой для создания подсистемы внешних магистралей, изображена на рисунке.


Области применения и классификация волоконно-оптических кабелей (ВОК)

Волоконно-оптические кабели, применяемые при проектировании и монтаже СКС , предназначены для передачи оптических сигналов внутри зданий и между ними. На их основе могут быть реализованы все три подсистемы СКС, хотя в горизонталь ной подсистеме волоконная оптика пока находит ограниченное применение для обеспечения функционирования ЛВС. В подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на три основных вида:

  • кабели внешней прокладки (outdoor cables);
  • кабели внутренней прокладки (indoor cables);
  • кабели для шнуров.

Кабели внешней прокладки используются при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Основной областью использования кабелей внутренней прокладки является организация внутренней магистрали здания, тогда как кабели для шнуров предназначены в основном для изготовления соединительных и коммутационных шнуров, а также для выполнения горизонтальной разводки при реализации проектов класса «fiber to the desk» (волокно до рабочего места) и «fiber to the room» (волокно до комнаты). Общую классификацию оптических кабелей СКС можно представить в виде как показано на рисунке.

Преимущества ВОЛС

    Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

    Широкая полоса пропускания – обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания – это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

    Малое затухание светового сигнала в волокне . Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.

    Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.

    Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.

    Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.

    Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

    Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

    Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

    Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

    Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

    Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Технологический век дал нам много ярких изобретений и открытий, но, по-видимому, именно возможность передачи информации на большие расстояния внесла один из наиболее весомых вкладов в развитие технологий. Носители, по которым передаются данные, прошли долгий путь развития от медной проволоки столетие назад до современных оптоволоконных кабелей. В результате многократно увеличились объемы информации, скорости и расстояния ее передачи, что расширило пределы технологического развития во всех областях.

Современные оптоволоконные кабели из стекла с малыми потерями обеспечивают практически неограниченную полосу пропускания и имеют массу других преимуществ над ранее созданными носителями. Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника (рис. 1).

Рис. 1. Схема простейшей оптоволоконной системы передачи информации

Оптический передатчик преобразует аналоговый или цифровой электрический сигнал в соответствующий ему световой сигнал. Источником света может быть либо светодиод, либо твердотельный лазер. Чаще всего используются источники света с длиной волны 850, 1300 и 1550 нанометров.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон, которые для света работают как волноводы (световоды). По конструкции оптоволоконный кабель похож на электрический, но содержит специальные элементы для защиты находящихся внутри него световодов. Соединение многокилометровых кабелей выполняется с помощью разъемных и неразъемных оптических соединителей.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется либо лавинный фотодиод, либо (чаще) PIN-фотодиод.

Оптоволоконные системы передачи информации - оптические приемник и передатчик, связанные оптоволоконным кабелем - имеют много преимуществ над обычными медными проводами и коаксиальными кабелями:

Почему оптоволоконные системы обладают этими полезными свойствами? Прочитав эту брошюру и поняв принципы, лежащие в основе оптоволоконной технологии, вы получите ответ на этот вопрос. Каждому из трех компонентов оптоволоконных систем - передатчикам, приемникам и кабелям - посвящен свой раздел.

Оптические передатчики

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В зависимости от типа сигнала могут использоваться различные способы модуляции - включение и выключение света или его плавное изменение между заданными уровнями пропорционально входному сигналу. На рис. 2 эти два основных способа модуляции показаны на графиках зависимости интенсивности света от времени.


Рис. 2. Основные методы модуляции светового потока

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды). Для использования в оптоволоконных системах эти устройства изготавливаются в корпусах, позволяющих подвести оптоволокно максимально близко к зоне, излучающей свет. Это необходимо для того, чтобы направить как можно больше света в световод. Иногда излучатель оборудован микроскопической сферической линзой, позволяющей собрать весь свет «до последней капли» и направить его в волокно. В некоторых случаях стеклянная нить присоединяется непосредственно к поверхности излучающего свет кристалла.

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды).

У светодиодов площадь излучающего элемента довольно велика, и поэтому они излучают не так эффективно, как лазеры. Однако светодиоды широко используются на линиях связи малой и средней длины. Светодиоды гораздо дешевле лазеров, имеют почти линейную зависимость интенсивности излучения от величины электрического тока, интенсивность их излучения слабо зависит от температуры. Лазеры, напротив, имеют очень малую площадь излучающей поверхности и могут отдавать в оптоволокно гораздо большую мощность, чем светодиоды. Они тоже линейны по току, но очень сильно подвержены влиянию температуры и для достижения необходимой стабильности требуют применения более сложных электронных схем. Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Применяемые в оптоволоконной связи светодиоды и лазеры излучают в инфракрасной части спектра электромагнитных волн и поэтому их свет невидим человеческим глазом без применения специальных средств. Длина волны излучения выбрана с учетом максимальной прозрачности материала световодов и наивысшей чувствительности фотодиодов. Наиболее часто используемые сейчас длины волн - 850, 1300 и 1550 нанометров. Для всех трех длин волн выпускаются как светодиоды, так и лазеры.

