Процессор цифровой обработки сигналов. Цифровые сигнальные процессоры

В начало

Цифровые процессоры обработки сигналов (Лекция)

ПЛАН ЛЕКЦИИ

1. Общая структура цифровой обработки сигналов

2. Структура процессоров цифровой обработки сигналов

3. Основные показатели процессоров цифровой обработки сигналов

4. Основные производители сигнальных процессоров

5. Аппаратная реализация

1. Общая структура цифровой обработки сигналов

Цифровые процессоры обработки сигналов (ЦПОС) или их равнозначное название – цифровые сигнальные процессоры (ЦСП или просто сигнальные процессоры), англоязычное сокращение – DSP (Digital Signal Processor ), предназначены для реализации алгоритмов цифровой обработки сигналов (ЦОС) и систем управления в реальном времени.

Схема цифровой обработки аналоговых сигналов.

Кодер формирует последовательность чисел, соответствующую обрабатываемому аналоговому сигналу.

Декодер по принятому сигналу формирует аналоговый сигнал, то есть производит преобразования, обратные происходившим в кодере.

На вход системы поступает ограниченный по длительности сигнал x (t ). В силу конечной длительности сигнала его спектр бесконечен.

Аналого-цифровое преобразование осуществляется в два этапа: дискретизации по времени и квантования по уровню.

Дискретизация – это процедура взятия мгновенных значений сигнала x (t ) через равные промежутки времени Т. Мгновенные значения x (n Т) называются выборками, время Т – период дискретизации, а n - указывает порядковый номер отсчета. Чем чаще брать отсчеты, тем меньше период дискретизации Т, тем точнее последовательность отсчетов x (n Т) будет изображать исходный сигнал x (t ).

Период дискретизации Т определяет частоту дискретизации:

f д =;Т =

Из формул видно, что чем меньше Т,тем выше частота дискретизации f д ,а чем выше частота дискретизации, тем труднее вычислителю выполнять большое количество операций над отсчетами в темпе их поступления на переработку и тем сложнее должно быть устройство. Таким образом, точность представления сигнала требует увеличивать f д ,а стремление сделать вычислитель как можно боде простым приводит к желанию понизить f д.

Однако существует ограничениена минимальное значение f д : для полного восстановления сигнала по его отсчетам x (n Т) нужно, чтобы частота дискретизации f д была, как минимум, в два раза больше наивысшей частоты F в в спектре передаваемого сигнала x (t ).

f д 2F в; Т ≤

Отсюда следует, что при бесконечном спектре, когда F → ∞, дискретизация невозможна.

Тем не менее, в спектре любого конечного сигнала есть такие высшие составляющие, которые, начиная с некоторой верхней частоты f в, имеют незначительные амплитуды, и потому ими можно пренебречь без заметного искажения самого сигнала. Значение f в определяется конкретным типом сигнала и решаемой задачей. Например: для стандартного телефонного сигнала f в = 3,4 кГц, минимальная стандартная частота его дискретизации f д = 8 кГц. Ограничение спектра до частоты F = f в осуществляется фильтром нижних частот ФНЧ.

Квантование отсчетов по уровням (квантование) – производится с целью формирования последовательности чисел: весь диапазон изменения величины отсчетов разбивается на некоторое количество дискретных уровней, и каждому отсчету по определенному правилу присваивается значение одного из двух ближайших уровней квантования, между которыми оказывается данный отсчет. В результате получается последовательность чисел x (n Т) = x (n ), представляемых в двоичном коде. Количество уровней определяется разрядностью АЦП. Например: Если разрядность АЦП = 3, то всего можно иметь к = 2 3 = 8 уровней квантования, а минимальное значение отсчета равно 0 (000), а максимальное значение отсчета равно 7 (111). Ясно, что квантованный отсчет отличается от выборки x (n Т). Это отличие выражается ошибкой квантования:

,

которая тем больше, чем меньше разрядность АЦП.

После АЦП последовательность x (n Т) = x (n ) поступает на сигнальный процессор (СП), который по заданному алгоритму каждому отсчету x (n ) ставит в однозначное соответствие выходной отсчет y (n Т) = y (n ).

Количество операций (умножений, сложений и т.д.) для получения одного отсчета может исчисляться тысячами, поэтому сигнальный процессор должен работать на более высокой частоте F г, чтобы успеть произвести все необходимые действия до поступления очередного отсчета x (n ), то есть какой бы сложности не был алгоритм, время переработки t пер не должно превышать периода дискретизации T :

t пер ≤ T

Но это может быть обеспечено лишь в случае, когда тактовая частота f T вычислителя существенно превышает частоту дискретизации f д :

f д << f T

Именно при этих условиях возможна работа вычислителя в реальном времени, то есть в темпе поступления входных отсчетов.

Полученные выходные отсчеты с сигнального процессора подаются на ЦАП, а затем на сглаживающий фильтр нижних частот, который преобразует их в аналоговый непрерывный сигнал y (t ).

Основные задачи (алгоритмы) сигнальных процессоров:

1.)Цифровая фильтрация

Цифровая фильтрация – это селекция по частоте, то есть какие то частоты пропускать, а какие то нет. За цифровой фильтрацией стоит Z- преобразование, свертка.

2.) Спектроскопи

Спектроскопия – это совокупность методов обработки цифровых сигналов, которые позволяют в сигнале найти все частотные составляющие сигнала - не выделяя и не искажая их. Здесь производится ДПФ (дискретное преобразование Фурье) и БПФ (быстрое преобразование Фурье).

3.) Идентификация сигналов

Идентификация сигналов – это выделение сигналов на фоне частот и помех для того, чтобы удостовериться, что это сигнал, а не помеха. Здесь производится корреляционный анализ.

Корреляция – это степень совпадения двух функций.

4.) Модуляция и демодуляция.

За модуляцией и демодуляцией стоит аппаратное, математическое преобразование Гильберта.

Пример: демодуляция однополосного сигнала, который получается выделением одной из боковых полос амплитудно-модулированного сигнала. Результатом демодуляции является низкочастотный сигнал, представляющий собой огибающую узкополосного сигнала. Демодулированный сигнал x (n ) можно представить в комплексном виде:

;;, где

Мнимый сигнал;

x (n ) – вещественный сигнал;

s (n ) – огибающая сигнала x (n ).

Из формул видно, что x (n ) инаходятся в квадратуре относительно друг друга, то есть их фазы отличаются на π /2. Следовательно, необходимо иметь фазовращатель на π /2. Такие сигналы называются сопряженными по Гильберту, а устройство, формирующее пару сопряженных сигналов, называется цифровым преобразователем Гильберта (ЦПГ), который позволяет организовать вычисление огибающей s (n ) сигнала x (n ).

