Использование двигателей от флоппи-дисководов

Однажды, разбирая коробку с компьютерным хламом, я обнаружил у себя несколько дисководов от от старых 3-х дюймовых гибгих дисков. В свое время я извлек из них шаговые двигатели, а выбросить оставшиеся внутренности не поднялась рука. Сейчас мое внимание привлек двигатель для вращения дисков. Он выполнен самостоятельным блоком на отдельной печатной плате вместе с контроллером привода.
Задача состояла в том, как его запустить. Поиск решения в сети Internet по запуску такого двигателя не дал какого-либо положительного результата. Было множество статей по использованию шаговых двигателей позиционирующих магнитную головку и практически ничего по запуску "блина" - двигателя вращения диска. Единственная обнаруженная статья была на английском языке, но там описывался очень древний и конкретный дисковод... В общем пришлось искать способ запуска самостоятельно.

С чего я начал. К плате управления подходит шлейф из 4-5 цветных проводов в зависимости от типа дисковода. Два из них подают питание 12V (это было не трудно проследить), и как правило имеют цвета черный(общий) и красный(+). Оставшиеся провода, как я предположил, должны управлять пуском двигателя и скорее всего имеют ТТЛ уровни.

На плате я также обнаружил два фотоэлемента: один на краю платы - он определяет, что диск вставлен в приемник; второй фотоэлемент стоит ближе к центру двигателя - он позиционирует начальное положение диска в котором имеется соответсвующее отверстие. Нас интересует первый (удаленный) фотоэлемент, так как при вставленном диске мотор уже начинает вращаться (в подключенном к компьютеру дисководу).
Фотография контроллера с мотором от дисковода фирмы TEAC приведена на рисунке 1.

Далее, проследив на плате цепь от фотоэлемента, я установил, что она через транзистор поступает на вход управления микросхемы H13431 - контроллер двигателя (описание этой микросхемы нашел только на японском языке). На тот же транзистор подключен через диод один из проводов входного шлейфа.
Далее - дело техники. Подал на плату питание 12 вольт. Через резистор номиналом 3,3 ком вычисленный контак соединил с плюсом питания. ВСЕ!!! Двигатель начал вращаться!
Фрагмент платы с установленныи резистором показан на рисунке 2. Крайний левый контакт не задействован (видимо какой-то выходной сигнал). Следы пайки на плате - моя оплошность: подал на входной контакт непосредственно напряжение питания 12В и сжег транзистор, далее действовал осторожнее - через резистор номиналом 3,3 ком.

На другом дисководе (рис.3) с названием Sankyo и микросхемой контроллера M51784 пошел таким же путем (описание этой микросхемы есть на сайте www.datasheetcatalog.com). Нашел входной контакт на плате который выходит через резистор на управляющий транзистор и фотоэлемент. Также через резистор подал на него положительный потенциал. И... тишина. Попробовал поочередно позамыкать на "землю" оставшиеся два входных контакта... Заработало!!! Что это за контакт я не стал выяснять.

Увеличенный фрагмент второй доработанной платы приведен на рисунке 4. "Земляной" контакт и контакт от него слева запаяны вместе. Крайний левый контакт остался свободным.

Таким образом порядок подключения неизвестного дисковода достаточно прост:

1. Находим провода питания (обычно красный+ и черный-).

2. Пытаемся найти цепь управляющего транзистора и фотоэлемента (примерная схема на рис.5).

3. Если двигатель не вращается оставшиееся контакты замыкаем на "землю" (или подаем на них положительный потенциал через ограничительный резистор в несколько ком).

Дальнейшие эксперимены с двигателем показали, что он работоспособен в диапазоне питающих напряжений от 7 до 12 вольт. При этом скорость вращения его очень стабильна, так как задается кварцевым или пъезокерамическим резонатором. Кстати можно попытаться поставить резонатор на другую частоту тем самым изменив скорость вращения. На моих платах резонатор выполнен в виде пластмассового прямоугольника синего цвета - его легко найти.

Применение данного двигателя оставляю на вашу фантазию. Желаю удачи!