Как уже было сказано, световой поток светодиодов и лазеров модулируется одним из двух способов: «включено-выключено» или линейным непрерывным изменением интенсивности. На рис. 3 показаны упрощенные схемы, реализующие оба способа модуляции. Для управления излучателем используется транзистор, на базу которого поступает предварительно сформированный цифровой сигнал. Максимальная частота модуляции при этом определяется электронной схемой и свойствами излучателя. Со светодиодами легко достижимы частоты в несколько сотен мегагерц, с лазерами - в тысячи мегагерц. На схеме не показан узел термостабилизации (светодиодам он обычно вообще не требуется).

Линейная модуляция осуществляется с помощью схемы на основе операционного усилителя (рис. 3B). Модулирующий сигнал подается на инвертирующий вход усилителя, постоянное смещение поступает на неинвертирующий вход. Здесь также не показана схема термостабилизации.


Рис. 3. Методы модуляции светового потока светодиодов
и полупроводниковых лазеров

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие. Кроме того, применяются широтно-импульсная и частотно-импульсная модуляция. При широтно-импульсной модуляции используется непрерывный поток импульсов, двумя различными длительностями которых кодируются логические уровни сигнала. При частотно-импульсной модуляции все импульсы имеют одинаковую длительность, но частота их следования меняется в зависимости от передаваемого логического уровня.


Рис 4. Различные методы оптической передачи аналоговой
и цифровой информации

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие.

Для аналоговой модуляции также существует несколько методов. Простейший из них - линейная модуляция, где интенсивность источника света прямо связана с величиной передаваемого сигнала. В других методах передаваемый сигнал вначале модулирует высокочастотную несущую (а в некоторых случаях и несколько несущих), а затем этот сложный сигнал управляет яркостью источника света.

На рис. 4 показана зависимость интенсивности света от времени для этих методов модуляции.

Частота света (который тоже является электромагнитным излучением) весьма велика - порядка миллионов гигагерц. Полоса частот излучателей света (лазеров и светодиодов) достаточно широка, но, к сожалению, современная технология не дает возможности селективного использования этой полосы, как это делается при передаче информации по радио. В оптическом передатчике происходит включение и выключение всей полосы частот сразу, как это делалось в первых искровых передатчиках на заре эры радио. Со временем ученые преодолеют это препятствие и станет возможной «когерентная передача», что определит дальнейшее развитие оптоволоконной технологии.

Световоды

Ввод света в оптическое волокно

Чем выше мощность излучателя, тем больше света попадает в световод.

После того, как передатчик преобразовал входной электрический сигнал в нужным образом модулированный свет, его необходимо ввести в оптическое волокно. Как уже говорилось, для этого существует два способа: прямое соединение излучающего элемента со световодом, и размещение световода в непосредственной близости от излучателя. При использовании второго способа количество света, которое попадет в оптоволокно, зависит от четырех факторов: интенсивности излучения, площади излучающего элемента, входного угла световода и потерь на отражение и рассеяние. Кратко рассмотрим все эти факторы.

Интенсивность излучения светодиода или лазера зависит от его конструкции и обычно выражается как общая мощность излучения при определенном токе. Иногда эта цифра указывается как реальная мощность, передаваемая в оптоволокно конкретного типа. При прочих равных условиях чем выше мощность излучателя, тем больше света попадает в световод.

Отношение площадей излучающего элемента и сердцевины оптоволокна определяет долю общей мощности, которая попадает в световод - чем меньше это отношение, тем больше света окажется в волокне.

Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Входной угол оптоволокна характеризуют его числовой апертурой (numerical aperture, NA), которая определяется как синус половины входного угла. Типовые значения NA лежат в диапазоне от 0,1 до 0,4, что соответствует входному углу от 11 до 46 градусов. Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Потери. Кроме потерь от загрязнений на поверхности оптоволокна, всегда существуют неизбежные потери интенсивности света, вызванные отражением на входе в световод и выходе из него. Это так называемые френелевские потери (по имени французского физика О. Ж. Френеля), которые составляют примерно 4% общей интенсивности на каждой границе раздела стекло-воздух. При необходимости для снижения этих потерь на соединяемые стеклянные поверхности наносят немного специального оптического геля.

Типы оптического волокна

Сейчас используется два типа оптического волокна: со ступенчатым и плавным изменением показателя преломления вдоль радиуса (профилем). На рис. 5 показано, что свет распространяется по таким световодам по-разному.


