Сжатие данных в примерах. Алгоритмы сжатия данных

Сжатие данных

Михаил Сваричевский

Сжатием (компрессией) данных называют преобразование их в форму, занимающую меньше места. В такой форме данные и хранить легче (устройства хранения все-таки не резиновые), и передавать по каналам с ограниченной пропускной способностью куда приятнее.

Все алгоритмы сжатия делятся на два типа: с потерями и без.

Сжатие с потерями позволяет достичь гораздо бóльшей степени сжатия (до 1/30 и менее от исходного объема).
Например, видеофильм, занимающий в неупакованном виде гигабайт 30, удается записать на 1 CD.
Однако, алгоритмы сжатия с потерями приводят к некоторым изменениям самих данных; поэтому применять такие алгоритмы можно только к тем данным, для которых небольшие искажения несущественны: видео, фото-изображения (алгоритмы JPEG), звук (алгоритм MP3).

Сжатие без потерь, конечно, не так эффективно (его степень очень зависит от конкретных данных), зато данные после распаковки полностью идентичны оригинальным. Что абсолютно необходимо, например, для текстовых данных, программного кода. В этой статье будет рассматриваться именно сжатие без потерь.

Большинство алгоритмов сжатия без потерь делятся на две группы: первыесоставляют текст из кусочков исходного файла в той или иной форме (словарные методы); вторые (статистические методы) используют тот факт, что разные символы или символьные группы появляются в файле с разными вероятностями (например, буква "а" в текстовых файлах встречается гораздо чаще, чем "б").

Словарные методы

Словарные методы отличаются высокой скоростью сжатия/распаковки, но несколько худшим сжатием. Словом называется некоторая последовательность символов. В общем - речь, конечно, идет не о символах, а о байтах; но для простоты в примерах будут использоваться ASCII-символы.

Словарь содержит некоторое количество слов (обычно 2x; например, 4096).
Сжатие достигается за счет того, что номер слова в словаре обычно гораздо короче самого слова.
Алгоритмы словарного сжатия делятся на две группы:
1) использующие словарь в явной форме(алгоритмы LZ78, LZW, LZC, LZT, LZMV, LZJ, LZFG)
Например, по словарю
1. "Большинство"
2. "сжатия"
3. "без"
4. "потерь"
5. "алгоритмов"
текст "Большинство алгоритмов сжатия без потерь" сжимается в "15234".

2) указывающие вместо номера слова - позицию относительно текущей позиции и длину повторяющегося участка (алгоритмы LZ77, LZR, LZSS, LZB, LZH)
Например, текст "абаббабаббабвгббабв"
сжимается в "05абабб5504абвг65", где:
"05абабб" – позиция 0 означает, что далее 5 символов идут без сжатия.
"55" – 5 букв с позиции, отстоящей от текущей на 5 символов назад.
"04абвг" – еще 4 символа не сжимается.
"65" –5 букв с позиции, отстоящей от текущей на 6 символов назад.

Модификации LZ-алгоритмов отличаются только способами представления словаря, поиска и добавления слов. Одни сжимают быстрее, но хуже; другие требуют больше памяти.

Рассмотрим подробнее модифицированный алгоритм LZ77.
Архив будет состоять из записей следующего вида:
(n,m) – означает, что с позиции n начинается такая же строка длиной m, что и с текущей позиции.
(0,m,"m символов") – означает, что далее следует m символов, которые не удалось сжать.

Алгоритм сжатия будет заключаться в следующем: ищем в файле место, начиная с которого идет самая длинная последовательность, совпадающая с последовательностью, начинающейся на текущем байте. Если ее длина больше 3, то в архив записываем начало и длину последовательности; иначе - записываем 0, длину последовательности и сами несжатые символы. Распаковка еще проще: пока файл архива не кончился, читаем по 2 числа(n,m). Если n=0, то m символов из архива сразу помещаем в буфер (эти символы нам еще понадобятся) и записываем в выходной файл. Если n<>0 то из буфера с позиции n копируем m элементов в буфер и выходной файл.

Однако есть две проблемы:
1) Ограниченный размер буфера: если нам нужно будет сжать файл размеров в 100МБ, мы его в буфер никак не поместим. Поэтому, когда он будет заполнен (скажем, на 75%), придется сдвинуть данные в нем к началу (напр., на 25%;конечно, самые старые символы при этом потеряются). Это ухудшит сжатие, но сделает алгоритм нетребовательным к памяти.
2) Скорость работы программы сжатия очень мала. В самом деле, если нужно будет сжать файл размеров 10КБ, то это потребует от нас проведения как минимум около 10000*10000/2 операций (10000 раз нам нужно будет искать совпадающую подпоследовательность, а каждый такой поиск займет в среднем 10000/2 операций). Для того, чтобы ускорить операцию поиска, можно хранить в отдельном массиве номера позиций последовательностей, начинающихся на символ chr(0), chr(2) … chr(255). Тогда при поиске нам нужно будет проверить только те комбинации, первая буква которых совпадает с первой буквой искомой последовательности.

Статистические методы

Статистические методы гораздо медленнее словарных, но достигают более сильного сжатия. В них каждая буква заменяется некоторым кодом. Код – это несколько бит, однозначно идентифицирующие некоторый символ. Статистические методы используют различные приемы для того, чтобы наиболее часто встречающимся символам соответствовали более короткие коды. Существуют два основных алгоритма кодирования букв в соответствии с их частотой встречаемости:

1) Коды Хаффмана: все символы кодируются целым количеством бит; причем так, что раскодирование всегда однозначно (например, если букве "а" соответствует последовательность бит "1001", а "b" – "10010", то раскодирование неоднозначно). Достоинство - высокая скорость сжатия. Недостатки - неоптимальное сжатие, сложности при реализации адаптивного варианта. Так как в последнее время скорость собственно алгоритма кодирования играет все меньшую роль (алгоритмы накопления статистической информации работают все медленнее и медленнее, и даже 2-х кратное увеличение времени работы кодировщика практически не влияет на скорость), этот алгоритм не имеет существенных преимуществ перед арифметическим кодированием.