Когда-то давным-давно сделал из старого «винчестера» станочек для правки и заточки мелких свёрл, но у него слишком велика минимальная скорость вращения и обычно когда торопишься, то свёрла перегреваются. Пытался как-то уменьшать обороты, ничего хорошего не получилось и поэтому оставил всё как есть, просто заставив себя не торопиться. А тут недавно пришли знакомые компьютерщики и с вопросом «посмотри, из этого можно что-нибудь полезного сделать?» начали вываливать на стол множество дисководов на три с половиной дюйма (рис.1 ). И почему-то первой же мыслью было – а не попробовать ли собрать новую низкоскоростную «правку»…

Не откладывая это дело в долгий ящик, тут же снимаем крышки с нескольких дисководов разных марок и смотрим, что там внутри.

А внутри всё по-разному и у разных моделей одной марки управление двигателями может быть собрано и на одной и на двух микросхемах (рис.2 ).

Рассматриваем детали на платах поподробнее и отдаём предпочтение варианту с двумя микросхемами (рис.3 ) – по дорожкам и подходящим проводам видно, что правая микросхема ALPS-R SD705A (кроме всего прочего) отвечает за работу шагового двигателя перемещения считывающей головки, а левая LB11813 – только за работу двигателя вращения диска.

Также видно, что обе микросхемы соединяются всего двумя сигнальными дорожками – 33 и 34 выводы большой микросхемы идут к соединённым вместе 10-му и 11-тому выводам и к 12 выводу LB11813 соответственно.

Честно говоря, ранее уже приходилось сталкиваться с дисководами и уже есть некоторое представление о принципе их работы, поэтому, сказав для пущей важности «сейчас мы здесь что-нибудь отрежем…», аккуратно перерезал обе эти дорожки (рис.4 ).

Вывод 12 микросхемы LB11813 оставляем в покое, а на 10-й и 11-й нужно подать тактовый сигнал CLK. Так как частота его следования должна быть около 1 МГц, а амплитуда стандартная для микросхем пятивольтовой серии, то собираем на подвернувшемся под руку кусочке текстолита генератор прямоугольных импульсов на микросхеме К555ЛН1. Ставим переменный резистор для регулирования частоты и при среднем его положении подбором ёмкости конденсатора подгоняем выходную частоту к 1 МГц. Затем соединяем выход генератора с выводами LB11813 (рис.5 ), подпаиваем шины питания дисковода и генератора и включаем БП. Слышим, что двигатель начал вращаться. Это хорошо… Покрутив ручку переменного резистора, слышим как меняется частота вращения двигателя. И это хорошо…

Гости, радостные и окрылённые открывшимися перспективами, помчались домой, на ходу обдумывая, как можно использовать это «чудо техники», а я вернулся к схеме, чтобы посмотреть, что нужно оставить, а что убрать, и как это всё это облагородить в корпусе…

Сначала, вооружившись тестером, карандашом и листком бумаги, срисовал с платы схему (рис. 6 ). Здесь нумерация элементной обвязки, относящейся к микросхеме LB11813, оставлена старой, т.е. той, что была на плате.

Затем посмотрел некоторые технические характеристики. Потребляемый от пятивольтового блока питания ток на холостом ходу равен 0,22 А, при средней «нагрузке» на валу двигателя – меняется от 0,5 А до 0,7 А. Перед самой остановкой вращения ток достигает значения 0,85 А. Температура нагрева корпуса микросхемы LB11813 зависит от нагрузки, но в любом случае не превышает 50-70 градусов.

Минимальная частота генератора, при которой ещё вращается двигатель – около 0,45 МГц, максимальная – около 4,6 МГц.

Теперь дисковод полностью разбираю, оставив только две платы, соединённые 4-мя цветными проводами – по ним микросхема LB11813 управляет двигателем (рис.7 ). Белый восьмипроводный шлейф тоже не нужен – на плате с двигателем что было интересного, так это не то дроссель, не то какой другой элемент, но очень похожий на дроссель и отвечающий, скорее всего, за контроль частоты вращения двигателя (т.е. выполняющий функции датчика Холла) – так вот его можно выпаять, всё работает и без него. Остальные проводники шлейфа – это общий провод, напряжение питания, а также передача сигналов от концевых выключателей с платы двигателя (выпаиваем и их тоже).

«Сдуваю» термофеном все ненужные элементы с большой платы и обрезаю её так, чтобы остались крепёжные отверстия (рис.8 ).