Рис 5. Распространение света по оптоволокну со ступенчатым и плавным профилями показателя преломления

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм.

Как показано на рисунке, волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления. Такое различие показателей преломления заставляет свет отражаться от границы между сердцевиной и оболочкой на всем пути распространения. Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к периферии. В результате световод, подобно протяженной линзе, постоянно отклоняет распространяющийся по нему свет к центру.

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм. Первые два типоразмера обычно используются вместе со светодиодными излучателями на линиях передачи малой и средней длины. Оптоволокно с сердцевиной 8-10 мкм чаще всего применяется в телекоммуникационных системах большой протяженности совместно с лазерными оптическими передатчиками.

Потери в оптическом волокне

Кроме потерь интенсивности сигнала в соединении излучателя и световода, потери происходят также и при распространении света по оптоволокну. Сердцевина оптического волокна делается из сверхчистого стекла с очень низкими потерями. Стекло должно иметь высочайшую прозрачность, поскольку по изготовленному из него волокну свет должен проходить километры. Давайте посмотрим на обычное оконное стекло. Оно прозрачно, но только потому, что его толщина всего 3-4 мм. Достаточно взглянуть на торец стеклянной пластины и увидеть его зеленую окраску, чтобы понять, как сильно она поглощает свет даже на длине в десяток-другой сантиметров. Легко представить, как же мало света пройдет через стометровую толщу оконного стекла!

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм по- тери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм потери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Основной причиной потерь является поглощение света неоднородностями и рассеяние на них. Другая причина потерь в оптоволокне - его чрезмерный изгиб, при котором часть света выходит из сердцевины. Во избежание таких потерь радиус изгиба оптоволоконного кабеля при прокладке должен быть не менее 2,5 см (а чаще и еще больше).

Полоса пропускания оптоволокна

Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод.


Чем меньше мод в излучении, тем шире полоса пропускания оптоволокна.

Перечисленные выше потери не зависят от частоты модуляции, то есть уровень потерь в 3 дБ означает, что до получателя не дойдет 50% света независимо от того, модулирован он сигналом 10 Гц или 100 МГц. Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод. Причину этого ограничения поясняет рис. 6. Свет, вошедший в оптоволокно под малым углом к его оси (M1) распространяется по более короткому пути, чем тот, который входит под углом, близким к предельному входному (M2). В результате различные лучи, исходящие от одного и того же источника (называемые модами), приходят к даль- нему концу световода не одновременно, что приводит к эффекту размывания - уширению коротких импульсов. Это ограничивает максимальную частоту сигнала, передаваемого по оптоволоконному кабелю. Говоря кратко, чем меньше мод в излучении, тем шире полоса пропускания оптоволокна. Чтобы уменьшить число распространяющихся мод, сердцевину волокна делают тоньше. Одномодовое волокно с диаметром сердцевины от 8 до 10 мкм имеет значительно более широкую полосу пропускания, чем многомодовые волокна с диаметром 50 и 62,5 мкм, по которым может одновременно распространяться большое число мод излучения.


Рис. 6. Полоса частот модуляции, пропускаемых оптоволокном,
ограничивается существованием различных путей распространения света

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается. Например, кабель, имеющий полосу 500 МГц на длине 1 км, при длине 2 км сможет обеспечить полосу в 250 МГц, а при 5 км - лишь в 100 МГц.

Очень широкая полоса пропускания одномодовых световодов позволяет практически не обращать внимания на их длину. Однако для многомодовых волокон этот фактор важен, поскольку нередко частотный диапазон передаваемых сигналов превосходит полосу пропускания кабелей.

Конструкция оптоволоконного кабеля

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается.

Оптоволоконные кабели выпускаются разного диаметра и конструкции. Как и в случае коаксиальных, конструкция оптоволоконных кабелей определяется его предназначением. Внешне оптоволоконный кабель похож на коаксиальный. На рис. 7 схематично показано устройство стандартного оптоволоконного кабеля.

Оптоволокно имеет защитное покрытие, предохраняющее его от повреждений в производственном процессе. Оно помещается в облегающую его поливинилхлоридную трубку, где может свободно изгибаться при прокладке вокруг углов стен и в кабельных каналах.

Эта трубка окружена оплеткой из кевлара, принимающей на себя основное механическое усилие, которое действует на кабель при прокладке. Наконец, внешняя оболочка из поливинилхлорида защищает весь кабель и предотвращает проникновение влаги внутрь.

Кабели такой конструкции пригодны для прокладки внутри зданий, где не требуется значительная стойкость к внешним воздействиям. Существуют кабели практически для любого варианта прокладки, например, для прямой укладки в грунт, армированные устойчивой к грызунам внешней оболочкой из стали и сертифицированные UL негорючие кабели для прокладки над фальшпотолками. Выпускаются и многожильные кабели с цветовой кодировкой.


