Алгоритм дейкстры си. Tag Archives: алгоритм Дейкстры. Но это же сложнее и дольше, чем оригинальное решение! Кому это вообще нужно

Алгоритм Дейкстры – алгоритм на графах, который находит кратчайший путь между двумя данными вершинами в графе с неотрицательными длинами дуг. Также часто ставится задача расчёта кратчайшего пути от данной вершины до всех остальных. Алгоритм широко применяется в программировании, например, его используют протоколы маршрутизации.

Описание

На вход алгоритма подаётся взвешенный ориентированный граф с дугами неотрицательного веса. На выходе получается набор кратчайших путей от данной вершины до других.

В начале расстояние для начальной вершины полагается равным нулю, а расстояния до всех остальных понимаются бесконечными. Массив флагов, обозначающих то, пройдена ли вершина, заполняется нулями. Затем на каждом шаге цикла ищется вершина с минимальным расстоянием до изначальной и флагом равным нулю. Для неё устанавливается флаг и проверяются все соседние вершины. Если рассчитанное ранее расстояние от исходной вершины до проверяемой больше, чем сумма расстояния до текущей вершины и длины ребра от неё до проверяемой вершины, то расстояние до проверяемой вершины приравниваем к расстоянию до текущей+ребро от текущей до проверяемой. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда расстояние до всех вершин c флагом 0 бесконечно. Последний случай возможен тогда и только тогда, когда граф несвязеный.

Алгоритм Дейкстры в псевдокоде

Вход: С : array of real – матрица длин дуг графа; s – вершина, от которой ищется кратчайший путь и t – вершина, к которой он ищется.

Выход: векторы Т: array of real; и Н: array of 0..р. Если вершина v лежит на кратчайшем пути от s к t, то T[v] - длина кратчайшего пути от s к у; Н[у] - вершина, непосредственно предшествующая у на кратчайшем пути.

Н – массив, в котором вершине n соответствует вершина m, предыдущая на пути к n от s.

T – массив, в котором вершине n соответствует расстояние от неё до s.

X – массив, в котором вершине n соответствует 1, если путь до неё известен, и 0, если нет.

инициализация массивов:

for v from 1 to р do

Т[ v ]: = { кратчайший путь неизвестен }

X[v]: = 0 { все вершины не отмечены}

H[s]: = 0 { s ничего не предшествует }

T[s] : = 0 { кратчайший путь имеет длину 0...}

X[s] : = 1 { ...и он известен } v : = s { текущая вершина }

М: { обновление пометок }

for и ∈ Г(и ) do

if Х[и] = 0 & Т[и] > T[v] + C then

Т[и] : = T[v] + C { найден более короткий путь из s в и через v }

H[u]: = v { запоминаем его }

m : =

v : = 0

{ поиск конца кратчайшего пути }

for и from 1 to p do

if X[u] = 0 &T[u] < t then

v: = u ;

m: = T[u] { вершина v заканчивает кратчайший путь из s

if v = 0 then

stop { нет пути из s в t } end if

if v = t then

stop { найден кратчайший путь из s в t } end if

X[v]: = 1 { найден кратчайший путь из s в v } goto M

Обоснование

Для доказательства корректности алгоритма Дейкстры достаточно заметить, что при каждом выполнении тела цикла, начинающегося меткой М, в качестве v используется вершина, для которой известен кратчайший путь из вершины s. Другими словами, если X[v] = 1, то T[v] = d(s,v), и все вершины на пути (s,v), определяемом вектором Н, обладают тем же свойством, то есть

Vu Т[и] = 1 => Т[и] = d(s,u)&T] = 1.

Действительно (по индукции), первый раз в качестве v используется вершина s, для которой кратчайший путь пустой и имеет длину 0 (непустые пути не могут быть короче, потому что длины дуг неотрицательны). Пусть Т[u] = d(s,u) для всех ранее помеченных вершин и. Рассмотрим вновь помеченную вершину v , которая выбрана из условия T[v] = min Т[и]. Заметим, что если известен путь, проходящий через помеченные вершины, то тем самым известен кратчайший путь. Допустим (от противного), что T[v]> d(s, v), то есть найденный путь, ведущий из s в v, не является кратчайшим. Тогда на этом пути должны быть непомеченные вершины. Рассмотрим первую вершину w на этом пути, такую что T[w]= 0.Имеем: T[w]= d(s,w)⩽d(s>v) < Т[v],что противоречит выбору вершины u.

