Метод дециметроволновой (ДМВ) физиотерапии в медицине. Особенности построения сети цифрового телевидения

Cтраница 1


Дециметровые волны в меньшей степени, чем метровые, подвержены явлению дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородно-стях тропосферы.  

Дециметровые волны в меньшей степени, чем метровые, подвержены дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородностях тропосферы. Это позволяет осуществить многоканальную телефонную связь или трансляцию телевизионной передачи с помощью радиорелейных линий на расстояниях, превышающих сотни и даже тысячи километров.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 Мщ.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 МГц.  


Дециметровые волны используются в зоне прямой видимости.  

Дециметровые волны - радио волны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны - радиоволны длимой от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны распространяются только в пределах прямой видимости и избирательно поглощаются атмосферой, интенсивно отражаются от подвижных и неподвижных объектов. Антенны малогабаритны и обладают острой направленностью излучения. Дециметровые волны используются в радиорелейных и спутниковых системах связи, высокоточных наземных системах радиолокации и радиоуправления.  

Дециметровые волны позволяют получать с помощью спутниковых РНС очень высокую точность местоопределения в рабочей области системы, которая для глобальных СРНС охватывает все околоземное пространство.  


Мертвые и дециметровые волны распространяются в пределах прямой видимости. Эти волны не отражаются от ионосферы, а поверхностная волна очень быстро затухает. Для увеличения дальности радиосвязи на этих волнах применяются направленные антенны, излучающие электроэнергию узким пучком.  

Однако дециметровые волны не могут быть приняты существующими телевизионными приемниками непосредственно, и работа в этом диапазоне потребует использования конверторов-преобразователей частоты.  

Для телевизионного вещания используются метровые и дециметровые волны. Для черно-белого телевидения в СССР отведено двенадцать каналов.  

Сначала в радиолокации использовались метровые и дециметровые волны, а затем стали переходить к сантиметровым волнам, которым соответствует спектр частот от 30 тыс. до 3 тыс. мггц. Малая длина этих волн, являющихся частью диапазона ультракоротких волн, позволила создать сравнительно небольшие по размерам радиолокационные антенны, имеющие ширину диаграммы направленности в несколько градусов и даже долей градуса.  

Несмотря на бурное развитие спутникового и кабельного телевидения, прием эфирного телевещания все еще остается актуальным, например, для мест сезонного проживания. Совсем не обязательно для этой цели покупать готовое изделие, домашняя дециметровая (ДМВ) антенна может быть собрана своими руками. Прежде чем переходить к рассмотрению конструкций, кратко расскажем, почему выбран именно этот диапазон телевизионного сигнала.

Почему именно ДМВ?

Есть две весомые причины, чтобы остановить свой выбор на конструкциях этого типа:

  1. Все дело в том, что большинство каналов транслируется в этом диапазоне, поскольку упрощается конструкция ретрансляторов, а это дает возможность установить большее число необслуживаемых маломощных передатчиков и тем самым расширить зону покрытия.
  2. Для трансляции «цифры» выбран этот диапазон.

Комнатная антенна для ТВ «Ромб»

Эта простая, но, в то же время, надежная конструкция, была одной из самых распространенных в эпоху расцвета эфирного телевещания.

Рис. 1. Простейшая самодельная Z-антенна, известная под названиями: «Ромб», «Квадрат» и «Народный зигзаг»

Как видно из эскиза (B рис. 1), устройство представляет собой упрощенный вариант классического зигзага (Z-конструкции). Для увеличения чувствительности, ее рекомендуется оборудовать емкостными вставками («1» и «2»), а также рефлектором («А» на рис.1). Если уровень сигнала вполне приемлем, делать это не обязательно.

В качестве материала можно использовать алюминиевые, медные, а также латунные трубки или полосы шириной 10-15 мм. Если планируется устанавливать конструкцию на улице, то лучше отказаться от алюминия, поскольку он подвержен коррозии. Емкостные вставки изготавливаются из фольги, жести или металлической сетки. После установки, они пропаиваются по контуру.