Рис. 7. Устройство стандартного оптоволоконного кабеля

Другие типы световодов

Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Еще два типа световодов - кварцевые с сердцевиной очень большого диаметра и целиком изготовленные из пластмассы - обычно не используются в телекоммуникациях. Кварцевые световоды используются для передачи мощных световых потоков, например в лазерной хирургии. Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Оптические соединители

С помощью оптических соединителей оптоволоконные кабели подключаются к оборудованию или соединяются между собой. Они похожи на электрические разъемы по функциям и внешнему виду, но требу- ют очень высокой точности изготовления. В оптическом разъемном соединении необходимо прецизионное совмещение и центровка сердцевины обоих волокон. Поскольку их диаметр весьма мал (например, 50 мкм), требования к точности очень высоки: допуск имеет порядок одного микрона.

Сейчас используются оптические разъемы множества различных типов. Разъем SMA, использовавшийся еще до изобретения одномодовых волокон, до недавнего времени оставался наиболее распространенным. На рис. 8 показаны детали конструкции этого разъема.


Рис. 8. Конструкция разъема SMA

Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами.

Для многомодовых волокон сейчас чаще всего применяется разъем ST, разработанный компанией AT&T. В нем применен байонетный фиксатор, а общие потери меньше, чем в SMA. Подобранная пара разъемов ST обеспечивает уровень потерь менее 1 дБ (20%) и не требует дополнительных направляющих втулок или других подобных элементов. Специальный выступ, не дающий разъему поворачиваться, гарантирует, что при соединении оптические волокна всегда будут устанавливаться в одно и то же положение друг относительно друга, что обеспечивает стабильность характеристик разъемного соединения.

Разъемы ST выпускаются как для многомодовых, так и для одномодовых световодов - основное различие состоит в величине допусков. Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами. Более дорогие одномодовые разъемы ST можно использовать как с одномодовыми, так и с многомодовыми световодами. Процедуры установки разъемов ST и SMA на кабель сходны и занимают примерно одинаковое время. На рис. 9 показаны основные элементы ставшего промышленным стандартом разъема ST.


Рис. 9. Основные элементы разъема ST

Неразъемные соединения световодов

Хотя для соединения двух световодов можно использовать оптические разъемы, существуют другие методы, обеспечивающие значительно более низкие потери. Два наиболее распространенных - механическое соединение и сварное соединение. Оба обеспечивают уровень потерь от 0,15 до 0,1 дБ (3-2%).

Для механического соединения концы световодов освобождаются от оболочек, их торцы очищаются и точно совмещаются с использованием специального механического приспособления. На место соединения наносится оптический гель, снижающий до минимума потери на отражение. Совмещенные концы световодов удерживаются на месте запорным механизмом.

Оптические приемники

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик.

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик. В качестве детектора в приемнике обычно используется PIN- или лавинный фотодиод, который устанавливается на оптическом соединителе (подобном используемому для источников света). У фотодиодов обычно довольно большой чувствительный элемент (несколько микрометров в диаметре), поэтому требования к точности позиционирования оптического волокна не такие жесткие, как для передатчиков.

Важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя.

Интенсивность излучения, выходящего из оптоволокна, достаточно мала, и в оптических приемниках устанавливаются внутренние усилители с большим коэффициентом усиления. Поэтому важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя. Если, например, пара передатчик-приемник, предназначенная для одномодового оптоволокна, используется с многомодовым, то в приемник поступит слишком много света, что вызовет его насыщение и серьезное искажение выходного сигнала. Аналогично, при использовании одномодового волокна с передатчиком и приемником, рассчитанными на многомодовое, до приемника дойдет мало света, и выходной сигнал будет содержать много шума или вообще не появится. Единственный случай, когда несоответствие приемника и передатчика типу волокна может оказаться полезным - чрезмерные потери в световоде. Тогда дополнительные 5-15 дБ, которые даст замена одномодового волокна на многомодовое, спасут положение и позволят получить работоспособную систему. Однако это экстремальная ситуация, и такое решение не рекомендуется для нормального применения.

Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.

Как и передатчики, оптические приемники выпускаются в аналоговом и цифровом вариантах. В них обоих используется аналоговый предварительный усилитель, за которым включен аналоговый или цифровой выходной каскад.

На рис. 10 показана функциональная схема простого аналогового оптического приемника. Первый каскад - операционный усилитель, включенный как преобразователь тока в напряжение. Слабый ток, генерируемый фотодиодом, преобразуется здесь в напряжение, амплитуда которого обычно составляет несколько милливольт. В следующем каскаде, представляющим собой простой усилитель напряжения, сигнал усиливается до необходимого уровня.