2) Арифметическое кодирование: для каждого символа определяется промежуток на отрезке и в зависимости от ширины этого отрезка может выделяться разное количество бит, условно говоря, даже дробное (например: пусть строке "a" соответствует0 , а строке "ab" - 1, тогда строка "aba" закодируется в 2 бита, т.е в среднем 2/3 бита на символ). Этот метод точнее использует статистическую информацию, и всегда сжимает не хуже алгоритма Хаффмана, но медленнее. Достоинства - максимальная теоретически достижимая степень сжатия, простая реализация адаптивного варианта. Недостатки - несколько меньшая скорость.

Принцип работы арифметического кодирования:

Например, мы присвоили символу "a" промежуток , "b" – и "c" – . Тогда, если у нас будет число 0.4, то мы можем сказать, что закодирована буква "b"(0.3<=0.4<=0.6), а если 0.9 – то c(0.6<=0.9<=1). Итак, у нас получилось закодировать 1 букву в число. Как же закодировать 2 буквы? Очень просто: например, если первая буква – "b", то интервал равен . Разделим этот интервал на части, в отношении наших первоначальных отрезков. Тогда 2-м буквам "ba" будет соответствовать интервал , "bb" – и "bc" – . Для раскодирования нам достаточно знать любое число из этого интервала.

Попробуем раскодировать: пусть дано число 0.15. Это число попадает в интервал буквы "a", значит первая закодированная буква – "a". Для того, чтобы узнать вторую букву, нужно преобразовать число, чтобы оно указывало букву в интервале не , а . Для этого от числа отнимем нижнюю границу исходного интервала (0) и разделим на ширину интервала (0.3-0=0.3). Получим новое число(0.15-0)/0.3 = 0.5. Повторив те же действия, мы узнаем, что вторая буква – "b". Если бы было закодировано 3 и более букв, то, многократно повторяя этот процесс, мы нашли бы все буквы.

Почему представление в виде числа позволяет сжать данные:
Более вероятным символам соответствует более широкий интервал, и после кодирования такой буквы, интервал уменьшится ненамного, следовательно, для представления любого числа из этого промежутка понадобится ненамного больше бит.

Алгоритм сжатия:
Для каждого символа мы должны присвоить соответствующий промежуток в соответствии с частотой (вероятностью встречи) в данных: пусть символ "а"имеет вероятность 0.4, "b" – 0,3 и "c" – тоже 0.3; тогда символу "а" будет соответствовать промежуток , "b" – , "c" – . Т.е мы делим имеющийся у нас промежуток между всеми необходимыми буквами в соответствии с вероятностью их встречи (более вероятному символу соответствует больший промежуток).

В процессе сжатия у нас есть 2 границы: верхняя и нижняя, назовем их соответственно hiи lo. Пусть нам нужно закодировать символ, которому мы отвели промежуток . Тогда в наш промежуток "вставляется" промежуток символа, и lo будет равен нижней границе вставляемого промежутка, hi – верхней. В итоге по мере кодирования промежуток между loи hi становится все уже и уже. Наконец, когда мы закодировали все данные, выбираем любое число из получившегося промежутка и выводим. Оно и будет сжатыми данными.

Распаковка:
Построим промежутки для символов, как и для сжатия. Символ, в промежуток которого попадает число-архив, и есть первый символ данных. "Растягиваем" промежуток символа вместе с числом-архивом до промежутка (т.е отнимаем нижнюю границу интервала только что раскодированного символа, и делим на ширину этого интервала), затем повторяем операцию, пока все не раскодируем.

Проблемы:
Если бы все было так просто… На самом деле, для хранения числа-архива нужна будет очень большая точность (десятки и сотни тысяч знаков), поэтому на практике приходится пользоваться обычными типами данных. Чтобы этого добиться, будем смотреть на старшие биты/цифры числа-архива. Как только у hi и lo они совпадут, мы можем сразу записать их в архив и "отсечь". При распаковке наоборот, когда увидим, что мы довольно много раз расширяли промежуток до , считаем из файла-архива несколько цифр и допишем их в конец нашего числа-архива.
Часто используется модификация арифметического кодирования - range coder. Основное отличие - начальный интервал - . Это позволяет выводить данные сразу по байту, а не наскребать по биту, что отражается на скорости работы. В конце статьи приведена реализация именно этого варианта.

Определение вероятностей символов

Основной процесс, влияющий на скорость и степень сжатия – определение вероятностей символов. В простейшем случае будем считать вероятностью символа - количество его встреч в уже закодированной части данных, делённое на общее количество символов в данных. Для текстов это дает приблизительно 2-кратное сжатие. Чтобы его увеличить, можно учитывать такие факты, как, например, то, что вероятность встречи символа "я" после "ю" практически равна 0, а "o" после "с" – около 0.25. Поэтому для каждого предыдущего символа будем отдельно считать вероятности.

Предположения, которые мы делаем относительно сжимаемых данных (например, зависимость вероятности от предыдущих символов) называются вероятностной моделью. Модель, вероятности в которой не зависят от предыдущих символов, называется моделью 0-го порядка. Если вероятности зависят от 1 предыдущего символа, то это модель 1-го порядка, если от 2-х последних – то 2-го и т.д. Для эффективного вычисления вероятностей символов в моделях высокого порядка существуют специальная группа алгоритмов – PPM и его модификации.
Модели могут быть неадаптивными, полуадаптивными и адаптивными. В неадаптивных методах вероятности всех символов жестко зашиты в программу. В полуадаптивных по входным данным делается 2 прохода: 1-й - для определения вероятностей, 2-й – собственно для сжатия. Адаптивный – вероятности символов изменяются в процессе сжатия. Адаптивные модели самые медленные, но они обычно сжимают данные сильнее неадаптивных и полуадаптивных моделей. В общем, среди всех моделей лучше сжимают использующие наибольшее кол-во информации о сжимаемых данных - зависимость от предыдущих символов, некоторые факты, например: в текстах после точки обычно следует большая буква и т.д.