5) Сжатие, растяжение, перенос спектра

За сжатием, растяжением, переносом спектра стоит то же самое преобразование Гильберта. Считаются одним из модификаций модуляции и демодуляции.

Вычисления алгоритмов цифровой обработки сигналов сводятся к виду в реальном масштабе времени , когда время выполнения операций полностью прогнозируемо:

, где n = 0, 1, 2, … , N -1

x ( n ) – отсчеты воздействия;

y ( n ) – отсчеты реакции;

b к - вещественные коэффициенты, полностью определяющие свойства цифровых фильтров;

x ( n -к) - отсчеты воздействия, задержанные на к периодов дискретизации T .

Фильтр, описываемый данным выражением, называется нерекурсивным , или КИХ-фильтром (фильтром с конечной импульсной характеристикой).

Пример : Нужно сделать дискретизацию за определенное время, а не вообще. Пусть частота дискретизации f д = 48 кГц (округлим до 50 кГц). Нужно сделать дискретизацию за 20 мкс. Возьмем N = 5 и распишем формулу:

y 0 = b 0 x ( 0 - 0) + b 1 x (0 - 1) + b 2 x (0 - 2) + b 3 x (0 - 3) + b 4 x (0 - 4) = b 0 x 0 + b 1 x - 1 + b 2 x - 2 + b 3 x - 3 + b 4 x – 4

y 1 = b 0 x ( 1 - 0) + b 1 x (1 - 1) + b 2 x (1 - 2) + b 3 x (1 - 3) + b 4 x (1 - 4) = b 0 x 1 + b 1 x 0 + b 2 x - 1 + b 3 x - 2 + b 4 x – 3

y 2 = b 0 x ( 2 - 0) + b 1 x (2 - 1) + b 2 x (2 - 2) + b 3 x (2 - 3) + b 4 x (2 - 4) = b 0 x 2 + b 1 x 1 + b 2 x 0 + b 3 x - 1 + b 4 x – 2

y 3 = b 0 x ( 3 - 0) + b 1 x (3 - 1) + b 2 x (3 - 2) + b 3 x (3 - 3) + b 4 x (3 - 4) = b 0 x 3 + b 1 x 2 + b 2 x 1 + b 3 x 0 + b 4 x – 1

y 4 = b 0 x ( 4 - 0) + b 1 x (4 - 1) + b 2 x (4 - 2) + b 3 x (4 - 3) + b 4 x (4 - 4) = b 0 x 4 + b 1 x 3 + b 2 x 2 + b 3 x 1 + b 4 x 0

y 5 = записывается как y 0.

Примечание: x 0 – это отсчет показания АЦП в данный момент времени. Если отсчет показания АЦП с отрицательным знаком, то это означает, что отсчет – предшествующий. Для вычисления y 0 нужно использовать текущее показание АЦП и четыре предшествующих ему показаний, а для вычисления y 1 нужно использовать x 1 и четыре предшествующих ему показаний и т.д.

2. Структура процессоров цифровой обработки сигналов

Базовой операцией цифровой обработки сигналов является операция умножения и добавление (накопление) результата умножения. Устройство комбинированного сложения и умножения часто обозначают при описаниях мнемоникой МАС (Multiplier-Adder Combination ).Для того чтобы работать с высокой производительностью, процессор должен выполнять операцию МАС за один цикл (такт) работы процессора. Это должно выполняться аппаратно, а не программно. Отсчеты сигнала, коэффициенты фильтра и команды программы хранятся в памяти. Для выполнения операции требуется произвести три выборки из памяти – команды и двух сомножителей. Следовательно, для работы с высокой производительностью эти три выборки необходимо произвести за один такт работы процессора. При этом подразумевается, что результат операции остается в устройстве выполнения операции (в центральном процессорном устройстве), а не помещается в память. В более общем случае, нужна еще операция записи результата в память, т.е. необходимы четыре обращения к памяти за цикл. Таким образом, производительность процессора, прежде всего, определяется возможностями обмена данными между центральным процессорным устройством и памятью процессора и организацией их взаимодействия.

В процессорах цифровой обработки сигналов должна быть гарвардская архитектура с раздельными шинами данных и команд. Благодаря этому, можно будет одновременно производить операции обращения к различным устройствам памяти, т.е. синхронно выбирать команду из памяти программ и сомножитель из памяти данных. Память данных должна состоять из двух частей (традиционно они называются: памятью x и памятью y ). Для хранения отсчетов сигнала используется, например, память x , а для хранения коэффициентов – память y .


Таким образом, в процессорах Motorola для того, чтобы можно было произвести две выборки операндов за один такт, увеличивается количество независимых модулей памяти и количество шин для передачи данных. Процессоры имеют три банка (модуля) памяти для трех выборок за один такт и соответствующее количество шин. Проблемы с быстродействием могут возникнуть в случае нехватки внутренней памяти. По внешним шинам можно осуществить только одно обращение к памяти за такт.

В цифровых процессорах обработки сигналов используют специализированные устройства генерации адреса (УГА), которые формируют адреса данных, извлекаемых из памяти данных. УГА функционируют параллельно с другими модулями и позволяют одновременно с выполнением операций в АЛУ вычислять адреса операндов для следующей команды.

Циклические процессы, т.е. повторение одиночных команд и их блоков, занимают значительное место среди алгоритмов цифровой обработки сигналов. Обычная организация циклов программным образом требует использования команд формирования и проверки условий окончания циклов, которые должны выполняться при каждом прохождении «тела» цикла. На выполнение этих команд затрагивается время. Поэтому должен быть аппаратный счетчик циклов. В ПЦОС используются устройства, которые позволяют организовать циклы с «нулевыми потерями» времени на организацию (проверку условий окончания).

В процессорах Motorola используется команда цикла DO ,которая работает с регистрами начала и конца цикла (LC и LA ).

Гарвардская архитектура автоматически открывает многоступенчатый конвейер (от 3 до 11 ступеней конвейера). В базовом варианте: три ступени конвейера.

Базовый вариант: Motorola DSP 56 000 = 560 = 56К, где К = 000


Номер Процессор

сериив этой серии


3. Основные показатели процессоров цифровой обработки сигналов

1.) Способ представления данных.

По этому показателю все процессоры цифровой обработки сигналов делятся на :

1.1. Процессоры с фиксированной запятой (ФЗ) или процессоры с фиксированной точкой (ФТ ).