Временная сложность

Сложность алгоритма Дейкстры зависит от способа нахождения не посещённой вершины с минимальным расстоянием до изначальной, способа хранения множества непосещённых вершин и способа обновления меток. Пусть n количество вершин, а через m - количество рёбер в графе. Тогда в простейшем случае, когда для поиска вершины с минимальным расстоянием до изначальной вершины просматривается всё множество вершин, а для хранения расстояний используется массив, время работы алгоритма - О(n 2). Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций. На циклы по соседям каждой посещаемой вершины тратится количество операций, пропорциональное количеству рёбер m (поскольку каждое ребро встречается в этих циклах ровно дважды и требует константное число операций). Таким образом, общее время работы алгоритма O(n 2 +m), но, так как m много меньше n(n-1), в конечном счёте получается О(n 2).

Для разреженных графов (то есть таких, для которых m много меньше n²) непосещённые вершины можно хранить в двоичной куче, а в качестве ключа использовать значения расстояний. Так как цикл выполняется порядка n раз, а количество релаксаций (смен меток) не больше m, время работы такой реализации - О(nlogn+mlogn)

Пример

Вычисление расстояний от вершины 1 по проходимым вершинам:

) выполняется за время O(m + n \ln n) и является асимптотически быстрейшим из известных последовательных алгоритмов для данного класса задач.

1.2 Математическое описание алгоритма

Пусть задан граф G = (V, E) с весами рёбер f(e) и выделенной вершиной-источником u . Обозначим через d(v) кратчайшее расстояние от источника u до вершины v .

Пусть уже вычислены все расстояния, не превосходящие некоторого числа r , то есть расстояния до вершин из множества V_r = \{ v \in V \mid d(v) \le r \} . Пусть

(v, w) \in \arg\min \{ d(v) + f(e) \mid v \in V, e = (v, w) \in E \}.

Тогда d(w) = d(v) + f(e) , и v лежит на кратчайшем пути от u к w .

Величины d^+(w) = d(v) + f(e) , где v \in V_r , e = (v, w) \in E , называются предполагаемыми расстояниями и являются оценкой сверху для настоящих расстояний: d(w) \le d^+(w) .

Алгоритм Дейкстры на каждом шаге находит вершину с наименьшим предполагаемым расстоянием, помечает её как посещённую и обновляет предполагаемые расстояния для всех концов рёбер, исходящих из неё.

1.3 Вычислительное ядро алгоритма

Основные вычисления связаны с операциями над очередью с приоритетом:

  • извлечение минимального элемента (delete_min);
  • уменьшение приоритета элемента (decrease_key).

1.4 Макроструктура алгоритма

Псевдокод алгоритма:

Входные данные : граф с вершинами V , рёбрами E с весами f (e ); вершина-источник u . Выходные данные : расстояния d (v ) до каждой вершины v V от вершины u . Q := new priority queue for each v V : if v = u then d (v ) := 0 else d (v ) := ∞ Q .insert(v , d (v )) while Q ≠ ∅: v := Q .delete_min() for each e = (v , w ) ∈ E : if d (w ) > d (v ) + f (e ): d (w ) := d (v ) + f (e ) Q .decrease_key(w , d (w ))

1.5 Схема реализации последовательного алгоритма

Конкретная реализация алгоритма Дейкстры определяется выбором используемого алгоритма очереди с приоритетом. В простейшем случае это может быть массив или список, поиск минимума в котором требует просмотра всех вершин. Более эффективным является использование кучи; наилучшую известную оценку сложности имеет вариант с использованием фибоначчиевой кучи .

Возможен вариант реализации, когда вершины добавляются в очередь не на этапе инициализации, а в момент первого посещения.

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма равна O(C_1 m + C_2n) , где

  • C_1 – количество операций уменьшения расстояния до вершины;
  • C_2 – количество операций вычисления минимума.

Оригинальный алгоритм Дейкстры использовал в качестве внутренней структуры данных списки, для которых C_1 = O(1) , C_2 = O(n) , так что общая сложность составляла O(n^2) .

При использовании фибоначчиевой кучи время вычисления минимума сокращается до C_2 = O(\ln n) , так что общая сложность равна O(m + n \ln n) , что является асимптотически наилучшим известным результатом для данного класса задач.

1.7 Информационный граф

Приводится граф алгоритма для базовой реализации алгоритма Дейкстры на списках или массивах.

Рисунок 1. Граф алгоритма без отображения входных и выходных данных. n=3. Желтым цветом обозначены операции сравнения, зеленым - операции изменения меток вершин, синим - пометка вершины.