Функциональная схема цифрового оптического приемника показана на рис. 11. Как и в случае аналогового приемника, первый каскад представляет собой преобразователь тока в напряжение. Его выходной сигнал поступает на компаратор напряжения, который выдает чистый цифровой сигнал с малой длительностью перепадов. Регулятор уровня срабатывания компаратора, если он есть, используется для точной настройки симметрии восстановленного цифрового сигнала.

Часто в приемники для наиболее точного воспроизведения входного сигнала добавляются дополнительные каскады, которые работают как линейные усилители для коаксиальных кабелей, преобразователи протоколов и т.п. Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.


Рис. 10. Простейший аналоговый оптический приемник


Рис. 11. Простейший цифровой оптический приемник

Разработка оптоволоконной системы

При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель - гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.


Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы

При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:

  1. Выбор приемника и передатчика, подходящих для того типа сигнала, который необходимо передавать (аналоговый, цифровой, видеосигнал, RS-232, RS-422, RS-485 и т.д.).
  2. Определение имеющихся источников питания (переменное напряжение, постоянное напряжение и др.).
  3. Определение, при необходимости, специальных требований (например, импедансов, полосы пропускания, специальных разъемов и диаметра волокна и т.п.).
  4. Расчет общих потерь в системе (в децибелах): суммирование потерь в кабелях, в разъемных и неразъемных соединениях. Эти характеристики можно получить у производителей электронных устройств и оптоволоконных кабелей.
  5. Сравнение полученной цифры потерь с допустимым значением уровня сигнала на входе приемника. Следует подстраховаться, добавив запас как минимум в 3 дБ на всю систему.
  6. Проверка соответствия полосы пропускания системы потребностям передачи нужного типа сигнала. Если расчеты покажут, что полоса пропускания окажется недостаточной для передачи сигнала на нужное расстояние, то следует либо выбрать другой приемник и передатчик (другую длину волны), либо рассмотреть возможность использования более дорогого и качественного оптоволоконного кабеля с меньшими потерями.

Контрольный перечень параметров, необходимых для разработки оптоволоконной системы передачи данных

Назначение (краткое описание задачи):
Параметры аналогового сигнала:
Входное напряжение
Входной импеданс
Выходное напряжение
Выходной импеданс
Отношение сигнал/шум
Полоса пропускания
Разъемы
Другие данные
Параметры цифрового сигнала:
Тип интерфейса (RS-232, 422, 485 и т.п.)
Скорость передачи данных
Способ связи (по постоянному или переменному току)
Допустимая частота битовых ошибок
Разъемы
Другие данные
Требования к источнику питания:
Напряжение
Ток
Переменное или постоянное напряжение
Разъемы
Другие данные

Требования к оптоволоконной линии:
Длина линии
Длина волны света
Допустимые потери
Оптические разъемы
Тип оптоволокна
Диаметр оптоволокна
Условия монтажа
Общие требования:
Размер корпуса
Способ монтажа
Характеристики окружающей среды
Диапазон рабочих температур
Диапазон температур хранения
Другие данные
Дополнительные комментарии:

Волоконно-оптическими называют линии, предназначенные для передачи информации в оптическом диапазоне. Согласно данным советского Информбюро, на конец 80-х темп роста применения волоконно-оптических линий составил 40%. Эксперты Союза предполагали полный отказ некоторых стран от медной жилы. Съезд постановил на 12-ю пятилетку 25% прирост объёма линий связи. Тринадцатая, также призванная развивать волоконную оптику, застала развал СССР, появились первые сотовые операторы. Кстати, прогноз экспертов относительно роста потребности в квалифицированных кадрах провалился…

Принцип действия

Каковы причины резкого роста популярности высокочастотных сигналов? Современные учебники упоминают снижение потребности в регенерации сигнала, стоимости, повышение ёмкости каналов. Советские инженеры вызнали, рассуждая иначе: медный кабель, броня, экран берут 50% мирового производства меди, 25% – свинца. Недостаточно известный факт стал главной причины оставления спонсорами Николы Теслы, проекта башни Ворденклифф (название дала фамилия мецената, пожертвовавшего землю). Известный сербский учёный возжелал передавать информацию, энергию беспроводным путём, напугав немало локальных хозяев медеплавильных заводов. 80 лет спустя картина изменилась кардинально: люди осознали необходимость сбережения цветных металлов.