1.2. Процессоры с плавающей запятой (ПЗ) или процессоры с плавающей точкой (ПТ).

Наиболее распространены процессоры с фиксированной запятой или процессоры с фиксированной точкой - они стоятво всех телефонах.

В процессорах с плавающей запятой данные представляются в виде мантиссы или порядка. Процессоры с плавающей запятой значительно более сложные и наиболее дорогие (в несколько сотен долларов).

2.) Разрядность представления данных.

Для процессоров с фиксированной точкой разрядность равна 16 (у большинства сигнальных процессоров) или равна 24 (у фирмы Motorola).

Для процессоров с плавающей точкой разрядность равна 32 (из них порядок представляется8 разрядами, мантисса 23 разрядами, а знак 1 разрядом).

У процессоров с плавающей точкой большой диапазон представления чисел (мантиссу откидываем) с учетом знака: от 2 −128 до 2 127 .

Диапазон представления чисел устанавливает границы между минимально и максимально допустимыми значениями, представляемыми в заданном формате и коде.

Динамический диапазон (ДД):

ДД = |max значение | / |min значение ≠ 0 |

Динамический диапазон в децибелах равен:

20 lg (ДД ) = 20 lg (| max значение | / | min значение ≠ 0 |)

Динамический диапазон сигналов, с которыми могут без искажений работать процессоры, у процессоров с фиксированной точкой значительно уже (на несколько десятичных порядков). При относительно простых алгоритмах обработки это может быть неважно, т.к. динамический диапазон реальных входных сигналов чаще всего меньше, чем допускает DSP, однако в некоторых случаях возможно возникновение ошибок переполнения при выполнении программы. Это приводит к принципиально неустранимым нелинейным искажениям выходного сигнала, аналогичным искажениям из-за ограничения в аналоговых схемах.

3) Производительность

Одна из самых частых ошибок разработчика - отождествление тактовой частоты и быстродействия, что в большинстве случаев неправильно. Очень часто скорость работы DSP указывают в MIPS (миллионах инструкций в секунду). Это наиболее просто измеряемый параметр. Производительность нормальных процессоров – это несколько десятков MIPS.

Однако проблема сравнения скорости различных DSP состоит в том, что процессоры

имеют различные системы команд, и для выполнения одного и того же алгоритма разными процессорами требуется разное число этих команд. Кроме того, иногда для выполнения различных команд одним процессором требуется различное количество тактов синхронизации. В результате процессор со скоростью 1000 MIPS вполне может оказаться в разы медленнее процессора со скоростью 300 MIPS, особенно при различной их разрядности.

Одно из решений этой проблемы - сравнивать процессоры по скорости выполнения

определенных операций, например, операции умножения с накоплением (MAC). Скорость

выполнения таких операций критична для алгоритмов, использующих цифровую

фильтрацию, корреляцию и преобразования Фурье. К сожалению, такая оценка также не

дает полной информации о реальном быстродействии процессора.

Наиболее точной является оценка скорости исполнения определенных алгоритмов -

например, КИХ и БИХ - фильтрации, однако это требует разработки соответствующих программ и тщательного анализа результатов тестирования.

Существуют компании, занимающиеся анализом и сравнением процессоров по основным характеристикам, в том числе и по скорости. Лидером среди таких компаний является BDTI(Berkeley Design Technology, Inc ).

4. Основные производители сигнальных процессоров

1.) Фирма Texas Instruments (TI ) занимает около 48 % рынка ПЦОС. Именно она выпустила в 1982 г . первый ПЦОС, который имел коммерческий успех. ПЦОС TMS32010 использовался в игре Speak and Spell ("Скажи и произнеси по буквам"), а также в говорящей кукле по имени Джули . Все процессоры цифровой обработки сигналов фирмы Texas Instruments идут под маркой: TMS3200xxx.

2.) Фирма Analog Devices (AD). Все процессоры цифровой обработки сигналов фирмы Analog Devices идут под маркой: ADSP21 xxx .

3.)Фирма Motorola. Серии: DSP560xx

DSP 561xx Процессоры с фиксированной точкой.

DSP 563xx

DSP 566xx

DSP 568xx

Фирма Intel раньше тоже входила в первую тройку производителей сигнальных процессоров, но сейчас её оттеснили.

В нашей стране также производятся сигнальные процессоры, правда они несколько уступают зарубежным аналогам, но они есть. Например: в настоящее время научно-исследовательский институт электронной техники («НИИЭТ») серийно выпускает 16-разрядные процессоры ЦОС с фиксированной запятой М1867ВМ x с производительностью 5 MIPS.

5. Аппаратная реализация


Процессор цифровой обработки сигналов разбивается на две части: операционный блок и блок управления.

Операционныйблок

Блок управления операцией.

На входные регистры x 0 , x 1 , y 0 , y 1 из памяти поступают данные и передаются на МАС или АЛУ, которые могут использоваться как отдельно, так и в паре. Если нужно использовать данные двойной длины, то, как правило, используют 16 разрядов. Результат выполнения операции из аккумулятора А или В передаётся в память данных через сдвигатель - выходной.

Распределение нагрузки между МАС и АЛУ: 62 команды в базовом варианте, из них: 61 - АЛУ и 1 - МАС.

МАС выполняется в 1000 раз чаще, чем все другие команды и, именно он определяет скорость быстродействия.

Рис. Схема блока МАС

В блоке МАС после умножения первое суммирование происходит с нулём, а далее после каждого умножения происходит суммирование с каждым значением аккумулятора. Аккумуляторов всегда два или более.

Сдвигатель позволяет производить сдвиги при передаче и загрузке операндов без использования дополнительных команд.

Если в процессорах фирмы Motorola (в базовом варианте Motorola DSP 560xx ) разрядность слова равна 24, то длина расширенного слова составляет: 24 + 24 + 8 = 56 битов, где 8 разрядов отводится на расширение данных.

Если в процессорах фирмы Motorola разрядность слова равна 16, то длина расширенного слова составляет: 16 + 16 + 8 = 40 битов, где 8 разрядов отводится на расширение данных.

Пример представления целых чисел в форматах двойное и расширенное слово аккумулятора длиной 56 битов в процессорах DSP560xx фирмы Motorola:


Примечание:

На рисунке расширение EXT заполнено нулями – значением 47-го знакового бита.

Представление целых чисел в формате с ФТ в форматах двойное и расширенное слово предполагает следующее функциональное распределение битов:

1.) Старший бит MSB старшего слова MSP используется:

· как знаковый при представлении целых чисел со знаком ; значение MSB = 0 соответствует положительному знаку, а MSB = 1 - отрицательному знаку; ноль считается положительным; остальные биты являются значащими;

· как старший значащий при представлении беззнаковых чисел; беззнаковыми называются целые числа, имеющие положительный знак по умолчанию.