Кабель укладывается так, как продемонстрировано на рисунке, а именно: не имел резких изгибов и не покидал пределов боковой вставки.

Дециметровая антенна с усилителем

В местах, где в относительной близости не расположена мощная ретрансляционная башня, можно поднять уровень сигнала до приемлемого значения при помощи усилителя. Ниже представлена принципиальная схема устройства, которое может использоваться практически с любой антенной.


Рис. 2. Схема антенного усилителя для ДМВ диапазона

Перечень элементов:

  • Резисторы: R1 – 150 кОм; R2 – 1 кОм; R3 – 680 Ом; R4 – 75 кОм.
  • Конденсаторы: С1 – 3,3 пФ; С2 – 15 пФ; С3 – 6800 пФ; С4, С5, С6 – 100 пФ.
  • Транзисторы: VT1, VT2 – ГТ311Д (можно заменить на: KT3101, KT3115 и KT3132).

Индуктивность: L1 – представляет собой бескаркасную катушку диаметром 4 мм, намотанную медным проводом Ø 0,8 мм (необходимо сделать 2,5 витка); L2 и L3 – высокочастотные дроссели 25 мкГн и 100 мкГн, соответственно.

Если схема собрана правильно, мы получим усилитель со следующими характеристиками:

  • полоса пропускания от 470 до 790 МГц;
  • коэффициенты усиления и шума – 30 и 3 дБ, соответственно;
  • величина выходного и входного сопротивления устройства соответствует кабелю RG6 – 75 Ом;
  • устройство потребляет порядка 12-14 мА.

Обратим внимание на способ подачи питания, оно осуществляется непосредственно по кабелю.

Данный усилитель может работать с самыми простыми конструкциями, сделанными из подручных средств.

Комнатная антенна из пивных банок

Несмотря на необычность конструкции, она вполне работоспособна, поскольку представляет собой классический диполь, тем более, что размеры стандартной банки отлично подходят для плеч вибратора дециметрового диапазона. Если устройство установлено в комнате, то в этом случае даже не обязательно согласование с кабелем, при условии, что он не будет длиннее двух метров.


Обозначения:

  • А – две банки объемом 500 мг (если взять жестяные, а не алюминиевые, то можно припаять кабель, а не использовать саморезы).
  • B – места крепления экранирующей оплетки кабеля.
  • С – центральная жила.
  • D – место крепления центральной жилы
  • E – кабель, идущий от телевизора.

Плечи этого экзотического диполя необходимо закрепить на держателе, сделанного из любого изоляционного материала. В качестве такового можно использовать подручные вещи, например, пластиковую вешалку для одежды, перекладину швабры или кусок деревянного бруса соответствующих размеров. Расстояние между плечами от 1 до 8 см (подбирается эмпирическим путем).

Основные преимущества конструкции – быстрое изготовление (10 – 20 минут) и вполне приемлемое качество «картинки», при условии достаточной мощности сигнала.

Делаем антенну из медной проволоки

Существует конструкция, значительно проще предыдущего варианта, для которой потребуется только кусок медной проволоки. Речь идет о рамочной петлевой антенне узкого диапазона. Такое решение имеет несомненные преимущества, поскольку помимо своего основного назначения, устройство играет роль селективного фильтра, снижающего помехи, что позволяет уверенно принимать сигнал.


Рис.4. Простая рамочная ДМВ антенна петлевого типа для приема цифрового ТВ

Для данной конструкции необходимо рассчитать длину петли, чтобы сделать это, нужно узнать частоту «цифры» для вашего региона. Например, в Санкт-Петербурге она транслируется на 586 и 666 МГц. Формула расчета будет следующей: L R = 300/f, где L R – это длина петли (результат представлен в метрах), а f – усредненный частотный диапазон, для Питера это значение будет равно 626 (сумма 586 и 666, деленная на 2). Теперь рассчитываем L R , 300/626 = 0,48, значит, длина петли должна быть 48 сантиметров.