Материалом изготовления волокна служит… стекло. Обычный силикат, сдобренный изрядной долей модифицирующих свойства полимеров. Советские учебники, помимо указанных причин популярности новой технологии, называют:

  1. Малое затухание сигналов, явившееся причиной снижения потребности в регенерации.
  2. Отсутствие искрения, следовательно, пожаробезопасность, нулевая взрывоопасность.
  3. Невозможность короткого замыкания, пониженная потребность в обслуживании.
  4. Нечувствительность к электромагнитным помехам.
  5. Низкий вес, сравнительно малые габариты.

Первоначально оптоволоконные линии должны были объединить крупные магистрали: меж городами, пригородами, АТС. Эксперты СССР назвали кабельную революцию сродни появлению твердотельной электроники. Развитие технологии позволило построить сети, лишённые токов утечки, перекрёстных помех. Участок длиной сотню км лишён активных методов регенерации сигнала. Бухта одномодового кабеля обычно составляет 12 км, многомодового – 4 км. Последнюю милю чаще покрывают медью. Провайдеры привыкли предназначать оконечные участки индивидуальным пользователям. Отсутствуют высокие скорости, приёмопередатчики дёшевы, возможность подвести одновременно питание устройству, простота использования линейных режимов.

Передатчик

Типичным формирователем луча выступают полупроводниковые светодиоды, включая твердотельные лазеры. Ширина спектра сигнала, излучаемого типичным p-n-переходом, составляет 30-60 нм. КПД первых твердотельных устройств едва достигал 1%. Основой связных светодиодов чаще выступает структура индий-галлий-мышьяк-фосфор. Излучая более низкую частоту (1,3 мкм), приборы обеспечивают значительное рассеивание спектра. Результирующая дисперсия сильно ограничивает битрейт (10-100 Мбит/с). Поэтому светодиоды пригодны для построения локальных сетевых ресурсов (дистанция 2-3 км).

Частотное деление с мультиплексированием осуществляется многочастотными диодами. Сегодня несовершенные полупроводниковые структуры активно вытесняются вертикальными излучающими лазерами, значительно улучшающими спектральные характеристики. повышающими скорость. Цена одного порядка. Технология вынужденного излучения приносит гораздо более высокие мощности (сотни мВт). Когерентное излучение обеспечивает КПД одномодовых линий 50%. Эффект хроматической дисперсии снижается, позволяя повысить битрейт.

Малое время рекомбинации зарядов позволяет легко модулировать излучение высокими частотами питающего тока. Помимо вертикальных применяют:

  1. Лазеры с обратной связью.
  2. Резонаторы Фабри-Перо.

Высокие битрейты дальних линий связи достигаются применением внешних модуляторов: электро-абсорбционные, интерферометры Маха – Цендера. Внешние системы устраняют необходимость применения линейной частотной модуляции напряжением питания. Обрезанный спектр дискретного сигнала передаётся дальше. Дополнительно разработаны другие методики кодирования несущей:

  • Квадратурная фазовая манипуляция.
  • Ортогональное мультиплексирование с частотным разделением.
  • Амплитудная квадратурная модуляция.

Процедуру осуществляют цифровые сигнальные процессоры. Старые методики компенсировали лишь линейную составляющую. Беренджер выразил модулятор рядами Вина, ЦАП и усилитель смоделировал усечёнными, времянезависимыми рядами Вольтерры. Кхана предлагает использовать полиномиальную модель передатчика вдобавок. Каждый раз коэффициенты рядов находят, используя архитектуру непрямого изучения. Дутель записал множество распространённых вариантов. Фазная перекрёстная корреляция и квадратурные поля имитируют несовершенство систем синхронизации. Аналогично компенсируются нелинейные эффекты.

Приёмники

Фотодетектор совершает обратное преобразование свет – электричество. Львиная доля твёрдотельных приёмников использует структуру индий-галлий-мышьяк. Иногда встречаются pin-фотодиоды, лавинные. Структуры металл-полупроводник-металл идеально подходят для встраивания регенераторов, коротковолновых мультиплексоров. Оптикоэлектрические конвертеры часто дополняют трансимпедансными усилителями, ограничителями, производящими цифровой сигнал. Затем практикуют восстановление синхроимпульсов с фазовой автоподстройкой частоты.

Передача света стеклом: история

Явление рефракции, делающее возможной тропосферную связь, нелюбимо учениками. Сложные формулы, неинтересные примеры убивают любовь студента к знаниям. Идею световода родили далёкие 1840-е годы: Дэниэл Колладон, Жак Бабинэ (Париж) пытались приукрасить собственные лекции заманчивыми, наглядными экспериментами. Преподаватели средневековой Европы плохо зарабатывали, поэтому изрядный приток студентов, несущих деньги, выглядел желанной перспективой. Лекторы заманивали публику любыми способами. Некий Джон Тиндал воспользовался идеей 12 лет спустя, гораздо позже выпустив книгу (1870), рассматривающую законы оптики:

  • Свет проходит границу раздела воздух-вода, наблюдается рефракция луча относительно перпендикуляра. Если угол касания луча к ортогональной линии превышает 48 градусов, фотоны перестают покидать жидкость. Энергия полностью отражается назад. Предел назовём лимитирующим углом среды. Водный равен 48 градусов 27 минут, у силикатного стекла – 38 градусов 41 минута, алмаза – 23 градуса 42 минуты.