2.) Все биты, кроме знакового, считаются значащими ; они выравниваются по правому краю формата, т.е. младший бит LSB соответствует младшему разряду целого двоичного числа.

3.) При представлении целых чисел со знаком в формате «расширенное слово» в расширении EXT происходит расширение знака ; это означает, что все биты EXT автоматически заполняются значением старшего знакового бита MSB слова MSP : LSP .

4.) При представлении целых беззнаковых чисел в формате «расширенное слово» все биты EXT обнуляются.

Что такое DSP?

Цифровые сигнальные процессоры (DSP, Digital Signal Processors) принимают на вход предварительно оцифрованные физические сигналы, например, звук, видеоизображение, показания температуры, давления и положения, и производят над ними математические манипуляции. Внутренняя структура цифровых сигнальных процессоров специально разрабатывается таким образом, чтобы они могли очень быстро выполнять такие математические функции, как “сложение”, “вычитание”, “умножение” и “деление”.

Сигналы необходимо обработать так, чтобы информация, которую они содержат, могла быть отображена графически, проанализирована или преобразована в полезный сигнал иного типа. В реальном мире обнаружение сигналов, соответствующих физическим явлениям, таким как звук, свет, температура или давление, и манипуляции ими осуществляется аналоговыми компонентами. Затем, аналого-цифровой преобразователь берет реальный сигнал и преобразовывает его в цифровой формат в виде последовательности нулей и единиц. На данном этапе в процесс вступает цифровой сигнальный процессор, который осуществляет сбор оцифрованной информации и ее обработку. Далее он выдает оцифрованную информацию обратно в реальный мир для дальнейшего использования. Выдача информации осуществляется одним из двух способов - в цифровом или в аналоговом формате. Во втором случае оцифрованный сигнал пропускается через цифро-аналоговый преобразователь. Все эти действия выполняются на очень высокой скорости.

Для иллюстрации этой концепции рассмотрим приведенную ниже блок-схему, на которой показано, как цифровой сигнальный процессор используется в составе MP3 аудиоплеера. В фазе записи аналоговый звуковой сигнал поступает в систему от приемника или иного источника. Этот аналоговый сигнал преобразовывается в цифровой сигнал при помощи аналого-цифрового преобразователя и передается в цифровой сигнальный процессор. Цифровой сигнальный процессор выполняет кодирование в формат MP3 и сохраняет файл в память. В фазе воспроизведения файл извлекается из памяти, декодируется цифровым сигнальным процессором и преобразовывается при помощи цифро-аналогового преобразователя обратно в аналоговый сигнал, который может быть воспроизведен в акустической системе. В более сложном примере цифровой сигнальный процессор может выполнять дополнительные функции, например, регулировку громкости, частотную компенсацию и обеспечение интерфейса пользователя.

Информация, формируемая цифровым сигнальным процессором, может быть использована компьютером, например, для управления системами безопасности, телефонами, домашними кинотеатрами или сжатием видеоизображений. Сигналы могут подвергаться сжатию (компрессии) для более быстрой и эффективной передачи из одного места в другое (например, в системах телеконференций для передачи речи и видеоизображений по телефонным линиям). Сигналы также могут подвергаться дополнительной обработке для повышения их качества или предоставления информации, которая изначально недоступна для восприятия человеком (например, в задачах эхокомпенсации в мобильных телефонах или компьютерного улучшения качества изображений). Физические сигналы могут обрабатываться и в аналоговой форме, однако цифровая обработка обеспечивает повышенное качество и быстродействие.

Поскольку цифровой сигнальный процессор является программируемым, он может быть использован в самых разнообразных задачах. При создании проекта вы можете написать собственное программное обеспечение или использовать программное обеспечение, обеспечиваемое компанией Analog Devices или сторонними компаниями.

Более подробную информацию о преимуществах применения цифровых сигнальных процессоров при обработке сигналов реального мира вы можете найти, прочитав первую часть статьи Цифровая обработка сигналов 101 - Вводный курс в проектирование систем цифровой обработки сигналов, которая называется “Зачем нужен цифровой сигнальный процессор?”


Что находится внутри цифрового сигнального процессора (DSP)?

Цифровой сигнальный процессор включает в себя следующие ключевые компоненты:

  • Память программ: Содержит программы, которые цифровой сигнальный процессор использует для обработки данных
  • Память данных: Содержит информацию, которую необходимо обрабатывать
  • Вычислительное ядро: Выполняет математическую обработку, обращаясь к программе, содержащейся в памяти программ, и данным, содержащимся в памяти данных
  • Подсистема ввода/вывода: Осуществляет спектр функций для интерфейса с внешним миром

Для получения подробной информации о процессорах и прецизионных аналоговых микроконтроллерах компании Analog Devices мы предлагаем вам ознакомиться со следующими ресурсами:

Цифровая обработка сигналов - это сложный предмет, и он способен ошеломить даже наиболее опытных профессионалов в области цифровых сигнальных процессоров. Здесь мы дали лишь краткий обзор, но компания Analog Devices также предлагает дополнительные ресурсы, содержащие более подробную информацию о цифровой обработке сигналов:

  • - обзор технологий и вопросы практического применения
  • Серия статей в журнале Analog Dialogue: (на англ.яз.)
    • Часть 1: Зачем нужен цифровой сигнальный процессор? Архитектуры цифровых сигнальных процессоров и преимущества цифровой обработки сигналов перед традиционными аналоговыми схемами
    • Часть 2: Узнайте больше о цифровых фильтрах
    • Часть 3: Реализация алгоритмов на аппаратной платформе
    • Часть 4: Вопросы программирования для поддержки ввода/вывода в реальном времени
  • : Часто используемые слова и их значение

Практические занятия по цифровым сигнальным процессорам являются быстрым и эффективным способом ознакомиться с применением цифровых сигнальных процессоров компании Analog Devices. Они позволят вам овладеть уверенными практическими навыками работы с цифровыми сигнальными процессорами Analog Devices через курс лекций и практических упражнений. Расписание и информацию о регистрации вы можете найти на странице Обучение и разработка.

Цифровые сигнальные процессоры (ЦСП) – это особый вид микропроцессорной техники, предназначенный для работы в реальном времени. Области применения ЦСП:

Цифровая фильтрация сигналов,

Оптимальная обработка, вычисление корреляционных функций,

Спектральный анализ сигналов,

Кодирование и декодирование информации,

Распознавание и синтез речи, синтез и обработка музыки,

Обработка изображений,

Компьютерная графика, синтез изображений,

Измерительная техника.