Готового подходящего по размерам не нашёл, взял кусок 16-миллиметровой ДСП, тонкий пластмассовый лист и кусок стеклотекстолита от старой печатной платы. Немного попилил, посверлил и закрепил всё так, чтобы не очень «выпирало» и не занимало много места на столе (рис.9, рис.10, рис.11, рис.12 ).

Печатную плату для импульсного генератора развёл, но пока не вытравил – неохота разводить «бодягу» ради одной-двух маленьких плат. А пока установил в корпус макетный вариант и приклеил термоклеем его и плату с микросхемой-приводом двигателя. Файл печатной платы в формате программе находится в приложении к статье (вид сделан со стороны установки деталей - рисунок при надо «зеркалить»).

Никакой накладной декоративной панелью корпус сверху накрывать не стал – головки винтов так и оставил на виду. Пластмасса, из которой сделана верхняя крышка, попалась очень удачная – к ней не прилипают намертво никакие клеи из серий «Момент» или БФ и она практически не царапается и не мажется. Из той части, что осталась при выпиливания отверстия под вращающуюся поверхность двигателя, вырезал кольцо, которое приклеил сверху к этой вращающейся поверхности. На это кольцо можно наклеивать кольца из наждачной бумаги (рис.13 ), которые при желании достаточно легко содрать и на пластмассовой поверхности кольца почти не остаётся остатков клея. А что остаётся – сцарапывается ногтём.

В качестве блока питания применил импульсный преобразователь, выдающий 5В/1А от какой-то старой оргтехники. Провод питания впаян в схему напрямую – может быть это и не очень правильно, но зато блок питания никогда не теряется и потом, при его замене на новый, не приходится разбираться, где в разъёме «плюс, а где «минус»».

Никаких выключателей на корпусе нет, индикации подачи напряжения тоже. Движок резистора регулировки оборотов выведен сбоку. Учитывая, что за прошедший месяц пришлось два раза править свёрла и один раз затачивать несколько сломанных разного диаметра и за это время ни разу не появилось надобности уменьшить обороты, то получается, что можно было и не делать плавную регулировку. Настроить генератор на 4 МГц – и всё.

Конечно же, проверил работу схемы с двигателем от «винчестера» - всё работает так же, но с заметно меньшей мощностью в сравнении с управлением от «родного» контроллера. Это понятно - двигателю от HDD требуется более высокое напряжение питания.

Из академического интереса посмотрел форму сигналов в цепях питания двигателем. На рисунках ниже показаны состояния на «фазах» U и V относительно общего провода при тактовой частоте 4,6 МГц (рис.14 ), при 1 МГц (рис.15 ) и на одной из «фаз» и вывода, обозначенного на платах как N («нейтраль», надо полагать) (рис.16 ):

Сигналы «снимались» через резисторные делители, поэтому уровни не соответствуют показаниям шкалы напряжений, но так коэффициенты деления были одинаковы и не менялись, то отношения уровней относительно друг друга верны. Временные интервалы соответствуют действительности.

Андрей Гольцов, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Перечень дополнительных элементов
DD2 Микросхема цифровая К555ЛН1 1 В блокнот
R1, R2 Резистор

470 Ом

2

Данная статья взята с зарубежного сайта и переведена мною лично. Предоставил эту статью .

Этот проект описывает конструкцию 3D принтера очень низкой бюджетной стоимости, который в основном построен из переработанных электронных компонентов.

Результатом является небольшой формат принтера менее чем за 100 $.

Прежде всего, мы узнаем, как работает общая система ЧПУ (по сборке и калибровке, подшипники, направляющие), а затем научим машину отвечать на инструкции G-кода. После этого, мы добавляем небольшой пластиковый экструдер и даем команды на пластиковую экструзию калибровки, настройки питания драйвера и других операций, которые дадут жизнь принтеру. После данной инструкции вы получите небольшой 3D принтер, который построен с приблизительно 80% переработанных компонентов, что дает его большой потенциал и помогает значительно снизить стоимость.

С одной стороны, вы получаете представление о машиностроении и цифровом изготовлении, а с другой стороны, вы получаете небольшой 3D принтер, построенный из повторно используемых электронных компонентов. Это должно помочь вам стать более опытным в решении проблем, связанных с утилизацией электронных отходов.

Шаг 1: X, Y и Z.