1.8 Ресурс параллелизма алгоритма

Алгоритм Дейкстры допускает эффективную параллелизацию , среднее время работы O(n^{1/3}\ln n) с объёмом вычислений O(n \ln n + m) .

Первая оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.

На рисунке 6 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Можно увидеть, что производительность работы с памятью достаточно низка. Это неудивительно, поскольку реализации алгоритмов над графами почти всегда обладают низкой эффективностью вследствие нерегулярности доступа к данным, что мы и увидели при анализе профиля обращений.

Рисунок 6. Сравнение значений оценки daps

Вторая характеристика – cvg – предназначена для получения более машинно-независимой оценки локальности. Она определяет, насколько часто в программе необходимо подтягивать данные в кэш-память. Соответственно, чем меньше значение cvg, тем реже это нужно делать, тем лучше локальность.

На рисунке 7 приведены значения cvg для того же набора реализаций, отсортированные по убыванию (чем меньше cvg, тем в общем случае выше локальность). Можно увидеть, что в данном случае значение cvg хорошо коррелирует с оценкой производительности и отражает низкую локальность, что соответствует выводам, сделанным при качественной оценке локальности.

Рисунок 7. Сравнение значений оценки cvg

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

Проведём исследование масштабируемости параллельной реализации алгоритма согласно методике . Исследование проводилось на суперкомпьютере "Ломоносов" Суперкомпьютерного комплекса Московского университета . Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров со значениями квадрата целого числа;
  • размер графа с шагом 16000.

На следующем рисунке приведен график производительности выбранной реализации алгоритма в зависимости от изменяемых параметров запуска.

Рисунок 8. Параллельная реализация алгоритма. Изменение производительности в зависимости от числа процессоров и размера области.

В силу особенностей параллельной реализации алгоритма производительность в целом достаточно низкая и с ростом числа процессов увеличивается медленно, а при приближении к числу процессов 128 начинает уменьшаться. Это объясняется использованием коллективных операций на каждой итерации алгоритма и тем, что затраты на коммуникационные обмены существенно возрастают с ростом числа использованных процессов. Вычисления на каждом процессе проходят достаточно быстро и потому декомпозиция графа слабо компенсирует эффект от затрат на коммуникационные обмены.

2.5 Динамические характеристики и эффективность реализации алгоритма

Для проведения экспериментов использовалась реализация алгоритма Дейкстры. Все результаты получены на суперкомпьютере "Ломоносов". Использовались процессоры Intel Xeon X5570 с пиковой производительностью в 94 Гфлопс, а также компилятор intel 13.1.0. На рисунках показана эффективность реализации алгоритма Дейкстры на 32 процессах.

Рисунок 9. График загрузки CPU при выполнении алгоритма Дейкстры

На графике загрузки процессора видно, что почти все время работы программы уровень загрузки составляет около 50%. Это указывает на равномерную загруженность вычислениями процессоров, при использовании 8 процессов на вычислительный узел и без использования Hyper Threading.

Рисунок 10. График операций с плавающей точкой в секунду при выполнении алгоритма Дейкстры

На Рисунке 10 показан график количества операций с плавающей точкой в секунду. На графике видна общая очень низкая производительность вычислений около 250 Kфлопс в пике и около 150 Кфлопс в среднем по всем узлам. Это указывает то, что в программе почти все вычисления производятся с целыми числами.

На графике записей в память видна похожая картина неравномерности вычислений, при которой одновременно активно выполняют запись только несколько процессов. Это коррелирует с другими графиками выполнения. Стоит отметить достаточно низкое число обращений на запись в память. Это указывает на хорошую организацию вычислений и достаточно эффективную работу с памятью.

Рисунок 15. График скорости передачи по сети Infiniband в байт/сек при работе алгоритма Дейкстры

На графике скорости передачи данных по сети Infiniband наблюдается достаточно высокая скорость передачи данных в байтах в секунду. Это говорит о том, что процессы между собой обмениваются интенсивно и вероятно достаточно малыми порциями данных, потому как производительность вычислений высока. Стоит отметить, что скорость передачи отличается между процессами, что указывает на дисбаланс вычислений.

Рисунок 16. График скорости передачи по сети Infiniband в пакетах/сек при работе алгоритма Дейкстры

На графике скорости передачи данных в пакетах в секунду наблюдается крайне высокая интенсивность передачи данных. Это говорит о том, что, вероятно, процессы обмениваются не очень существенными объемами данных, но очень интенсивно. Используются коллективные операции на каждом шаге с небольшими порциями данных, что объясняет такую картину. Также наблюдается меньший дизбаланс между процессами, чем наблюдаемый в графиках использования памяти, вычислений и передачи данных в байтах/сек. Это указывает на то, что процессы обмениваются по алгоритму одинаковым числом пакетов, однако получают разные объемы данных и ведут неравномерные вычисления.