Главной отличительной особенностью ЦСП является большой объем вычислений, выполняемый в реальном времени. Это определяет следующие отличительные особенности ЦСП:

Применение расширенной гарвардской архитектуры – раздельных памяти команд и данных с независимыми шинами, что позволяет за один такт внутренней частоты кристалла осуществлять выборку команд и их исполнение,

Короткие команды, реализуемые в конвейерных устройствах, обуславливают RISC архитектуру ЦСП,

Обязательное наличие параллельного аппаратного умножителя, выполняющего команды умножения за один такт внутренней частоты кристалла,

Наличие специальных команд обработки сигналов. Например, в семействе процессоров TMS320 фирмы Texas Instruments имеется команда dmov, которая добавляет новый отсчет сигнала к выборке, сдвигая остальные отсчеты на один квант времени, команда LTD загружает множимое в регистр умножителя, осуществляет сдвиг отсчетов сигнала и складывает результат предыдущего умножения с содержимым аккумулятора.

За свою историю развития с начала 80-х годов прошлого века сменилось несколько поколений ЦСП, но ряд ЦСП предыдущих поколений в современном исполнении продолжают выпускаться из-за удачной архитектуры. ЦСП первого поколения TMS32010 разработан фирмой Texas Instruments в 1982 году. Это 16-разрядный микропроцессор с производительностью 5 миллионов команд в секунду (MIPS) имел внутреннее ОЗУ 144-256 слов, ПЗУ 1,5 - 4К слов. АЛУ и аккумулятор 32 разрядные, аппаратный умножитель 16х16 – результат 32 разряда, имелись порты ввода – вывода.



ЦСП второго поколения появились в середине 80-х годов. Это TMS32020, КМОП микропроцессор TMS320C25 с производительностью 10 MIPS. Наиболее интересны ЦСП DSP56000 и DSP56001 производительностью 10 и 25 MIPS соответственно. Их разработала фирма Motorola. Это единственные 24-разрядные ЦСП. Модификации ЦСП такой архитектуры до сих пор выпускаются. Архитектура DSP56001 показана на рис. 7.1. Процессор имеет расширенную гарвардскую архитектуру. ОЗУ данных X и Y имеют отдельные шины адреса YA, XA и данных XD, YD. Кроме того, отдельная шина адреса PA применена для адресации ПЗУ загрузки и ОЗУ программ, имеющих и отдельную шину данных PD. Шина данных GD используется для загрузки программ из host-компьютера по синхронному последовательному интерфейсу. Кроме того, GD используется для обслуживания прерываний от программируемого контроллера прерываний. Блоки коммутации могут передавать данные и адреса между этими шинами, а блоки коммутации внешних шин позволяют выводить из кристалла любую из шин. Генератор управляющих сигналов формирует внешние сигналы управления. К тактовому генератору подключается внешний кварц и он тактирует всю схему.

Рис. 7.1. Архитектура DSP56001

В ПЗУ X и Y записаны отсчеты синуса и косинуса, что позволяет проводить квадратурный прием и обработку. В настоящее время такой ЦСП наиболее часто используется при обработке и синтезе звука.

ЦСП третьего поколения появились на рубеже 80 – 90 годов. Это TMS320C30 - TI, DSP96002 – Motorola, DSP32C AT&T Microelectronics. Особенности этих процессоров – они 32 разрядные, в одном АЛУ могут выполнять целочисленные вычисления и с плавающей точкой, имеют расширенную гарвардскую архитектуру, наличие таймеров и портов ввода – вывода. Модификация ЦСП TMS320C30 выпускается и до настоящего времени – это TMS320VC33-120 и -150. Производительность TMS320VC33-150 150 миллионов операций с плавающей точкой в секунду (MFLOPS).

Его основные параметры:

ОЗУ 34K 32 разрядных слов с двумя параллельными шинами доступа,

Тактовый генератор с возможностью умножения внутренней частоты,

32 разрядное ядро плавающей точки,

4 строба выборки внешних устройств,

Контроллер прерываний,

Начальный загрузчик,

8 40-разрядных регистров повышенной точности,

Один последовательный порт,

Два таймера,

сопроцессор прямого доступа к памяти (ПДП),

144 выводный корпус LQFP.

ЦСП четвертого поколения разрабатывались в 90 –е годы. Здесь произошло разделение ЦСП на относительно дешевые 16-разрядные ЦСП с фиксированной точкой и дорогие производительные 32- 40 разрядные ЦСП с плавающей точкой. ЦСП с фиксированной точкой стали использоваться в связной аппаратуре, модемах, звуковых мультимедийных устройствах, обработке сигналов, среди фирм разработчиков таких ЦСП известны семейства фирмы Analog Devices ADSP. ЦСП с плавающей точкой – для обработки широкополосных сигналов, изображений, в компьютерной графике. Типичным представителем ЦСП с плавающей точкой является TMS320C40 – TI. Архитектура этого ЦСП показана на рис. 7.2. Производительность этого процессора 275 MIPS. Главной особенностью его архитектуры является наличие шины ввода – вывода по прямому доступу в память с сопроцессором. Она предназначена для скоростного обмена через коммуникационные порты 0 – 5 с другими процессорами, образующими MIMD архитектуру. Каждый порт имеет 8 бит данных и 4 сопровождающих сигнала с пропускной способностью 20 Мб/с.


Рис. 7.2. Архитектура TMS320C40

На рис. 7.3 показан вариант топологии связей процессоров.

Рис. 7.3. Топология связей ЦСП

ЦСП пятого и шестого поколений разрабатывались в начале 21 века. Здесь следует отметить разработки фирмы TI – процессоры семейств С5000 и С6000. Семейство С5000 представляет собой семейство дешевых ЦСП с фиксированной точкой, высоким быстродействием и пониженным потреблением 0,9 В, а С6000 – ЦСП с фиксированной и плавающей точкой с производительностью до 1200 MFLOPS.. Некоторые параметры семейства TMS320C55x:

Потребление 0,05 мВ/MIPS,

Производительность 140 – 800 MIPS, включая операции умножения,

Переменная длина команд 8 – 48 бит,

2 умножителя, 2 АЛУ, 4 аккумулятора,

4 регистра данных,

Выборка команд – по 32 разряда.