Алгоритмы, используемые в популярных архиваторах:

ZIP,ARJ,RAR - LZ+Хаффман
HA - PPM+Арифметическое кодирование
BOA - BWT+Арифметическое кодирование
UHARC - LZ+PPM+Арифметическое кодирование
(Здесь "+" означает, что результат работы алгоритма, написанного слева от знака, далее сжимается алгоритмом, записанным справа).
Как видно, в архиваторах ZIP,ARJ,RAR ,разрабатывавшихся в конце 80-х - начале 90-х, используются уже довольно устаревшие алгоритмы; поэтому они по тестам проигрывают более современным.

Пример программы адаптивного сжатия/распаковки 0-го порядка:

Данные: compr – тут хранятся сжатые данные
Data- тут хранятся исходные данные
Freq – частоты символов

Procedure compress_range; {Процедура сжатия}
Var
cum_freq: Extended;
Begin
{- Инициализация модели и кодера -}
For q:= 0 To 255 Do
freq [q] := 1; {Все символы в начале имеют одинаковую вероятность}
freq := freq - 0.20000;
total:= 256; {Сумма частот всех символов.}
{ В freq - небольшой остступ от 0 и макс.значения}
PC:= 0;{Кол-во уже закодированых байт }
Lo:= 0; range:= 256;
{- Кодирование -}
For q:= 1 To Size Do
Begin
{Нахождение интервала, соответствующего кодируемому символу}
cum_freq:= 0.1; {Начинаем накапливать вероятность}
For w:= 0 To data [q] - 1 Do
cum_freq:= cum_freq + freq [w];
{Изменяем range&lo}
range:= range / total;
Lo:= Lo + range * (cum_freq);
range:= range * freq ];
{Нормализация т.е вывод байтов, одинаковых у Lo и Hi(Hi=Lo+Range)}

Begin
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
{Обновления модели}
freq ] := freq ] + 1;
{Присваеваем кодируемому символу на 1 большую вероятность}
total:= total + 1;
End;
{Сжатие закончено, выводим остаток}
Lo:= Lo + range / 2;
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;

Procedure decompress_range;{Процедура распаковки}
Var
temp: Extended;
ee: Extended;
Begin
{Инициализация модели и кодера}
For q:= 0 To 255 Do
freq [q] := 1;
freq := freq - 0.20000; { В freq - небольшой остступ от 0 и макс.значения}
total:= 256;
PC:= 4; {PC - номер байта, которые мы считываем}
code:= 0;
Lo:= 0; range:= 256;
{Считываем начальное, приближенное значение code.}
For q:= 1 To 4 Do
Begin
code:= code * 256 + compr [q] / 65536 / 256;
End;
w:= 0; {W- кол-во верно распакованных байт}
{Собственно расжатие}
While True Do
Begin
{Нахождения вероятности следующего символа}
temp:= (code- Lo) * total / range;
{Поиск символа, в интервал которого попадает temp}
sum:= 0.1; ssum:= 0.1;
For e:= 0 To 255 Do
Begin
sum:= sum + freq [e];
If sum > temp Then Break;
ssum:= sum;
End;
Inc (w);
{Проверка правильности распаковки}
{Сейчас в e – распакованный байт, и его можно выводить в файл}
If data [w] <> e Then Break; {Если неправильно распаковали - выходим}
If w = Size Then Begin Inc (w); Break End; {Если все распаковали выходим,}
{и модель не обновляем:-)}
{Обновления Lo&Hi(Растягивание)}
range:= range / total;
Lo:= Lo + range * (ssum);
range:= range * (freq [e]);
{Обновление модели(Делаем символ e более вероятным)}
freq [e] := freq [e] + 1;
total:= total + 1;
{Нормализация, уточнение числа}
While Trunc (Lo) = Trunc (Lo + range) Do
Begin
Inc (PC);
temp:=compr;
code:= (code - trunc(code)) * 256 + temp / 16777216;
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
End;
Dec (w);
{DONE_DECOMPRESS}
End;

Лекция №4. Сжатие информации

Принципы сжатия информации

Цель сжатия данных - обеспечить компактное представление данных, вырабатываемых источником, для их более экономного сохранения и передачи по каналам связи.

Пусть у нас имеется файл размером 1 (один) мегабайт. Нам необходимо получить из него файл меньшего размера. Ничего сложного - запускаем архиватор, к примеру, WinZip, и получаем в результате, допустим, файл размером 600 килобайт. Куда же делись остальные 424 килобайта?

Сжатие информации является одним из способов ее кодирования. Вообще коды делятся на три большие группы - коды сжатия (эффективные коды), помехоустойчивые коды и криптографические коды. Коды, предназначенные для сжатия информации, делятся, в свою очередь, на коды без потерь и коды с потерями. Кодирование без потерь подразумевает абсолютно точное восстановление данных после декодирования и может применяться для сжатия любой информации. Кодирование с потерями имеет обычно гораздо более высокую степень сжатия, чем кодирование без потерь, но допускает некоторые отклонения декодированных данных от исходных.

Виды сжатия

Все методы сжатия информации можно условно разделить на два больших непересекающихся класса: сжатие с потерей инфор­мации и сжатие без потери информации.

Сжатие без потери информации.

Эти методы сжатия нас инте­ресуют в первую очередь, поскольку именно их применяют при передаче текстовых документов и программ, при выдаче выпол­ненной работы заказчику или при создании резервных копий информации, хранящейся на копьютере.

Методы сжатия этого класса не могут допустить утрату информа­ции, поэтому они основаны только на устранении ее избыточности, а информация имеет избыточность почти всегда (правда, если до этого кто-то ее уже не уплотнил). Если бы избыточности не было, нечего было бы и сжимать.

Вот простой пример. В русском языке 33 буквы, десять цифр и еще примерно полтора десятка знаков препинания и прочих спе­циальных символов. Для текста, который записан только про­писными русскими буквами (как в телеграммах и радиограммах) вполне хватило бы шестидесяти разных значений. Тем не менее, каждый символ обычно кодируется байтом, который содержит 8 битов и может выражать 256 различных кодов. Это первое осно­вание для избыточности. Для нашего «телеграфного» текста вполне хватило бы шести битов на символ.