Если взять толстый RG-6 кабель, где имеется фольга в оплетке, то его можно использовать вместо медной проволоки для изготовления петли.

Теперь расскажем, как собирается конструкция:

  • Отмеряется и отрезается кусок медной проволоки (или RG6 кабеля) длиной, равной L R .
  • Сворачивается петля подходящего диаметра, после чего к ее концам припаивается кабель, идущий к ресиверу. Если вместо медной проволоки используется RG6, то предварительно снимается изоляция с его концов, примерно на 1-1,5 см (центральную жилу очищать не надо, она в процессе не участвует).
  • Петля устанавливается на подставку.
  • На кабель к ресиверу накручивается F разъем (штекер).

Заметим, несмотря на простоту конструкции, она наиболее эффективна для приема «цифры», при условии, что правильно проведены расчеты.

Комнатная антенна МВ и ДМВ своими руками

Если помимо ДМВ есть желание принимать и МВ, можно собрать простую мультиволновку, ее чертеж с размерами представлен ниже.

Для усиления сигнала в данной конструкции используется готовый блок SWA 9, если возникли проблемы с его приобретением, можно использовать самодельное устройство, схема которого была приведена выше (см. рис. 2).

Важно соблюдать угол между лепестками, выход за пределы указанного диапазона существенно отражается на качестве «картинки».

Несмотря на то, что такое устройство значительно проще логопериодической конструкции с волновым каналом, тем не менее, оно показывает неплохие результаты, если сигнал достаточной мощности.

Антенна восьмерка для цифрового ТВ своими руками

Рассмотрим еще один распространенный вариант конструкции для приема «цифры». В основу положена классическая схема для ДМВ диапазона, из-за своей формы получившей название «Восьмерка» или «Зигзаг».


Рис. 6. Эскиз и реализация цифровой восьмерки

Размеры конструкции:

  • внешние стороны ромба (А) – 140 мм;
  • внутренние стороны (В) – 130 мм;
  • расстояние до рефлектора (С) – от 110 до 130 мм;
  • ширина (D) – 300 мм;
  • шаг между прутьями (Е) – от 8 до 25 мм.

Место подключения кабеля в точках 1 и 2.Требования к материалу такие же, как у конструкции «Ромб», о которой рассказывалось в начале статьи.

Самодельная антенна для DBT T2

Собственно, все перечисленные выше примеры способны принимать DBT T2, но для разнообразия приведем эскиз еще одной конструкции, называемой в народе «Бабочка».


В качестве материала можно использовать пластины из меди, латуни, алюминия или дюрали. Если конструкцию планируется устанавливать на улице, то последние два варианта не подходят.

Итог: на каком варианте остановиться?

Как ни странно, но самый простой вариант наиболее действенный, поэтому «петля» лучше всего подходит для приема «цифры» (рис. 4). Но, если требуется принимать и другие каналы в дециметровом диапазоне, то лучше остановиться на «Зигзаге» (рис. 6).

Антенна для телевизора должна быть направлена в сторону ближайшего активного ретранслятора, чтобы выбрать нужное положение, следует вращать конструкцию, пока мощность сигнала не станет удовлетворительной.

Если, не смотря на наличие усилителя и рефлектора, качество «картинки» оставляет желать лучшего, можно попробовать установить конструкцию на мачту.


В этом случае необходимо обязательно установить молниезащиту, но это уже тема другой статьи.

ДМВ-терапия - лечебная методика, основанная на применении электромагнитных волн дециметрового диапазона. Микротоки глубоко проникают в ткани и органы, влияя на протекающие в них физиологические процессы.