Зарождение XIX столетия принесло линии Петербург – Варшава световой телеграф протяжённостью 1200 км. Регенерация операторами послания проводилась каждые 40 км. Сообщение шло несколько часов, мешали погода, видимость. Появление радиосвязи вытеснило старые методики. Первые оптические линии датированы концом XIX века. Новинка понравилась… медикам! Гнутое стеклянное волокно позволяло освещать любые полости человеческого тела. Историки предлагают следующую временную шкалу развития событий:


Идею Генри Сэнт-Рене продолжили поселенцы Нового света (1920-е), задумавшие улучшить телевидение. Кларенс Ханселл, Джон Логи Бэйрд стали пионерами. Десять лет спустя (1930) студент-медик Хайнрих Ламм доказал возможность передачи стеклянными направляющими изображения. Ищущий знаний задумал осмотреть внутренности тела. Качество изображения хромало, попытка получить Британский патент провалилась.

Рождение волокна

Независимо голландский учёный Абрахам ван Хил, британец Харольд Хопкинс, Нариндер Сингх Капани изобрели (1954) волокно. Заслуга первого в идее покрыть центральную жилу прозрачной оболочкой, имевшей низкий коэффициент преломления (близкий к воздуху). Защита от царапин поверхности сильно улучшила качество передачи (современники изобретателей видели главное препятствие использования волоконных линий в больших потерях). Британцы тоже внесли серьёзный вклад, собрав пучок волокон численностью 10.000 штук, передали изображение на дистанцию 75 см. Заметка «Гибкий фиброскоп, использующий статическое сканирование» украсила журнал Nature (1954).

Это интересно! Нариндер Сингх Капани ввёл термин фиброволокно заметкой в журнале Американская наука (1960).

1956 год принёс миру новый гибкий гастроскоп, авторы Базиль Хиршовиц, Вильбур Петерс, Лоуренс Кертисс (Университет Мичиган). Особенностью новики являлась стеклянная оболочка волокон. Элиас Снитцер (1961) обнародовал идею создания одномодового волокна. Столь тонкого, что внутри умещалось лишь одно пятнышко интерференционной картины. Идея помогла медикам осмотреть внутренности (живого) человека. Потери составили 1 дБ/м. Потребности коммуникаций простирались гораздо дальше. Требовалось достичь порога 10-20 дБ/км.

1964 год считают переломным: жизненно важную спецификацию опубликовал доктор Као, введя теоретические основы дальней связи. Документ активно использовал приведённую выше цифру. Учёный доказал: снизить потери поможет стекло высшей степени очистки. Германский физик (1965) Манфред Бёрнер (Телефункен Ресёрч Лабс, Ульм) представил первую работоспособную телекоммуникационную линию. NASA немедленно передало вниз лунные снимки, используя новинки (разработки были секретными). Несколько лет спустя (1970) трое работников Корнинг Глэс (см. начало топика) подали патент, реализующий технологический цикл выплавки оксида кремния. Три года бюро оценивало текст. Новая жила увеличила пропускную способность канала в 65000 раз относительно медного кабеля. Команда доктора Као немедля сделала попытку покрыть значительное расстояние.

Это интересно! 45 лет спустя (2009) Као вручили Нобелевскую премию по физике.

Военные компьютеры (1975) противовоздушной обороны США (секция NORAD, Шайенские горы) получили новые коммуникации. Оптический интернет появился очень давно, раньше персональных компьютеров! Двумя годами позже тестовые испытания телефонной линии длиной 1,5 мили (пригород Чикаго) успешно передали 672 голосовых канала. Стеклодувы трудились неустанно: начало 80-х привнесло появление волокна с затуханием 4 дБ/км. Оксид кремния заменили другим полупроводником – германием.

Скорость производства высококачественного кабеля технологической линией составила 2 м/с. Хими Томас Менса разработал технологию, повысившую двадцатикратно указанный лимит. Новинка, наконец, стала дешевле медного кабеля. Дальнейшее изложено выше: последовал всплеск внедрения новой технологии. Шаг расстановки репитеров составил 70-150 км. Волоконный усилитель, легированный ионами Эрбия, резко снизил стоимость возведения линий. Времена тринадцатой пятилетки принесли планете 25 миллионов километров волоконно-оптических сетей.