Вот другой пример. В международной кодировке символов ASCII для кодирования любого символа отводится одинаковое количество битов (8), в то время как всем давно и хорошо извест­но, что наиболее часто встречающиеся символы имеет смысл кодировать меньшим количеством знаков. Так, например, в «азбуке Морзе» буквы «Е» и «Т», которые встречаются часто, кодируются одним знаком (соответственно это точка и тире). А такие редкие буквы, как «Ю» ( - -) и «Ц» (- - ), кодиру­ются четырьмя знаками. Неэффективная кодировка - второе основание для избыточности. Программы, выполняющие сжа­тие информации, могут вводить свою кодировку (разную для разных файлов) и приписывать к сжатому файлу некую таблицу (словарь), из которой распаковывающая программа узнает, как в данном файле закодированы те или иные символы или их груп­пы. Алгоритмы, основанные на перекодировании информации, называют алгоритмами Хафмана.

Наличие повторяющихся фрагментов - третье основание для избыточности. В текстах это встречается редко, но в таблицах и в графике повторение кодов - обычное явление. Так, например, если число 0 повторяется двадцать раз подряд, то нет смысла ставить двадцать нулевых байтов. Вместо них ставят один ноль и коэффициент 20. Такие алгоритмы, основанные на выявлении повторов, называют методами RLE (Run Length Encoding ).

Большими повторяющимися последовательностями одинаковых байтов особенно отличаются графические иллюстрации, но не фотографические (там много шумов и соседние точки сущест­венно различаются по параметрам), а такие, которые художники рисуют «гладким» цветом, как в мультипликационных фильмах.

Сжатие с потерей информации.

Сжатие с потерей информации означает, что после распаковки уплотненного архива мы полу­чим документ, который несколько отличается от того, который был в самом начале. Понятно, что чем больше степень сжатия, тем больше величина потери и наоборот.

Разумеется, такие алгоритмы неприменимы для текстовых документов, таблиц баз данных и особенно для программ. Незна­чительные искажения в простом неформатированном тексте еще как-то можно пережить, но искажение хотя бы одного бита в программе сделает ее абсолютно неработоспособной.

В то же время, существуют материалы, в которых стоит пожерт­вовать несколькими процентами информации, чтобы получить сжатие в десятки раз. К ним относятся фотографические иллюстрации, видеоматериалы и музыкальные композиции. Потеря информации при сжатии и последующей распаковке в таких материалах воспринимается как появление некоторого дополнительного «шума». Но поскольку при создании этих мате­риалов определенный «шум» все равно присутствует, его неболь­шое увеличение не всегда выглядит критичным, а выигрыш в раз­мерах файлов дает огромный (в 10-15 раз на музыке, в 20-30 раз на фото- и видеоматериалах).

К алгоритмам сжатия с потерей информации относятся такие известные алгоритмы как JPEG и MPEG. Алгоритм JPEG исполь­зуется при сжатии фотоизображений. Графические файлы, сжа­тые этим методом, имеют расширение JPG. Алгоритмы MPEG используют при сжатии видео и музыки. Эти файлы могут иметь различные расширения, в зависимости от конкретной программы, но наиболее известными являются.MPG для видео и.МРЗ для музыки.

Алгоритмы сжатия с потерей информации применяют только для потребительских задач. Это значит, например, что если фотография передается для просмотра, а музыка для воспро­изведения, то подобные алгоритмы применять можно. Если же они передаются для дальнейшей обработки, например для редак­тирования, то никакая потеря информации в исходном мате­риале недопустима.

Величиной допустимой потери при сжатии обычно можно управ­лять. Это позволяет экспериментовать и добиваться оптималь­ного соотношения размер/качество. На фотографических иллюст­рациях, предназначенных для воспроизведения на экране, потеря 5% информации обычно некритична, а в некоторых случаях можно допустить и 20-25%.

Алгоритмы сжатия без потери информации

Код Шеннона-Фэно

Для дальнейших рассуждений будет удобно представить наш исходный файл с текстом как источник символов, которые по одному появляются на его выходе. Мы не знаем заранее, какой символ будет следующим, но мы знаем, что с вероятностью p1 появится буква "а", с вероятностью p2 -буква "б" и т.д.

В простейшем случае мы будем считать все символы текста независимыми друг от друга, т.е. вероятность появления очередного символа не зависит от значения предыдущего символа. Конечно, для осмысленного текста это не так, но сейчас мы рассматриваем очень упрощенную ситуацию. В этом случае справедливо утверждение "символ несет в себе тем больше информации, чем меньше вероятность его появления".

Давайте представим себе текст, алфавит которого состоит всего из 16 букв: А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н, О, П, Р. Каждый из этих знаков можно закодировать с помощью всего 4 бит: от 0000 до 1111. Теперь представим себе, что вероятности появления этих символов распределены следующим образом:

Сумма этих вероятностей составляет, естественно, единицу. Разобьем эти символы на две группы таким образом, чтобы суммарная вероятность символов каждой группы составляла ~0.5 (рис). В нашем примере это будут группы символов А-В и Г-Р. Кружочки на рисунке, обозначающие группы символов, называются вершинами или узлами (nodes), а сама конструкция из этих узлов - двоичным деревом (B-tree). Присвоим каждому узлу свой код, обозначив один узел цифрой 0, а другой - цифрой 1.

Снова разобьем первую группу (А-В) на две подгруппы таким образом, чтобы их суммарные вероятности были как можно ближе друг к другу. Добавим к коду первой подгруппы цифру 0, а к коду второй - цифру 1.

Будем повторять эту операцию до тех пор, пока на каждой вершине нашего "дерева" не останется по одному символу. Полное дерево для нашего алфавита будет иметь 31 узел.

Коды символов (крайние правые узлы дерева) имеют коды неодинаковой длины. Так, буква А, имеющая для нашего воображаемого текста вероятность p=0.2, кодируется всего двумя битами, а буква Р (на рисунке не показана), имеющая вероятность p=0.013, кодируется аж шестибитовой комбинацией.

Итак, принцип очевиден - часто встречающиеся символы кодируются меньшим числом бит, редко встречающиеся - большим. В результате среднестатистическое количество бит на символ будет равно

где ni - количество бит, кодирующих i-й символ, pi - вероятность появления i-го символа.