Рисунок 17. График числа процессов, ожидающих вхождения в стадию счета (Loadavg), при работе алгоритма Дейкстры

На графике числа процессов, ожидающих вхождения в стадию счета (Loadavg), видно, что на протяжении всей работы программы значение этого параметра постоянно и приблизительно равняется 8. Это свидетельствует о стабильной работе программы с загруженными вычислениями всеми узлами. Это указывает на очень рациональную и статичную загрузку аппаратных ресурсов процессами. И показывает достаточно хорошую эффективность выполняемой реализации. В целом, по данным системного мониторинга работы программы можно сделать вывод о том, что программа работала достаточно эффективно, и стабильно. Использование памяти очень интенсивное, а использование коммуникационной среды крайне интенсивное, при этом объемы передаваемых данных не являются высокими. Это указывает на требовательность к латентности коммуникационной среды алгоритмической части программы. Низкая эффективность связана, судя по всему, с достаточно высоким объемом пересылок на каждом процессе и с интенсивными обменами сообщениями.

Решить задачу о нахождении кратчайшего пути алгоритмом Дейкстры.
Найти кратчайший путь от Х0 до Х7. Граф задан элементами стоимостной матрицы

Построим этот граф


Начнем с элемента Х0 и присвоим ему метку 0, рассмотрим всех его соседей, т.к. там еще нет пометок, то присвоим им соответствующие длины:


Все соседи Х0 рассмотрены, помечаем ее и переходим к вершине Х1. ЕЕ соседи Х0, Х2,Х4, но Х0 помечена, не рассматриваем ее. Для Х2: , оставляем метку.

Для Х4: , заменяем метку. Все соседи вершины Х1 рассмотрены, помечаем ее


переходим к вершине Х2. ЕЕ соседи Х0, Х1,Х3, Х4, Х5, Х6, но Х0, Х1 помечены, не рассматриваем их.
Для Х3: , оставляем метку.
Для Х5: , заменяем метку.
Для Х4: , оставляем метку.
Для Х6: , заменяем метку.
Все соседи вершины Х2 рассмотрены, помечаем ее.


переходим к вершине Х3. ЕЕ соседи Х0, Х2, Х6, но Х0, Х2 помечены, не рассматриваем их.
Для Х6: , оставляем метку.
Все соседи вершины Х3 рассмотрены, помечаем ее.


переходим к вершине Х4. ЕЕ соседи Х1,Х2, Х5, Х7, но Х1, Х2 помечены, не рассматриваем их.
Для Х5: , заменяем метку.
Для Х7: , заменяем метку.
Все соседи вершины Х4 рассмотрены, помечаем ее.


переходим к вершине Х5. ЕЕ соседи Х2,Х4, Х6, Х7, но Х2, Х4 помечены, не рассматриваем их.
Для Х6: , оставляем метку.
Для Х7: , оставляем метку.
Все соседи вершины Х5 рассмотрены, помечаем ее.


переходим к вершине Х6. ЕЕ соседи Х2,Х3, Х5, Х7, но Х2, Х3, Х5 помечены, не рассматриваем их.
Для Х7: , оставляем метку.
Все соседи вершины Х6 рассмотрены, помечаем ее. И помечаем оставшуюся Х7, все вершины рассмотрены.


Вывод: Кратчайший путь их Х0 в Х7 имеет длину 101, этот путь: Х7-Х4-Х1-Х0.

Алгори́тм Де́йкстры (Dijkstra’s algorithm) - алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов. Известен также под названием Сначала Кратчайший Путь (Shortest Path First ).

Примеры

Вариант 1. Дана сеть автомобильных дорог, соединяющих города Новосибирской области. Некоторые дороги односторонние. Найти кратчайшие пути от Новосибирска до каждого города области (если двигаться можно только по дорогам).

Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.

Формальное определение

Дан взвешенный ориентированный граф G (V , E ) без петель и дуг отрицательного веса. Найти кратчайшие пути от некоторой вершины a графа G до всех остальных вершин этого графа.

Неформальное объяснение

Каждой вершине из V сопоставим метку - минимальное известное расстояние от этой вершины до a . Алгоритм работает пошагово - на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация . Метка самой вершины a полагается равной 0, метки остальных вершин - бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.