В настоящее время ЦСП применяются совместно с программируемой логикой. Средства отладки аппаратуры на основе ЦСП и программируемой логики подразделяются на две категории:

Программная поддержка для формирования и отладки машинного кода обработки сигналов в ЦСП (средства генерации кода),

Программно-аппаратная поддержка для интеграции ЦСП с целевой аппаратурой разрабатываемого устройства и средства отладки программы обработки с аппаратной частью в реальном времени.

Эти два вида отладки обычно выполняются разными разработчиками с перекрытием по времени, что ускоряет процесс проектирования и изготовления аппаратуры. На рис. 7.4 приведена структура процесса отладки аппаратуры с ЦСП и программируемой логикой.

Рис. 7.4. Процесс разработки аппаратуры на ЦСП и ПЛИС

В процессе отладки программы ЦСП происходят возвраты и исправление программы, но также точно происходят возвраты и для изменения логики, заложенной в программируемой логике аппаратной части. Таким образом, процесс отладки при применении ЦСП и ПЛИС оказывается существенно более гибким и позволяет менять как программную, так и аппаратную часть.

Каковы особенности развития аппаратуры на основе ЦСП и программируемой логики?

1. Развитие различных параллельных архитектур обработки как в ЦСП, так и в программируемой логике.

2. Развитие соответствующих отладочных средств на основе эмуляторов, симуляторов и интерфейсов тестирования, подобных JTAG.

3. Комбинирование внутри одного кристалла ЦСП и программируемой логики, например в TMS320C54x.

4. Развитие эффективности оптимизирующих компиляторов языков высокого уровня типа С до уровня, чтобы не требовалось ассемблерных вставок в программы.

5. Развитие гетерогенных аппаратных систем на одном кристалле, включающих в себя различные типы микропроцессоров, включая и ЦСП, и оснащение их параллельными многопроцессорными операционными системами реального времени.


Список литературы

1. Супер ЭВМ. Аппаратная и программная организация/ Под ред. С. Фернбаха: Пер. с англ. – М.: Радио и связь, 1991.

2. Хокни Р., Джессоуп К. Параллельные ЭВМ. Архитектура, программирование и алгоритмы: Пер. с англ.-М.: Радио и связь, 1986.

3. Коуги П.М. Архитектура конвейерных ЭВМ: Пер. с англ.-М.: Радио и связь, 1985.

4. Параллельные вычисления/ Под ред. Г.Родрига: Пер. с англ.-М.: Наука, 1986.

5. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах: Справочник. – М.: Радио и связь, 1990.

6. Стешенко В.Б. ПЛИС фирмы ALTERA: проектирование устройств обработки сигналов. - М: ДОДЭКА, 2000.

7. КнышевД.А. ПЛИС фирмы “XILINX ”: описание структуры основных семейств. - М: ДОДЭКА-XXI, 2001.

8. Сикарев А.А., Лебедев О.Н. Микроэлектронные устройства формирования и обработки сложных сигналов. - М.: Радио и связь, 1983.

Процессор цифровой обработки сигналов (digital signal processor - DSP) - это специализированный программируемый микропроцессор, предназначенный для манипулирования в реальном масштабе времени потоком цифровых данных. DSP-процессоры широко используются для обработки потоков графической информации, аудио- и видеосигналов.

Любой современный компьютер оснащен центральным процессором и только немногие - процессором цифровой обработки сигналов (DSP - digital signal processor). Центральный процессор, очевидно, представляет собой цифровую систему и обрабатывает цифровые данные, поэтому на первый взгляд неясна разница между цифровыми данными и цифровыми сигналами, то есть теми сигналами, которые обрабатывает DSP-процессор.

К цифровым сигналам, в общем случае, естественно отнести все потоки цифровой информации, которые формируются в процессе телекоммуникаций. Главное, что отличает эту информацию, - она не обязательно заносится в память (и поэтому может оказаться недоступной в будущем), следовательно, обрабатывать ее нужно в режиме реального времени.

Число источников цифровой информации практически неограниченно. Так, например, загружаемые файлы в формате MP3 содержат цифровые сигналы, собственно и представляющие звукозапись. В некоторых камкодерах выполняется оцифровка видеосигналов и их запись в цифровом формате. В дорогих моделях беспроводных и сотовых телефонов перед передачей также производится преобразование голоса в цифровой сигнал.

Вариации на тему

DSP-процессоры принципиально отличаются от микропроцессоров, образующих центральный процессор настольного компьютера. По роду своей деятельности центральному процессору приходится выполнять объединяющие функции. Он должен управлять работой различных компонентов аппаратного обеспечения компьютера, таких как дисководы, графические дисплеи и сетевой интерфейс, с тем чтобы обеспечить их согласованную работу.

Это означает, что центральные процессоры настольных компьютеров имеют сложную архитектуру, поскольку должны поддерживать такие базовые функции, как защита памяти, целочисленная арифметика, операции с плавающей запятой и обработка векторной графики.

В итоге типичный современный центральный процессор поддерживает несколько сот команд, которые обеспечивают выполнение всех этих функций. Следовательно, нужен модуль декодирования команд, который позволял бы реализовывать сложный словарь команд, а также множество интегральных схем. Они, собственно, и должны выполнять действия, определяемые командами. Иными словами, типичный процессор в настольном компьютере содержит десятки миллионов транзисторов.

DSP-процессор, напротив, должен быть «узким специалистом». Его единственная задача - изменять поток цифровых сигналов, и делать это быстро. DSP-процессор состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных с тем, чтобы быстро изменять большие объемы данных.

В силу этого набор команд у DSP куда меньше, чем у центрального процессора настольного компьютера; их число не превышает 80. Это значит, что для DSP требуется облегченный декодер команд и гораздо меньшее число исполнительных устройств. Кроме того, все исполнительные устройства в конечном итоге должны поддерживать высокопроизводительные арифметические операции. Таким образом, типичный DSP-процессор состоит не более чем из нескольких сот тысяч транзисторов.

Являясь узкоспециализированным, DSP-процессор отлично справляется со своей работой. Его математические функции позволяют непрерывно принимать и изменять цифровой сигнал (такой, как звукозаписи в MP3 или запись разговора по сотовому телефону), не тормозя передачу информации и не теряя ее. Для повышения пропускной способности DSP-процессор оснащается дополнительными внутренними шинами данных, которые обеспечивают более быстрый перенос данных между арифметическими модулями и интерфейсами процессора.

Зачем нужны DSP-процессоры?

Специфические возможности DSP-процессора в части обработки информации делают его идеальным средством для многих приложений. Используя алгоритмы, основанные на соответствующем математическом аппарате, DSP-процессор может воспринимать цифровой сигнал и выполнять операции свертки для усиления или подавления тех или иных свойств сигнала.