Код Хаффмана.

Алгоритм Хаффмана изящно реализует общую идею статистического кодирования с использованием префиксных множеств и работает следующим образом:

1. Выписываем в ряд все символы алфавита в порядке возрастания или убывания вероятности их появления в тексте.

2. Последовательно объединяем два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагаем равной сумме вероятностей составляющих его символов. В конце концов построим дерево, каждый узел которого имеет суммарную вероятность всех узлов, находящихся ниже него.

3. Прослеживаем путь к каждому листу дерева, помечая направление к каждому узлу (например, направо - 1, налево - 0) . Полученная последовательность дает кодовое слово, соответствующее каждому символу (рис.).

Построим кодовое дерево для сообщения со следующим алфавитом:

Недостатки методов

Самой большой сложностью с кодами, как следует из предыдущего обсуждения, является необходимость иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст; мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще один недостаток кодов - это то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и 0,1, и 0,01 бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте. Например, если в тексте на английском языке нам встречается буква q, то мы с уверенностью сможем сказать, что после нее будет идти буква u.

Групповое кодирование - Run Length Encoding (RLE) - один из самых старых и самых простых алгоритмов архивации. Сжатие в RLE происходит за счет замены цепочек одинаковых байт на пары "счетчик, значение". («красный, красный, ..., красный» записывается как «N красных»).

Одна из реализаций алгоритма такова: ищут наименнее часто встречающийся байт, называют его префиксом и делают замены цепочек одинаковых символов на тройки "префикс, счетчик, значение". Если же этот байт встретичается в исходном файле один или два раза подряд, то его заменяют на пару "префикс, 1" или "префикс, 2". Остается одна неиспользованная пара "префикс, 0", которую можно использовать как признак конца упакованных данных.

При кодировании exe-файлов можно искать и упаковывать последовательности вида AxAyAzAwAt..., которые часто встречаются в ресурсах (строки в кодировке Unicode)

К положительным сторонам алгоритма, можно отнести то, что он не требует дополнительной памяти при работе, и быстро выполняется. Алгоритм применяется в форматах РСХ, TIFF, ВМР. Интересная особенность группового кодирования в PCX заключается в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. Работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат - GIF - более примитивен - он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF - файла находится палитра - таблица, устанавливающая соответствие между индексом цвета - числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Алгоритмы сжатия с потерей информации

Алгоритм JPEG был разработан группой фирм под названием Joint Photographic Experts Group. Целью проекта являлось создание высокоэффективного стандарта сжатия как черно-белых, так и цветных изображений, эта цель и была достигнута разработчиками. В настоящее время JPEG находит широчайшее применение там, где требуется высокая степень сжатия - например, в Internet.

В отличие от LZW-алгоритма JPEG-кодирование является кодированием с потерями. Сам алгоритм кодирования базируется на очень сложной математике, но в общих чертах его можно описать так: изображение разбивается на квадраты 8*8 пикселов, а затем каждый квадрат преобразуется в последовательную цепочку из 64 пикселов. Далее каждая такая цепочка подвергается так называемому DCT-преобразованию, являющемуся одной из разновидностей дискретного преобразования Фурье. Оно заключается в том, что входную последовательность пикселов можно представить в виде суммы синусоидальных и косинусоидальных составляющих с кратными частотами (так называемых гармоник). В этом случае нам необходимо знать лишь амплитуды этих составляющих для того, чтобы восстановить входную последовательность с достаточной степенью точности. Чем большее количество гармонических составляющих нам известно, тем меньше будет расхождение между оригиналом и сжатым изображением. Большинство JPEG-кодеров позволяют регулировать степень сжатия. Достигается это очень простым путем: чем выше степень сжатия установлена, тем меньшим количеством гармоник будет представлен каждый 64-пиксельный блок.

Безусловно, сильной стороной данного вида кодирования является большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило его широкое применение в Internet, где уменьшение размера файлов имеет первостепенное значение, в мультимедийных энциклопедиях, где требуется хранение возможно большего количества графики в ограниченном объеме.

Отрицательным свойством этого формата является неустранимое никакими средствами, внутренне ему присущее ухудшение качества изображения. Именно этот печальный факт не позволяет применять его в полиграфии, где качество ставится во главу угла.

Однако формат JPEG не является пределом совершенства в стремлении уменьшить размер конечного файла. В последнее время ведутся интенсивные исследования в области так называемого вейвлет-преобразования (или всплеск-преобразования). Основанные на сложнейших математических принципах вейвлет-кодеры позволяют получить большее сжатие, чем JPEG, при меньших потерях информации. Несмотря на сложность математики вейвлет-преобразования, в программной реализации оно проще, чем JPEG. Хотя алгоритмы вейвлет-сжатия пока находятся в начальной стадии развития, им уготовано большое будущее.

Фрактальное сжатие

Фрактальное сжатие изображений - это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия (лучшие примеры - до 1000 раз при приемлемом визуальном качестве) для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Фрактальная архивация основана на том, что с помощью коэффициентов системы итерируемых функций изображение представляется в более компактной форме. Прежде чем рассматривать процесс архивации, разберем, как IFS строит изображение.

Строго говоря, IFS - это набор трехмерных аффинных преобразований, переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (x координата, у координата, яркость).

Основа метода фрактального кодирования - это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций (IFS) к проблеме сжатия изображения была исследована Майклом Барнсли и Аланом Слоуном. Они запатентовали свою идею в 1990 и 1991 гг. Джеквин (Jacquin) представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения (domain and range subimage blocks), блоков квадратной формы, покрывающих все изображение. Этот подход стал основой для большинства методов фрактального кодирования, применяемых сегодня. Он был усовершенствован Ювалом Фишером (Yuval Fisher) и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений (range subimages) и определяется множество перекрывающихся доменных подизображений (domain subimages). Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим, что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике вся трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения (то есть алгоритмы сжатия) в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями (в нашем случае аффинными), то есть определяется коэффициентами этих преобразований (в нашем случае A, B, C, D, E, F).

Например, изображение кривой Коха можно закодировать четырмя аффинными преобразованиями, мы однозначно определим его с помощью всего 24-х коэффициентов.