Необходимые компоненты:

  • 2 стандартных CD / DVD дисковода от старого компьютера.
  • 1 Floppy дисковод.

Мы можем получить эти компоненты даром, обратившись в сервисный центр ремонта. Мы хотим убедиться, что двигатели, которые мы используем от дисководов флоппи, являются шаговыми двигателями, а не двигатели постоянного тока.

Шаг 2: Подготовка моторчика

Компоненты:

3 шаговых двигателя от CD / DVD дисков.

1 NEMA 17 шаговый двигатель, что мы должны купить. Мы используем этот тип двигателя для пластикового экструдера, где нужны большие усилия, необходимые для работы с пластиковой нитью.

CNC электроника: ПЛАТФОРМЫ или RepRap Gen 6/7. Важно, мы можем использовать Sprinter / Marlin Open Firmware. В данном примере мы используем RepRap Gen6 электронику, но вы можете выбрать в зависимости от цены и доступности.

PC питания.

Кабели, розетка, термоусадочные трубки.

Первое, что мы хотим сделать, это как только у нас есть упомянутые шаговые двигатели, мы сможем припаять к ним провода. В этом случае у нас имеется 4 кабеля, для которых мы должны поддерживать соответствующую последовательность цветов (описано в паспорте).

Спецификация для шаговых двигателей CD / DVD: Скачать . .

Спецификация для NEMA 17 шагового двигателя: Скачать . .

Шаг 3: Подготовка источника питания

Следующий шаг заключается в подготовке питания для того, чтобы использовать его для нашего проекта. Прежде всего, мы соединяем два провода друг с другом (как указано на рисунке), чтобы было прямое питания с выключателем на подставку. После этого мы выбираем один желтый (12V) и один черный провод (GND) для питания контроллера.

Шаг 4: Проверка двигателей и программа Arduino IDE

Теперь мы собираемся проверить двигатели. Для этого нам нужно скачать Arduino IDE (физическая вычислительная среда), можно найти по адресу: http://arduino.cc/en/Main/Software .

Нам нужно, загрузить и установить версию Arduino 23.

После этого мы должны скачать прошивку. Мы выбрали Марлин (Marlin), который уже настроен и может быть загружен Marlin: Скачать . .

После того, как мы установили Arduino, мы подключим наш компьютер с ЧПУ контроллера Рампы / Sanguino / Gen6-7 с помощью кабеля USB, мы выберем соответствующий последовательный порт под Arduino инструментов IDE / последовательный порт, и мы будем выбирать тип контроллера под инструменты платы (Рампы (Arduino Mega 2560), Sanguinololu / Gen6 (Sanguino W / ATmega644P - Sanguino должен быть установлен внутри Arduino)).

Основное объяснение параметра, все параметры конфигурации находятся в configuration.h файла:

В среде Arduino мы откроем прошивку, у нас уже есть загруженный файл / Sketchbook / Marlin и мы увидим параметры конфигурации, перед тем, как загрузим прошивку на наш контроллер.

1) #define MOTHERBOARD 3, в соответствии с реальным оборудованием, мы используем (Рампы 1,3 или 1,4 = 33, Gen6 = 5, ...).

2) Термистор 7, RepRappro использует Honeywell 100k.

3) PID - это значение делает наш лазер более стабильным с точки зрения температуры.

4) Шаг на единицу, это очень важный момент для того, чтобы настроить любой контроллер (шаг 9)

Шаг 5: Принтер. Управление компьютером.

Управление принтером через компьютер.

Программное обеспечение: существуют различные, свободно доступные программы, которые позволяют нам взаимодействовать и управлять принтером (Pronterface, Repetier, ...) мы используем Repetier хост, который вы можете скачать с http://www.repetier.com/. Это простая установка и объединяет слои. Слайсер является частью программного обеспечения, которое генерирует последовательность разделов объекта, который мы хотим напечатать, связывает эти разделы со слоями и генерирует G-код для машины. Срезы можно настроить с помощью параметров, таких как: высота слоя, скорость печати, заполнения, и другие, которые имеют важное значение для качества печати.

Обычные конфигурации слайсера можно найти в следующих ссылках:

  • Skeinforge конфигурация: http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge
  • Конфигурация Slic3r: http://manual.slic3r.org/

В нашем случае мы имеем профиль configuret Skeinforge для принтера, которые можно интегрировать в принимающую пишущую головку программного обеспечения.