В силу того что в DSP-процессорах значительно меньше транзисторов, чем в центральных процессорах, они потребляют меньше энергии, что позволяет использовать их в продуктах, работающих от батарей. Крайне упрощается и их производство, поэтому они находят себе применение в недорогих устройствах. Сочетание низкого энергопотребления и невысокая стоимость обусловливает применение DSP-процессоров в сотовых телефонах и в роботах-игрушках.

Впрочем, спектр их применения этим далеко не ограничивается. В силу большого числа арифметических модулей, наличия интегрированной на кристалле памяти и дополнительных шин данных часть DSP-процессоров могут использоваться для поддержки многопроцессорной обработки. Они могут выполнять сжатие/распаковку «живого видео» при передаче по Internet. Подобные высокопроизводительные DSP-процессоры часто применяются в оборудовании для организации видеоконференций.

Внутри DSP

Приведенная здесь диаграмма иллюстрирует строение ядра процессора Motorola DSP 5680x. Раздельные внутренние шины команд, данных и адресов способствуют резкому повышению пропускной способности вычислительной системы. Наличие вторичной шины данных позволяет арифметическому устройству считать два значения, перемножить их и выполнить операцию накопления результата за один такт процессора.

Сегодня уже забылись популярные в середине восьмидесятых годов среди электронщиков разговоры о степени отставания советской электроники от западной. Тогда судили о степени развития электроники по развитию процессоров к персональным компьютерам. "Железный занавес" делал свое дело, мы тогда даже не могли представить, что советская электроника отстала от западной не на год или два, а навсегда.

Простые советские инженеры, не допущенные на крупнейшие мировые профессиональные семинары по электронике и не посвященные в тайны, разведанные КГБ, могли судить о развитии электроники по программе "Время" и по голливудским фильмам десятилетней давности. После восторгов об электронных штучках Джеймсов Бондов делалось заключение, что: все это спецэффекты кинематографа; все создано на специализированных микропроцессорах (никогда не уточнялось, на каких); и что "у нас, где надо и у кого надо есть вещи и покруче". После таких глубокомысленных выводов советские инженеры с новым творческим порывом в своих НИИ продолжали создавать шедевры на 155-х ТТЛ-микросхемах, или, самые приближенные к военно-промышленному комплексу, на 133-й серии.

К своему стыду, должен признаться, что я также, примерно до середины девяностых годов, подразумевал, что специализированные процессоры - нечто совершенно сложное и невообразимое. Но, к счастью, времена изменились, и первыми специализированными процессорами, с которыми мне довелось познакомиться, стали процессоры цифровой обработки сигналов или сигнальные процессоры (ЦСП, DSP - Digital Signal Processor).

Сигнальные процессоры появились как следствие развития цифровых технологий, которые все шире внедрялись в традиционные "аналоговые" приложения: радио- и проводная связь, видео- и аудиотехника, измерительные и бытовые приборы. Создания специализированных процессоров для обработки сигналов требовали и чисто цифровые устройства: модемы, дисковые накопители, системы обработки данных и т.д. Главная отличительная черта ЦСП от обычных микропроцессоров - максимальная приспособленность к решению задач цифровой обработки сигналов. Это именно "специализированные" контроллеры, специализация которых заключается в такой архитектуре и системе команд, которые позволяли бы оптимально выполнять операции преобразования и фильтрации сигналов в режиме реального времени. У обычных микроконтроллеров команды, выполняющие такие операции, или вообще не предусмотрены, или их работа весьма медленна, что не дает возможности их использования в критичных по скорости процессах. Поэтому применение традиционных микропроцессоров вело, с одной стороны, к неоправданному усложнению и удорожанию схемного решения устройства, с другой - к неэффективному, однобокому использованию возможностей контроллера. ЦСП были призваны решить это противоречие и прекрасно со своей задачей справились.

Сигнальные процессоры появились в начале 80-х годов. Первым широко известным сигнальным процессором стал выпущенный в 1982 году фирмой Texas Instruments ЦСП TMS32010, с производительностью в несколько MIPS (миллионов инструкций в секунду), созданный по 1,2 мкм технологии. Вслед за Texas Instruments ЦСП стали выпускать и другие фирмы. В настоящее время Texas Instruments является лидером по производству ЦСП, ей принадлежит около половины рынка этих контроллеров. Вторым по величине производителем ЦСП является компания Lucent Technologies, которая производит около трети этих устройств. Замыкают четверку лидеров Analog Devices и Motorola, имеющие примерно равную долю рынка и выпускающие вместе примерно четверть всех ЦСП. На долю остальных производителей, хотя среди них находятся такие известные фирмы, как Samsung, Zilog, Atmel и другие, приходятся оставшиеся 5-6 процентов рынка сигнальных процессоров.

Понятно, что законодателями мод среди производителей являются компании-лидеры в этой области и, в первую очередь Texas Instruments. Политика компаний лидеров при производстве и продвижении сигнальных процессоров существенно разнится.

Texas Instruments ставит задачу производства максимально широкого ассортимента, способного перекрыть все возможные применения процессоров при все большей производительности. В настоящее время производительность сигнальных процессоров достигает до 8800 MIPS, и производятся они по технологии от 0,65 мкм до 0,1 мкм. Тактовая частота достигает 1,1 ГГц.

Lucent Technologies ориентируется на крупных производителей конечного оборудования и предлагает свою продукцию через дистрибьюторскую сеть, не прибегая к широкой рекламной компании. Фирма специализируется на ЦСП для телекоммуникационного оборудования, в частности, в таком перспективном в настоящее время направлении, как создание станций сотовой связи.

Analog Devices, напротив, ведет активную маркетинговую политику и рекламную компанию, о чем свидетельствует хотя бы аббревиатура в названии ЦСП этой фирмы SHARK и Tiger SHARK (акула и тигровая акула). В технической области процессоры этой фирмы оптимизированы по энергопотреблению и для построения многопроцессорных систем.

Motorola распространяет свои процессоры, широко используя собственную разветвленную дистрибьюторскую сеть. В архитектуре ЦСП Motorola первой пошла по пути создания на одном кристалле одновременно сигнального процессора и классического микроконтроллера, которые работают как одна система, что значительно облегчает жизнь разработчикам оборудования, упрощая схемное решение.

Архитектура и технологии изготовления ЦСП уже разработаны достаточно хорошо, однако требования устойчивости работы и точности вычислений ЦСП приводят к тому, что не удается избавиться от высокой сложности функциональных устройств, выполняющих обработку данных (особенно в формате с плавающей точкой), что не позволяет существенно снизить издержки при производстве процессоров. Стоимость ЦСП может колебаться от 2 до 180 и более долларов за единицу.