Шаг алгоритма . Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u , имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u , назовем соседями этой вершины. Для каждого соседа вершины u , кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями - пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» - длина пути. Рядом с каждой вершиной красным обозначена метка - длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг . Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 - вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значение её метки, и длины ребра, идущего из 1-ой в 2-ую, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины - 3-й и 6-й.

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Второй шаг . Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 - вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 - вершина 3, так имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9<17, поэтому метка не меняется.

Ещё один сосед вершины 2 - вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояние до 2-ой вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещенную.

Третий шаг . Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Дальнейшие шаги . Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма . Алгоритм заканчивает работу, когда вычеркнуты все вершины. Результат его работы виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й - 9, до 4-й - 20, до 5-й - 20, до 6-й - 11.

Алгоритм

Обозначения

    V - множество вершин графа

    E - множество ребер графа

    w [ij ] - вес (длина) ребраij

    a - вершина, расстояния от которой ищутся

    U - множество посещенных вершин

    d [u ] - по окончании работы алгоритма равно длине кратчайшего пути изa до вершиныu

    p [u ] - по окончании работы алгоритма содержит кратчайший путь изa вu

Псевдокод

Присвоим

Для всех отличных от a

присвоим

Пусть - вершина с минимальнымd [v ]

Для всех таких, что

еслиd [u ] >d [v ] +w [vu ]то

Описание

В простейшей реализации для хранения чисел d [i ] можно использовать массив чисел, а для хранения принадлежности элемента множеству U - массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины. Если в ней расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G не связан.

Доказательство правильности

Пусть l(v) - длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z). База. Первой посещается вершина a. В этот момент d(a)=l(a)=0. Шаг. Пускай мы выбрали для посещения вершину . Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P - кратчайший путь из a в z, y - первая непосещённая вершина на P, x - предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x)+w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x)+w(xy)=l(x)+w(xy)=l(y). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, её метка минимальна среди непосещённых, то есть . Комбинируя это с , имеем d(z)=l(z), что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.

Для начала рассмотрим алгоритм Фалкерсона (графический способ упорядочивания элементов):

  • 1. Найти вершины графа, в которые не входит не одна дуга. Они образуют первую группу. Пронумеровать вершины группы в произвольном порядке.
  • 2. Вычеркнуть все пронумерованные вершины и дуги, из них исходящие. В получившемся графе найдется, по крайней мере, одна вершина, в которую не входит ни одна дуга. Этой вершине, входящей во вторую группу, присвоить очередной номер, и т. д. Второй шаг повторять до тех пор, пока не будут упорядочены все вершины.

Теперь рассмотрим алгоритм нахождения кратчайшего пути между двумя заданными вершинами в ориентированном графе. Пусть G = {S, U, ? } - ориентированный граф со взвешенными дугами. Обозначим s-вершину - начало пути и t-вершину - конец пути.

Алгоритм Дейкстры содержит одно ограничение - веса дуг должны быть положительными. Сам алгоритм состоит из двух этапов. На первом находится длина кратчайшего пути, на втором строится сам путь от вершины s к вершине t.

Этап 1. Нахождение кратчайшего пути.

Шаг 1. Присвоение вершинам начальных меток.

Полагаем d(s)=0* и считаем эту метку постоянной (постоянные метки помечаются сверху звёздочкой). Для остальных вершин x i S, x i ?s полагаем d(x i) = ? и считаем эти метки верными. Пусть x” = s, x” - обозначение текущей вершины.

Шаг 2. Изменение меток.

Для каждой вершины x i с временной меткой, непосредственно следующей за вершиной x”, меняем ее метку в соответствии со следующим правилом:

d нов. (x i) = min{d стар. (x i), d(x”)+щ(x”, x i)}.(1. 6. 1)

Шаг 3. Превращение метки из временной в постоянную.

Из всех вершин с временными метками выбираем вершину x j * с наименьшим значением метки

d(x j *) = min {d(x j) / x j S, d(x j) - временная}. (1. 6. 2)

Превращаем эту метку в постоянную и полагаем x” = x j *.

Шаг 4. Проверка на завершение первого этапа.

Если x” = t, то d(x”) - длина кратчайшего пути от s до t. В противном случае происходит возвращение ко второму шагу.

Этап 2. Построение кратчайшего пути.

Шаг 5. Последовательный поиск дуг кратчайшего пути.