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. Проделав такую операцию много раз, мы заполним все чёрное пространство, тем самым восстановив картинку.

Наиболее известны два изображения, полученных с помощью IFS: треугольник Серпинского и папоротник Барнсли. Первое задается тремя, а второе - пятью аффинными преобразованиями (или, в нашей терминологии, линзами). Каждое преобразование задается буквально считанными байтами, в то время как изображение, построенное с их помощью, может занимать и несколько мегабайт.

Становится понятно, как работает архиватор, и почему ему требуется так много времени. Фактически, фрактальная компрессия - это поиск самоподобных областей в изображении и определение для них параметров аффинных преобразований.

В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное число раз, не позволит добиться приемлемого времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения.

Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько линз). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, можно очень гибко управлять коэффициентом компрессии изображения: от побитного соответствия, до любой степени сжатия.

Сравнение с JPEG

Сегодня наиболее распространенным алгоритмом архивации графики является JPEG. Сравним его с фрактальной компрессией.

Во-первых, заметим, что и тот, и другой алгоритм оперируют 8-битными (в градациях серого) и 24-битными полноцветными изображениями. Оба являются алгоритмами сжатия с потерями и обеспечивают близкие коэффициенты архивации. И у фрактального алгоритма, и у JPEG существует возможность увеличить степень сжатия за счет увеличения потерь. Кроме того, оба алгоритма очень хорошо распараллеливаются.

Различия начинаются, если мы рассмотрим время, необходимое алгоритмам для архивации/разархивации. Так, фрактальный алгоритм сжимает в сотни и даже в тысячи раз дольше, чем JPEG. Распаковка изображения, наоборот, произойдет в 5-10 раз быстрее. Поэтому, если изображение будет сжато только один раз, а передано по сети и распаковано множество раз, то выгодней использовать фрактальный алгоритм.

JPEG использует разложение изображения по косинусоидальным функциям, поэтому потери в нем (даже при заданных минимальных потерях) проявляются в волнах и ореолах на границе резких переходов цветов. Именно за этот эффект его не любят использовать при сжатии изображений, которые готовят для качественной печати: там этот эффект может стать очень заметен.

Фрактальный алгоритм избавлен от этого недостатка. Более того, при печати изображения каждый раз приходится выполнять операцию масштабирования, поскольку растр (или линиатура) печатающего устройства не совпадает с растром изображения. При преобразовании также может возникнуть несколько неприятных эффектов, с которыми можно бороться либо масштабируя изображение программно (для дешевых устройств печати типа обычных лазерных и струйных принтеров), либо снабжая устройство печати своим процессором, винчестером и набором программ обработки изображений (для дорогих фотонаборных автоматов). Как можно догадаться, при использовании фрактального алгоритма таких проблем практически не возникает.

Вытеснение JPEG фрактальным алгоритмом в повсеместном использовании произойдет еще не скоро (хотя бы в силу низкой скорости архивации последнего), однако в области приложений мультимедиа, в компьютерных играх его использование вполне оправдано.

Характерной особенностью большинства типов данных является их избыточность . Степень избыточности данных зависит от типа данных.
Например, для видеоданных степень избыточности в несколько раз больше чем для графических данных, а степень избыточности графических данных, в свою очередь, больше чем степень избыточности текстовых данных.

Другим фактором , влияющим на степень избыточности, является принятая система кодирования. Примером систем кодирования могут быть обычные языки общения, которые являются ни чем другим, как системами кодирования понятий и идей для высказывания мыслей. Так, установлено, что кодирование текстовых данных с помощью средств русского языка дает в среднем избыточность на 20-25% большую, чем кодирование аналогичных данных средствами английского языка.

Для человека избыточность данных часто связана с качеством информации, поскольку избыточность, как правило, улучшает понятность и восприятие информации. Однако, когда речь идет о хранении и передаче информации средствами компьютерной техники , то избыточность играет отрицательную роль , поскольку она приводит к возрастанию стоимости хранения и передачи информации. Особенно актуальной эта проблема стает в случае обработки огромных объемов информации при незначительных объемах носителей данных. В связи с этим, постоянно возникает проблема уменьшения избыточности или сжатия данных.

Если методы сжатия данных применяются к готовым файлам , то часто вместо термина "сжатие данных" употребляют термин "архивация данных", сжатый вариант данных называют архивом, а программные средства , которые реализуют методы сжатия, называются архиваторами.

В зависимости от того, в каком объекте размещены данные, подлежащие сжатию, различают:

· Сжатие (архивация) файлов: используется для уменьшения размеров файлов при подготовке их к передаче каналами связи или к транспортированию на внешних носителях маленькой емкости;

· Сжатие (архивация) папок: используется как средство уменьшения объема папок перед долгим хранением, например, при резервном копировании;

· Сжатие (уплотнение) дисков: используется для повышения эффективности использования дискового просторную путем сжатия данных при записи их на носителе информации (как правило, средствами операционной системы).

Существует много практических алгоритмов сжатия данных, но все они базируются на трех теоретических способах уменьшения избыточности данных.

· первый способ состоит в изменении содержимого данных,

· второй - в изменении структуры данных,

· третий - в одновременном изменении как структуры, так и содержимого данных.

Если при сжатии данных происходит изменение их содержимого, то метод сжатия называется необратимым , то есть при восстановлении (разархивировании) данных из архива не происходит полное восстановление информации. Такие методы часто называются методами сжатия с регулированными потерями информации . Понятно, что эти методы можно применять только для таких типов данных, для которых потеря части содержимого не приводит к существенному искажению информации. К таким типам данных относятся видео- и аудиоданные, а также графические данные. Методы сжатия с регулированными потерями информации обеспечивают значительно большую степень сжатия, но их нельзя применять к текстовым данным . Примерами форматов сжатия с потерями информации могут быть:

· JPEG - для графических данных;

· MPG - для для видеоданных;

· MP3 - для аудиоданных.