Как действует

В организме поглощенная электромагнитная энергия преобразуется в тепловую. Выделение тепла в облучаемых областях достигает максимума на 10-15 минуте терапии, затем прекращается. Наибольшему нагреванию подвергаются ткани и органы, богатые водой (кровь, лимфа, легкие, мышцы). Их температура может подниматься на 3-4 градуса. В меньшей степени прогреваются кожа и жировые отложения.

Под влиянием тепла в тканях расширяются мелкие сосуды, усиливаются обменные процессы. Снижение сосудистого сопротивления приводит к улучшению кровообращения и благотворно отражается на работе сердечной мышцы. У пациентов повышается сократительная активность миокарда, усиливается кровоснабжение всех, в том числе ишемизированных, участков сердца. Немного снижается артериальное давление.

Прогревание мышц способствует устранению спастических состояний. Происходит высвобождение зажатых спазмированными волокнами сосудов и нервов. Такой эффект проявляется ослаблением болевых синдромов и восстановлением нормальной работы органов.

Вследствие расширения бронхов более глубоким становится дыхание. Облегчается состояние больных с бронхиальной астмой, купируется астматический статус.

Установлено, что под влиянием дециметровых волн также усиливаются функции эндокринных желез. В первую очередь это касается надпочечников и щитовидной железы. В надпочечниках повышается образование глюкокортикоидов, блокирующих развитие в организме воспалительных процессов. Деятельность щитовидной железы может усиливаться или подавляться в зависимости от исходного состояния органа.

В целом прохождение курса ДМВ-терапии позволяет пациентам избавиться от болевых ощущений, улучшить общее самочувствие и восстановить нарушенную вследствие заболевания функциональную активность.

Показания и противопоказания


ДМВ-терапия поможет уменьшить боль в спине или суставах.

Основаниями для назначения процедур могут служить:

  • корешковые синдромы;
  • артрозы;
  • артриты (в том числе ревматоидный);
  • бронхиальная астма (вне стадии обострения);
  • хроническая или острая пневмония;
  • состояния после инфаркта миокарда (к лечению приступают не ранее, чем через 30 дней после приступа);
  • стенокардия напряжения 1 степени;
  • порок митрального клапана сердца;
  • атеросклероз;
  • язвенная болезнь пищеварительного тракта;
  • воспалительные заболевания ЖКТ (гастрит, дуоденит, колит и др.);
  • почечные или печеночные колики;
  • спазмы мочеточников;
  • почечная или печеночная недостаточность;
  • дыхательная недостаточность;
  • болезнь Рейно;
  • искривления позвоночника;
  • климактерические расстройства;
  • вегетососудистая дистония;
  • фурункулез;
  • паркинсонизм.

Противопоказано ДМВ-лечение при следующих состояниях:

  • нарушения свертываемости крови;
  • онкологические заболевания;
  • кровотечения;
  • открытая форма туберкулеза;
  • наличие кардиостимулятора;
  • эпилепсия;
  • стеноз желудочного клапана (при язвенной болезни);
  • тиретоксикоз;
  • стенокардия покоя;
  • артериальная гипертония выше 2 степени;
  • ишемическая болезнь 2-3 степени.

При беременности запрещены воздействия на область живота.

Порядок проведения процедур

Процедура проводится в положении лежа или сидя. Перед ее началом больного просят снять с себя все металлические украшения. Оголяют только ту область, которая подлежит электромагнитному облучению.

ДМВ-излучатели прижимают непосредственно к коже (контактная методика) или располагают на расстоянии 3-4 см от тела (дистантная методика). При полостной методике излучатель стерилизуют и вводят в прямую кишку или влагалище.

Процедуру дозируют по выходной мощности микротоков и ощущениям больного. При контактной и полостной методике мощность не должна превышать 10 Вт, при дистантной - 20 Вт. Пациент должен чувствовать только умеренное тепло. При возникновении неприятных ощущений потоки энергии снижают.

Процедура длится 8-15 минут. После ее завершения больного просят отдохнуть еще 20 минут. Сеансы проводятся ежедневно или через день. На курс назначают 5-12 процедур. Повторную терапию рекомендуют не ранее, чем через 2 месяца.