Среди вершин, непосредственно предшествующих вершине x” c постоянными метками, находим вершину x i , удовлетворяющую соотношению

d(x”) = d(x i) + щ(x i , x”).(1. 6. 3)

Включаем дугу (x i , x”) в искомый путь и полагаем x” = x i .

Шаг 6. Проверка на завершение второго этапа.

Если x” = s, то кратчайший путь найден - его образует последовательность дуг, полученных на пятом шаге и выстроенных в обратном порядке. В противном случае возвращаемся к пятому шагу.

Пример 8: Задана весовая матрица? графа G. Найти минимальный путь из вершины x 1 в вершину x6 по алгоритму Дейкстры.

На рисунке 1. 11 изображён сам граф по данной матрице весов. Поскольку на данном графе есть цикл между вершинами x 2 , x 3 и x 5 , то вершины графа нельзя упорядочить по алгоритму Фалкерсона. На рисунке графа временные и постоянные метки указаны над соответствующей вершиной. Итак, распишем подробно работу алгоритма Дейкстры по шагам.

Шаг 1. Полагаем d(x 1) = 0*, x” = x 1 , d(x 2) = d(x 3) = d(x 4) = d(x 5) = d(x 6) = ?.

1-ая итерация.

Шаг 2. Множество вершин, непосредственно следующих за x” = x1 со временными метками S” = {x 2 , x 4 , x 5 }. Пересчитываем временные метки вершин: d(x 2) = min{?, 0*, + 9} = 9, d(x 4) = min{?, 0* + 6} = 6, d(x 5) = min{?, 0* + 11} = 11.

Шаг 3. Одна из временных меток превращается в постоянную min{9, ?, 6, 11, ?} = 6* = d(x 4), x” = x 4 .

Шаг 4. x” = x 4 ? t = x 6 , происходит возвращение на второй шаг.

2-ая итерация.

Шаг 2. S” = {x 2 , x 3 , x 5 }, d(x 2) = min{9, 6* + 5} = 9, d(x 3) = min {?, 6* + 7} = 13, d(x 5) = min{11, 6* + 6} = 11.

Шаг 3. min{d(x 2), d(x 3), d(x 5), d(x 6)} = min{9, 13, 11, ?} = 9* = d(x 2), x” = x 2 .

Шаг 4. x 2 ? x 6 , возвращение на второй шаг.

3-я итерация.

Шаг 2. S” ={x 3 }, d(x 3) = min{13, 9* + 8} = 13.

Шаг 3. min{d(x 3), d(x 5), d(x 6)} = min{31, 11, ?} = 11* = d(x 5), x” = x 5 .

Шаг 4. x 5 ? x 6 , возвращение на второй шаг.

4-ая итерация.

Шаг 2. S”={x 6 }, d(x 6) = min{?, 11* + 4} = 15.

Шаг 3. min {d(x 3), d(x 6)} = min{13, 15} = 13* = d(x 3), x” = x 3 .

Шаг 4. x 3 ? x 6 , возвращение на второй шаг.

5-ая итерация.

Шаг 2. S” = {x 6 }, d(x 6) = min{15, 13* + 9} = 15.

Шаг 3. min{d(x 6) } = min{15} = 15*, x” = x 6 .

Шаг 4. x 6 = t = x 6 , конец первого этапа.

Шаг 5. Составим множество вершин, непосредственно предшествующих x” = x 6 с постоянными метками S” = {x 3 , x 5 }. Проверим для этих двух вершин выполнение равенства d нов. (x i) = min{d стар. (x i), d(x”) + щ(x”, x i)}:

d(x”) = 15 = 11* + 4 = d(x 5) + щ(x 5 , x 6),

d(x”) = 15 ? 13* + 9 = d(x 3) + щ(x 3 , x 6).

Включаем дугу (x 5 , x 6) в кратчайший путь. x” = x 5 .

Шаг 6. x” ? s = x 1 , возвращение на пятый шаг.

2-ая итерация.

Шаг 5. S” = {x 1 , x 4 }.

d(x”) = 11 = 0* + 11 = d(x 1) + щ(x 1 , x 5),

d(x”) = 11 ? 6* + 6 = d(x 4) + щ(x 4 , x 5).

Включаем дугу (x 1 , x 5) в кратчайший путь. x” = x 1 .

Шаг 6. x” = s = x 1 , завершение второго этапа.

Итак, кратчайший путь от вершины x 1 до вершины x 6 построен. Его длина (вес) равна 15, сам путь образует следующая последовательность дуг: м = (x 1 , x 5) - (x 5 , x 6).



Просмотров