Если при сжатии данных происходит только изменениеструктуры данных,
то метод сжатия называется обратимым . В этом случае, из архива можно восстановить информацию полностью. Обратимые методы сжатия можно применять к любым типам данных, но они дают меньшую степень сжатия по сравнению с необратимыми методами сжатия. Примеры форматов сжатия без потери информации:

· GIF, TIFF - для графических данных;

· AVI - для видеоданных;

· ZIP, ARJ, RAR, CAB, LH - для произвольных типов данных.

Существует много разных практических методов сжатия без потери информации, которые, как правило, имеют разную эффективность для разных типов данных и разных объемов. Однако, в основе этих методов лежат три теоретических алгоритма:

· алгоритм RLE (Run Length Encoding);

· алгоритмы группы KWE(KeyWord Encoding);

· алгоритм Хаффмана.

Алгоритм RLE

В основе алгоритма RLE лежит идея выявления повторяющихся последовательностей данных и замены их более простой структурой, в которой указывается код данных и коэффициент повторения. Например, пусть задана такая последовательность данных, что подлежит сжатию:

1 1 1 1 2 2 3 4 4 4

В алгоритме RLE предлагается заменить ее следующей структурой: 1 4 2 2 3 1 4 3, где первое число каждой пары чисел - это код данных, а второе - коэффициент повторения. Если для хранения каждого элемента данных входной последовательности отводится 1 байт, то вся последовательность будет занимать 10 байт памяти, тогда как выходная последовательность (сжатый вариант) будет занимать 8 байт памяти. Коэффициент сжатия , характеризующий степень сжатия, вычисляется по формуле.

Чем меньше значение коэффициента сжатия, тем эффективней метод сжатия. Понятно, что алгоритм RLE будет давать лучший эффект сжатия при большей длине повторяющейся последовательности данных. В случае рассмотренного выше примера, если входная последовательность будет иметь такой вид: 1 1 1 1 1 1 3 4 4 4, то коэффициент сжатия будет равен 60%. В связи с этим большая эффективность алгоритма RLE достигается при сжатии графических данных (в особенности для однотонных изображений).

Алгоритмы группы KWE

В основе алгоритма сжатия по ключевым словам положен принцип кодирования лексических единиц группами байт фиксированной длины. Примером лексической единицы может быть обычное слово. На практике, на роль лексических единиц выбираются повторяющиеся последовательности символов, которые кодируются цепочкой символов (кодом) меньшей длины. Результат кодирования помещается в таблице, образовывая так называемый словарь .

Существует довольно много реализаций этого алгоритма, среди которых наиболее распространенными являются алгоритм Лемпеля-Зіва (алгоритм LZ) и его модификация алгоритм Лемпеля-Зіва-Велча (алгоритм LZW). Словарем в данном алгоритме является потенциально бесконечный список фраз. Алгоритм начинает работу с почти пустым словарем, который содержит только одну закодированную строку, так называемая NULL-строка. При считывании очередного символа входной последовательности данных, он прибавляется к текущей строке. Процесс продолжается до тех пор, пока текущая строка соответствует какой-нибудь фразе из словаря. Но рано или поздно текущая строка перестает соответствовать какой-нибудь фразе словаря. В момент, когда текущая строка представляет собой последнее совпадение со словарем плюс только что прочитанный символ сообщения, кодер выдает код, который состоит из индекса совпадения и следующего за ним символа, который нарушил совпадение строк. Новая фраза, состоящая из индекса совпадения и следующего за ним символа, прибавляется в словарь. В следующий раз, если эта фраза появится в сообщении, она может быть использована для построения более длинной фразы, что повышает меру сжатия информации.

Алгоритм LZW построен вокруг таблицы фраз (словаря), которая заменяет строки символов сжимаемого сообщения в коды фиксированной длины. Таблица имеет так называемое свойством опережения, то есть для каждой фразы словаря, состоящей из некоторой фразы w и символа К, фраза w тоже заносится в словарь. Если все части словаря полностью заполнены, кодирование перестает быть адаптивным (кодирование происходит исходя из уже существующих в словаре фраз).

Алгоритмы сжатия этой группы наиболее эффективны для текстовых данных больших объемов и малоэффективны для файлов маленьких размеров (за счет необходимости сохранение словаря).

Алгоритм Хаффмана

В основе алгоритма Хаффмана лежит идея кодирования битовыми группами. Сначала проводится частотный анализ входной последовательности данных, то есть устанавливается частота вхождения каждого символа, встречащегося в ней. После этого, символы сортируются по уменьшению частоты вхождения.

Основная идея состоит в следующем: чем чаще встречается символ, тем меньшим количеством бит он кодируется. Результат кодирования заносится в словарь, необходимый для декодирования.

Характерной особенностью большинства типов данных является их избыточность. Степень избыточности данных зависит от типа данных. Например, для видеоданных степень избыточности в несколько раз больше чем для графических данных, а степень избыточности графических данных, в свою очередь, больше чем степень избыточности текстовых данных. Другим фактором, влияющим на степень избыточности является принятая система кодирования. Примером систем кодирования могут быть обычные языки общения, которые являются ни чем другим, как системами кодирования понятий и идей для высказывания мыслей. Так, установлено, что кодирование текстовых данных с помощью средств русского языка дает в среднем избыточность на 20-25% большую чем кодирование аналогичных данных средствами английского языка.

Для человека избыточность данных часто связана с качеством информации, поскольку избыточность, как правило, улучшает понятность и восприятие информации. Однако, когда речь идет о хранении и передаче информации средствами компьютерной техники, то избыточность играет отрицательную роль, поскольку она приводит к возрастанию стоимости хранения и передачи информации. Особенно актуальной эта проблема стает в случае обработки огромных объемов информации при незначительных объемах носителей данных. В связи с этим, постоянно возникает проблема уменьшения избыточности или сжатия данных. Если методы сжатия данных применяются к готовым файлам, то часто вместо термина "сжатие данных" употребляют термин "архивация данных", сжатый вариант данных называют архивом , а программные средства, которые реализуют методы сжатия называются архиваторами .