Облучение дециметровыми волнами хорошо сочетается с , и . Совмещение методик позволяет повысить эффективность лечения и продлить период ремиссии заболевания.

Волны короче 10м назыв.УКВ. Из-за прямолинейности распростр.УКВ для их использ. требов. прямая види­мость м/у антеннами передатчика и приемника. Ди­фракция УКВ почти не свойст., они не могут огиб. вы­пуклости зем.поверх.,а ионизация ионосферы не­достат. для их отраж. Для осущ.связи на большие расст. м/у п.связи устанав.промежуточ.станции (ретрансляторы) или поднимают ан­тенны на большие высоты. Связь в пределах прямой видимости характер-ся возможно­стью одноврем.прихода в т.приема не только прямой вол­ны, но и волны, отраженной от зем.поверх. Интер­ференция приводит к ↓ напряженности поля в т.приема, но ее можно свести к min правиль. подбором высот антенн, рас­стояния м/у ними и длины волны. УКВ явл.наиб. использ.участком радиодиапаз. Большая частотная емкость этого диапа­з.и ограниченный пределами прямой видимости радиус дейст.позвол. разместить большое кол-во одноврем.работ-х станций и осущ-ть передачу информации в широкой полосе частот. УКВ позвол.одноврем. передав.больш.кол-во ТВ программ, организ-ть тысячи телеф.каналов и цифр.с-м связи. УКВ исп.для радиолокации, радионавигации, связи с искусст.спутни­ками, ЗВ, ТВ и в радиоастрономии. Метр.и дециметр.волны исп.для ТВ, РВ и РС с подвижными объек­тами. Сантиметр.волны исп.для многоканаль.связи. Иногда метр.волны исп.для связи вне пре­делов прямой видимости, т.к. они способ.огиб.неболь.преграды на зем. поверх. Дальность такой связи ис­числ. км, реже десятками км. Наиб.слож.явл.связь на метр.волнах в больш.городах, где использ.ретрансляция ч/з центр. станцию, антенна которой устан.на высотном доме.

Бываются случаи дальнего распростр.метр.и более КВ. Это объяс.возмож­ностью сост. атмосферы, при котором измен. коэффиц.преломления по мере подъема вверх происх.в большей степени, чем в норм.усл. Искривл.траек­тории радиолуча из-за рефракции увелич-ся, станов. возможным распростр.радиоволн ||-но зем.по­верх. или попадание их после преломл.на поверх земли (сверхфракция). Падающие на землю волны отраж-ся, распростр-ся вверх, опять прелом-ся и т.д. В пространстве м/у поверх.земли и преломляющими верх.слоями, вдоль которого волны распростр.на рас­ст.в десятки раз больше расст.прямой видимости. Это создает возм-ть приема ТВ программ из др.городов и стран. Для появл.волноводных каналов в атмо­сфере треб. увеличение t 0 воздуха по мере подъема вверх и сильное уменьш.влажности с высотой.

В тропосфере постоянно присут.колебания t 0 и влажности. От них завис.коэффиц.прелом­л.воздуха, поэт.радиоволны рассеи­в-ся неоднородностями ионосферы. Это рассеян.поле наблю­д.далеко за горизонтом. Небольш. напря­ж-сть поля за горизонтом отлич-ся постоянством. Рассеяния волн тропосфер.неоднородностями назыв.дальним тропосфер.распростр.радиоволн. Созд.линии тропосфер.связи сложно, т.к. напряж-сть поля отраж-х от тропосферы волн уменьш.с расстоянием очень быстро. Треб.очень мощ­ные передатчики(1-50кВт), антенны высокой направл-сти и высокочувствит.приемники. По тропосфер.линиям связи осущ.орг-ция многоканаль.с-м связи. Эта связь не требует сме­ны длины волны в течение суток. Тропосфер.линии связи конкурируют в труднодоступ.местности с кабельными линиями. Тропосфер.станции образ-ют радиорелейные с-мы передачи с интервалом м/у станциями 300-500км. Дальнее распростр.УКВ происх.за счет их рассеяния на неоднородностях ионосферы. Рассеяние происх.в с.D или в нижней части с.Е за счет неоднородно­сти электронной концентрации. Для ионосфер.линий связи харак-ны замирания, сезон.и суточ.измен.уровня. Искажения сигнала огранич-ют шири­ну спектра передав-х сигналов полосой в неск.кГц, поэт. ТВ и групповые сигналы многоканаль.с-м по ним не могут передаваться.