Характеристики ЦСП-процессоров

Отличительными особенностями характеристик сигнальных процессоров являются высокоскоростная арифметика, передача и получение данных в реальном времени и архитектура памяти с множественным доступом.

Любое арифметическое действие в процессе выполнения требует следующих элементарных операций: выборки операндов; выполнения сложения или умножения; сохранения результата или его повторения. Кроме того, в процессе вычислений требуются задержки, выборки значений из последовательных ячеек памяти и копирование данных из памяти в память. В сигнальных процессорах повышение скорости выполнения арифметических операций достигается за счет: параллельного выполнения действий, множественного доступа к памяти (выборка двух операндов и сохранение результата), наличия большого числа регистров для временного хранения данных, аппаратной реализации специальных возможностей: осуществление задержек, умножителей, кольцевой адресации и т.д. В сигнальных процессорах реализуется также аппаратная поддержка программных циклов, кольцевых буферов, возможность извлечения из памяти одновременно нескольких операндов в цикле исполнения команды.

Главным достоинством и отличием между ЦСП и универсальными микропроцессорами является то, что процессор взаимодействует со многими источниками данных в реальном мире. Процессор может получать и передавать данные в реальном времени, не прерывая при этом выполнение внутренних математических операций. Для этих целей непосредственно в чип встраивают аналогоцифровые и цифро-аналоговые преобразователи, генераторы, декодеры и другие устройства непосредственного "общения" с внешним миром.

Построение памяти с множественным доступом достигается, в основном, за счет применения Гарвардской архитектуры. Под Гарвардской архитектурой понимается такая архитектура, которая имеет две физически разделенные шины данных, что позволяет осуществить два доступа к памяти одновременно. Но для выполнения DSP-операций только этого недостаточно, особенно при использовании в команде двух операндов. Поэтому Гарвардская архитектура добавляется еще кэш-памятью, для хранения тех инструкций, которые будут использоваться вновь. При использовании кэш-памяти шина адреса и шина данных остаются свободными, что делает возможным выборку двух операндов. Такое расширение - Гарвардская архитектура плюс кэш - называют расширенной Гарвардской архитектурой или SHARC (Super Harvard ARChitecture).

Конкретные характеристики ЦСП рассмотрим на семействе DSP568xx компании Motorola, в которых совмещены особенности цифровых сигнальных процессоров и универсальных микроконтроллеров.

Ядро DSP56800 является программируемым 16-разрядным КМОП-процессором, предназначенным для выполнения цифровой обработки сигналов в реальном масштабе времени и решения вычислительных задач, и состоит из четырех функциональных устройств: управления, генерации адресов, АЛУ, обработки битов. Для увеличения производительности операции в устройствах выполняются параллельно. Каждое из устройств может функционировать независимо и одновременно с тремя другими, т.к. имеет свой набор регистров и логику управления. Ядро реализует одновременное выполнение нескольких действий: устройство управления выбирает первую команду, устройство генерации адресов формирует их адреса второй команды, а АЛУ выполняет умножение третьей команды. Широко используются совмещенные передачи и выполнение операций.

Встроенная память может содержать (для семейства):

Флэш-память программ до 60К

Флэш-память данных до 8К

ОЗУ-программ до 2К

ОЗУ-данных до 4К

Флэш-память программы загрузки 2К

На микрочипах семейства реализовано большое количество периферийных устройств: ШИМ-генераторы, 12-разрядные АЦП с одновременной выборкой, квадратурные декодеры, четырехканальные таймеры, контроллеры CAN-интерфейса, двухпроводные последовательные коммуникационные интерфейсы, последовательные интерфейсы, программируемый генератор с ФАПЧ для формирования тактовой частоты ядра DSP и др.

Общие характеристики

Производительность 40 MIPS при тактовой частоте 80 МГц и напряжении питания 2.7:3.6 В;

Однотактный параллельный 16х16 умножитель-сумматор;

Два 36-разрядных аккумулятора, включая биты расширения;

Однотактное 16-разрядное устройство циклического сдвига;

Аппаратная реализация команд DO и REP;

Три внутренние 16-разрядные шины данных и три 16-разрядные шины адреса;

Одна 16-разрядная шина внешнего интерфейса;

Стек подпрограмм и прерываний, не имеющий ограничения по глубине.

Микросхемы семейства DSP568хх предназначены для применения в недорогих устройствах, бытовой технике, для которой необходима низкая стоимость и не требуются сверхвысокие параметры: проводные и беспроводные модемы, системы беспроводной передачи цифровых сообщений, цифровые телефонные автоответчики, цифровые камеры, специализированные и многоцелевые контроллеры, устройства управления серводвигателями и электродвигателями переменного тока.

В общем случае сигнальные процессоры уже достигли такой стадии своего развития, что могут применяться в устройствах, находящихся от космических станций до детских игрушек.

Насколько неожиданными могут быть применения сигнальных процессоров, мне пришлось не так давно убедиться именно на примере игрушки. Однажды ко мне обратился знакомый и попросил починить говорящую куклу, которую подарили его дочери немецкие знакомые. Кукла, и правда, была замечательной, по словам знакомого, она понимала до полусотни фраз и "сознательно" поддерживала разговор. В Германии стоила сто пятьдесят марок, что навело меня на размышления, что о поломке куклы более жалеют родители, чем их чадо. Дочурка и так любила куклу, тем более что до того как стать немой, та разговаривала на немецком языке. Без всякой надежды на успех взялся я за ремонт этой куклы. Напильником спилил эпоксидную смолу, которой была залита схема и, под толстым-толстым слоем эпоксидки, обнаружил полдесятка корпусов микросхем, центральным из которых был ЦСП к DSP56F... последние цифры, к сожалению, безвозвратно стерлись. Заставить куклу заговорить так и не удалось, и насколько добавлял ей интеллекта сигнальный процессор, я, увы, так и не определил. Как потом оказалось, старший сын моих знакомых, чтобы заставить куклу кричать погромче, вначале подсоединял к ней напряжение вместо 3 в, 4,5 вольта, что было еще не "смертельно", и игрушка хоть и хрипела, но орала, ну а после 220в... . Отсюда первый вывод - высокие технологии хороши, но не всегда и не везде. Вывод второй - вскоре, возможно, ЦСП мы сможем увидеть в кухонной посуде, обуви и одежде, по крайней мере, технических препятствий к тому нет.




Просмотров