Новый толчок развитию дало изобретение фотонных кристаллов. Первые коммерческие модели принёс 2000 год. Периодичность структур позволила значительно повысить мощность, конструкция волокна гибко подстраивалась, следуя частоте. В 2012 году Телеграфная и телефонная компания Ниппона достигла скорости 1 петабит/с на дальности 50 км одним-единственным волокном.

Военная промышленность

Достоверно известна история шествия военной промышленности США, опубликованной в Монмаут Месседж. В 1958 году менеджер по кабельному хозяйству форта Монмаут (Сигнал Корпс Лабс армии Соединённых Штатов) рапортовал о вреде молний, осадков. Чиновник потревожил исследователя Сэма Ди Вита, попросив найти замену зеленеющей меди. Ответ содержал предложение попробовать стекло, фибер, световые сигналы. Однако инженеры дяди Сэма того времени оказались бессильны решить задачку.

Жарким сентябрём 1959 Ди Вита спросил лейтенанта второго ранга Ричарда Штурцебехера, известна ли тому формула стекла, способного передавать оптический сигнал. Ответ содержал сведения, касающиеся оксида кремния – пробы на базе Университета Альфреда. Измеряя коэффициент рефракции материалов микроскопом, Ричард нажил головную боль. 60-70% стеклянная пудра свободно пропускала лучезарный свет, раздражая глаза. Держа в уме необходимость получения чистейшего стекла, Штурцебехер изучал современные методики производства при помощи хлорида кремния IV. Ди Вита нашёл материал пригодным, решив предоставить правительству переговоры со стеклодувами компании Корнинг.

Чиновник отлично знал рабочих, однако решил предать дело огласке, дабы завод получил государственный контракт. Между 1961 и 1962 идея использования чистого оксида кремния была передана исследовательским лабораториям. Федеральные ассигнования составили порядка 1 млн. долларов (промежуток 1963-1970). Программа окончилась (1985) развитием многомиллиардной индустрии производства оптоволоконных кабелей, начавших стремительно замещать медные. Ди Вита остался работать, консультируя промышленность, прожив 97 лет (год смерти – 2010).

Разновидности кабелей

Кабель формируют:

  1. Ядро.
  2. Оболочка.
  3. Защитный кожух.

Волокно реализует полное отражение сигнала. Материалом первых двух компонентов традиционно выступает стекло. Иногда находят дешёвую замену – полимер. Оптические кабели объединяют сплавлением. Выравнивание ядра потребует сноровки. Мультимодовый кабель толщиной свыше 50 мкм паять проще. Две глобальные разновидности различаются количеством мод:

  • Мультимодовый снабжён толстым ядром (свыше 50 мкм).
  • Одномодовый значительно тоньше (менее 10 мкм).

Парадокс: кабель меньших размеров обеспечивает дальнюю связь. Стоимость четырёхжильного трансатлантического составляет 300 млн. долларов. Сердцевину покрывают светоустойчивым полимером. Журнал Новый учёный (2013) обнародовал опыты научной группы Университета Саутгемптона, покрывших дальность 310 метров… волноводом! Пассивный диэлектрический элемент показал скорость 77,3 Тбит/с. Стены полой трубки образованы фотонным кристаллом. Информационный поток двигался со скорость 99,7% световой.

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.

Первая конструкция Йе и Йарива (1978) представлена двумя и более концентрическими слоями разных материалов. Конструкции постоянно дополняются свежими видами. Рассел (1996, автор термина фотонно-кристаллический фибер) представил сотовый набор волокон, двумя годами позже догадались сердцевину заменить пустотой. Достигнутые затухания впечатляют:

  1. Полые – 1,2 дБ/км.
  2. Сплошные – 0,37 дБ/км.

Технология производства сродни традиционной. Сравнительно толстую заготовку постепенно вытягивают. Выходит волос длиной в километры. Материалы проходят стадию исследований.

Частоты

Скорость, дальность передачи ограничены эффектами дисперсии, затуханием. Исследователи нашли длины волн, минимизирующие недостатки. Образовано несколько окон, используемых телекоммуникациями:

  1. О – 1260..1360 нм.
  2. Е – 1360..1460 нм.
  3. S – 1460..1530 нм.
  4. С – 1530..1565 нм.
  5. L – 1565..1625 нм.
  6. U – 1625..1675 нм.

Окна идут непрерывно, существующие системы связи могут состоять одновременно из двух-трёх. Исторически первый промежуток (800-900 нм) сегодня убран, поскольку потери оказались непомерно высокими. Окна О, Е характеризуются нулевой дисперсией. Чаще применяют S, C, демонстрирующие преимущества минимального затухания (максимальная дальность передачи).



Просмотров