Связь на метр.волнах за счет ионосфер.рассеяния позвол.раб-ть круглосут.на одной час­тоте. Ионосфер.рассеяние можно исп.для связи с труднодоступ.районами. В периоды ионосфер. возмущений неод­нородности в нижних обл.ионосферы и ионосфер.связь улучш.

Фидеры и волноводы.

Электрич. цепь и вспомогат. устройства, с помощью которых энергия радиочаст. канала подводится от радиоПРД к антенне или от антенны к радиоПР, назыв. фи­дером .

Фидеры – это линии питания, которые передают энергию от генератора к антенне (в передающем режиме) или от антенны к ПР (в режиме приёма). Основ. требования к фидеру сводятся к его электрогерметичности (отсутствию излучения энергии из фидера) и малым тепловым потерям. В передающем режиме волновое сопротивление фидера должно быть согласовано с входным сопротивлением антенны (что обеспечивает в фидере режим бегущей волны) и с выходом ПРД-ка (для max-ой отдачи мощности). В приёмном режиме согласование входа ПР-ка с волновым сопротивлением фидера обеспечивает в последнем режиме бегущей волны, согласование же волнового сопротивления фидера с сопротивлением нагрузки – условие max-ой отдачи мощности в нагрузку ПР-ка. В зависим. от диапаз. радиоволн примен. различные типы фидеров: двух или много-проводные воздушные фидеры; волноводы прямоугольного, круглого или эллиптического сечений; линии с поверхностной волной и др. Конструкция фидера зависит от диапазона передаваемых по нему частот. При передаче эл.маг. энергии по линии стре­мятся уменьш. излучение самой линии. Для этого провода линии располаг. //-но и по возмож­. ближе друг к другу. При этом поля 2-х одинак. по значе­нию, но противоположно направленных токов взаимно компенсируют­ся и излучения энергии в окружающее пространство не происходит. При создании антенны ставится противоположная задача: получение возможно большего излучения. Для этого использ. те же длинные линии, устранив одну из причин, лишающих фидер излу­чающих св-тв. Можно, например, раздвинуть провода линии на не­который ے, в результате чего их поля не будут компенсировать друг друга. На этом основана раб. V-образных и ромбических ан­тенн, излучающие провода кот. располож. под острым ے один к другому, и симметричного вибратора, полу­чающегося при разведении проводов на 180°. Компенсирующее действие одного из проводов фидера можно устранить, исключив его из с-мы. Это приводит к по­луч. несимметрич. виб­ратора. Все антен­ны, использ. этот принцип работы, относятся к классу не­симметрич. антенн. К ним также принадл. Г-образные и Т-образные антенны. Фидер излучает, если соседние участки его двух проводов обтека­ются токами, совпадающими по фазе, поля которых усиливают друг друга. Для этого необходимо создать фазовый сдвиг в половину дли­ны волны, например за счет неизлучающего шлейфа. На таком принципе основаны синфазные антенны. Фидер будет излучать, если расс-ия м/у проводами по неко­торым направлениям приобретают значит. разность хода. Можно так подобрать расс-ие м/у проводами, что по некоторым направлениям произойдет сложение волн от обоих прово­дов. Это использ. в противофазных ан­теннах.