В зависимости от того, в каком объекте размещены данные, подлежащие сжатию различают:

1. Сжатие (архивация) файлов: используется для уменьшения размеров файлов при подготовке их к передаче каналами связи или к транспортированию на внешних носителях маленькой емкости;

2. Сжатие (архивация) папок: используется как средство уменьшения объема папок перед долгим хранением, например, при резервном копировании;

3. Сжатие (уплотнение) дисков: используется для повышения эффективности использования дискового просторную путем сжатия данных при записи их на носителе информации (как правило, средствами операционной системы).

Существует много практических алгоритмов сжатия данных, но все они базируются на трех теоретических способах уменьшения избыточности данных. Первый способ состоит в изменении содержимого данных, второй - в изменении структуры данных, а третий - в одновременном изменении как структуры, так и содержимого данных.

Если при сжатии данных происходит изменение их содержимого, то метод сжатия называется необратимым , то есть при восстановлении (разархивировании) данных из архива не происходит полное восстановление информации. Такие методы часто называются методами сжатия с регулированными потерями информации. Понятно, что эти методы можно применять только для таких типов данных, для которых потеря части содержимого не приводит к существенному искажению информации. К таким типам данных относятся видео- и аудиоданные, а также графические данные. Методы сжатия с регулированными потерями информации обеспечивают значительно большую степень сжатия, но их нельзя применять к текстовым данным. Примерами форматов сжатия с потерями информации могут быть:


· JPEG - для графических данных;

· MPG - для для видеоданных;

· MP3 - для аудиоданных.

Если при сжатии данных происходит только изменение структуры данных, то метод сжатия называется обратимым . В этом случае, из архива можно восстановить информацию полностью. Обратимые методы сжатия можно применять к любым типам данных, но они дают меньшую степень сжатия по сравнению с необратимыми методами сжатия. Примеры форматов сжатия без потери информации:

· GIF, TIFF - для графических данных;

· AVI - для видеоданных;

· ZIP, ARJ, RAR, CAB, LH - для произвольных типов данных.

В таблице 2 приведены распространенные форматы сжатия и соответствующие им программыи-архиваторы, использующиеся на практике.

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Сжатие файлов NTFS При использовании разделов с файловой системой NTFS вы можете задействовать ее возможности для сжатия файлов. При этом происходит более слабое сжатие, чем при использовании архивов ZIP или RAR, но выполняется оно гораздо быстрее. Файлы, сжатые с помощью NTFS,

Из книги Sound Forge 9 автора Квинт Игорь

Сжатие звука Формат WAVE достаточно точно сохраняет данные исходного аналогового сигнала, но является очень расточительным в отношении объема, занимаемого информацией. Тем не менее этот формат предпочтителен для первоначальной записи звуковых данных, которые

Из книги Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16 автора Лондер Ольга

Экспорт данных из базы данных Access 2007 в список SharePoint Access 2007 позволяет экспортировать таблицу или другой объект базы данных в различных форматах, таких как внешний файл, база данных dBase или Paradox, файл Lotus 1–2–3, рабочая книга Excel 2007, файл Word 2007 RTF, текстовый файл, документ XML

Из книги Реферат, курсовая, диплом на компьютере автора Баловсяк Надежда Васильевна

Форматы графических файлов. Сжатие изображения Работая с изображениями в Photoshop, можно хранить файл в одном из нескольких графических форматов. Наиболее популярными из них являются JPEG, TIFF и PSD.JPEG – это формат, позволяющий создать минимальный по размерам файл с наименьшей

Из книги Новейший самоучитель работы на компьютере автора Белунцов Валерий

Сжатие данных Редко используемые файлы, которые хочется все-таки держать на жестком диске, следует хранить в сжатом виде, чтобы они занимали меньше места. Сжатие файлов данных также может потребоваться, если в обычном виде они не помещаются на какой-либо носитель.При

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

4.7.1 Сжатие в PPP Может показаться не очень разумным включение одних и тех же октетов адреса и управления в каждый кадр. Партнеры на каждом конце связи PPP могут работать в режиме сжатия (compression) для исключения этих полей.Значения в поле протокола указывают, является ли

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

Из книги Этюды для программистов [неполностью, главы 1–24] автора Уэзерелл Чарлз

11. Меньше copy - меньше и вздору, или Избыточность текста и сжатие файла Все знают, что большинству людей свойственно излишнее многословие. Гораздо менее широко известно, что даже самые лаконичные высказывания можно было бы значительно сократить. Вообще, естественные

Из книги Macromedia Flash Professional 8. Графика и анимация автора Дронов В. А.

Сжатие видео во Flash. Кодеки On2 VP6 и Sorenson Spark В главе 1 мы уже говорили о видео. Давайте кратко повторим все, что уже успели узнать и, возможно, уже забыли.Итак, видеоинформация, хранящаяся в файле, практически всегда сжимается. Иначе и не получится: данные, содержащие

Из книги Фундаментальные алгоритмы и структуры данных в Delphi автора Бакнелл Джулиан М.

Глава 11. Сжатие данных. Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных.

Из книги Компьютерная обработка звука автора Загуменнов Александр Петрович

Сжатие данных Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об

Из книги Цифровая фотография. Трюки и эффекты автора Гурский Юрий Анатольевич

Сжатие с минимальной избыточностью Теперь, когда в нашем распоряжении имеется класс потока битов, им можно воспользоваться при рассмотрении алгоритмов сжатия и восстановления данных. Мы начнем с исследования алгоритмов кодирования с минимальной избыточностью, а затем

Из книги автора

Сжатие с использованием словаря Вплоть до 1977 года, основные усилия в области исследования алгоритмов сжатия концентрировались вокруг алгоритмов кодирования с минимальной избыточностью, подобных алгоритмам Шеннона-Фано или Хаффмана, и были посвящены либо

Из книги автора

Из книги автора

Сжатие данных Любой идеальный метод сжатия не должен допускать заметных потерь качества, то есть сокращение объема данных не должно приводить к потере информации. Это означает, что все изменения звукового сигнала должны быть ниже порога слышимости. Это особенно важно

Из книги автора

3.2. Размеры и сжатие файлов Для чего нужно сжимать изображение Картинка, полученная с помощью шестимегапиксельной камеры, должна занять 18 Мбайт памяти. Если изображение записывать в память в таком виде, то даже в запоминающее устройство большой емкости удастся уместить



Просмотров