Волновод – искусствен. или естествен. канал, способный поддерживать распространяющиеся вдоль него волны, поля которых сосредоточены внутри канала или в примыкающей к нему области. Типы волноводов:

1) Экранированные. Различают экранир. волноводы с хорошо отражающими стенками, к кот. относят волноводы металлические, направляющие эл.маг. волны, а также коаксиальные и многожильные экранирован. кабели, хотя последние обычно относят к линиям передачи (длинным линиям). К экранир. волноводам относят также волноводы акустические с достаточно жёсткими стенками.

2) Неэкранированные. В открытых (неэкранир.) волноводах локализация поля обычно обусловлена явлением полного внутрен. отражения от границ раздела 2-х сред (в волноводах диэлектрических и простейших световодах) либо от областей с плавно изменяющимися параметрами среды (ионосферный волновод, атмосферный волновод, подводный звук. канал). К открытым волноводам принадл. и с-мы с поверхност. волнами, направляемыми границами раздела сред.

Основ. св-во волновода – существ. в нём дискретного (при не очень сильном поглощении) набора нормальных волн (мод), распространяющихся со своими фазовыми и групповыми скоростями. Почти все моды облад. дисперсией, т.е. их фазовые скорости зависят от частоты и отлич. от групповых скоростей. В экранир. волноводе фазовые скорости обычно превыш. скорость распространения плоской однородной волны в заполняющей среде (скорость света, скорость звука), эти волны назыв. быстрыми. При неполном экранировании они могут просачиваться сквозь стенки волновода, переизлучаясь в окружающее пространство. Эти волны назыв. утекающими. В открытых волноводах распростр. медленные волны, амплитуды кот. быстро убывают при удалении от направляющего канала.

Если вы хотите принимать цифровой сигнал за пределами города, вам будет полезно знать информацию о структуре цифровой сети РТРС. Прежде всего надо понимать, что количество цифровых передатчиков, транслирующих телевидение в формате DVB-T2, значительно больше, чем классических аналоговых. Ранее жители районов, удаленных от больших городов, направляли свои антенны в сторону крупных населенных пунктов, в которых находились передающие телебашни. Теперь же телевизионный ретранслятор может находиться гораздо ближе к телезрителю, чем ранее.

Метровый и дециметровый диапазоны

На первом рисунке изображена ситуация, когда принимается аналоговый сигнал с телецентра. Прямой видимости нет, его закрывает холм, поэтому антенна поднята как можно выше и принимает в основном волны метрового диапазона. Возможно вы помните из курса школьной физике, что чем длиннее волна, тем лучше её способность огибать препятствия. Именно поэтому в условиях, изображенных на первом рисунке, некоторые аналоговые каналы будет ловиться хорошо, а другие совсем плохо. Более-менее нормально в такой ситуации можно принимать метровый диапазон (изображен оранжевым цветом), дециметровые волны (ДМВ) проходят значительно хуже. Такая же ситуация происходит при отсутствии явных препятствий, но при большом удалении приемной антенны от источника телесигнала.

Прием цифрового телевидения

В аналоговом телевидении часть каналов находится в метровом диапазоне, а часть в дециметровом. Поэтому жители глубинка раньше смотрели гораздо меньше каналов, чем жители городов. Цифровое эфирное телевидение, за редким исключением, всегда транслируется на дециметровых волнах. Поэтому, для обеспечения максимального покрытия сети РТРС установила много новых передатчиков, но транслируют они только цифровой сигнал . На рисунке снизу красным изображена новая цифровая вышка DVB-T2, поэтому жителю коричневого домика следует развернуть антенну на эту вышку, если он хочет смотреть цифровые каналы. А если вышка находится совсем недалеко, то и поднимать антенну высоко уже нет смысла. В некоторых случаях даже проще купить новую недорогую комнатную антенну, чем возиться со старой, тем более что со временем утрачивают свои свойства как кабель, так и сама антенна.



Просмотров