Шаг 6: Регулирование тока и интенсивность


Теперь мы готовы протестировать двигатели принтера. Подключите компьютер и контроллер машины с помощью кабеля USB (двигатели должны быть подключены к соответствующим гнездам). Запустите Repetier хостинг и активируйте связь между программным обеспечением и контроллером, выбрав соответствующий последовательный порт. Если соединение прошло успешно, вы сможете контролировать подключенные двигатели с использованием ручного управления справа.

Для того, чтобы избежать перегрева двигателей во время регулярного использования, мы будем регулировать силу тока, чтобы каждый двигатель мог получить равномерную нагрузку.

Для этого мы будем подключать только один двигатель. Мы будем повторять эту операцию для каждой оси. Для этого нам понадобится мультиметр, прикрепленный последовательно между источником питания и контроллером. Мультиметр должен быть установлен в режиме усилителя (текущего) - смотри рисунок.

Затем мы подключим контроллер к компьютеру снова, включите его и измерьте ток при помощи мультиметра. Когда мы вручную активировали двигатель через интерфейс Repetier, ток должен возрасти на определенное количество миллиампер (которые являются текущими для активации шагового двигателя). Для каждой оси ток немного отличается, в зависимости от шага двигателя. Вам придется настроить небольшой потенциометр на управление шагового интервала и установить текущее ограничение для каждой оси в соответствии со следующими контрольными значениями:

Плата проводит ток около 80 мА

Мы подадим ток на 200 мА для Х и Y-оси степперы.

400 мА для Z-оси, это требуется из-за большей мощности, чтобы поднять пишущую головку.

400 мА для питания двигателя экструдера, поскольку он является мощным потребителем тока.

Шаг 7: Создание машины структуры

В следующей ссылке вы найдете необходимые шаблоны для лазеров которые вырезают детали. Мы использовали толщиной 5 мм акриловые пластины, но можно использовать и другие материалы, как дерево, в зависимости от наличия и цены.

Лазерная настройка и примеры для программы Auto Cad: Скачать . .

Конструкция рамы дает возможность построить машину без клея: все части собраны с помощью механических соединений и винтов. Перед лазером вырезают части рамы, убедитесь, что двигатель хорошо закреплен в CD / DVD дисководе. Вам придется измерять и изменять отверстия в шаблоне САПР.

Шаг 8: Калибровка X, Y и оси Z

Хотя скачанная прошивка Marlin уже имеет стандартную калибровку для разрешения оси, вам придется пройти через этот шаг, если вы хотите точно настроить свой принтер. Здесь вам расскажут про микропрограммы которые позволяют задать шаг лазера вплоть до миллиметра, ваша машина на самом деле нуждается в этих точных настройках. Это значение зависит от шагов вашего двигателя и по размеру резьбы движущихся стержней ваших осей. Делая это, мы убедимся, что движение машины на самом деле соответствует расстояниям в G-кода.

Эти знания позволят вам построить CNC-машину самостоятельно в независимости от составных типов и размеров.

В этом случае, X, Y и Z имеют одинаковые резьбовые шпильки так калибровочные значения будут одинаковыми для них (некоторые могут отличаться, если вы используете разные компоненты для разных осей).

  • Радиуса шкива.
  • Шага на оборот нашего шагового двигателя.

Микро-шаговые параметры (в нашем случае 1/16, что означает, что за один такт сигнала, только 1/16 шага выполняется, давая более высокую точность в систему).

Мы устанавливаем это значение в прошивке (stepspermillimeter ).

Для оси Z:

Используя интерфейс Controller (Repetier) мы настраиваем ось Z, что позволяет двигаться на определенное расстояние и измерять реальное смещение.

В качестве примера, мы подадим команду, чтобы он двигался на 10 мм и измерим смещение 37.4 мм.

Существует N количество шагов, определенных в stepspermillimeter в прошивке (X = 80, Y = 80, Z = 2560, EXTR = 777,6).

N = N * 10 / 37,4

Новое значение должно быть 682,67.

Мы повторяем это в течение 3 или 4 раз, перекомпилируя и перезагружая прошивки для контроллера, мы получаем более высокую точность.

В этом проекте мы не использовали конечные установки для того, чтобы сделать более точным машину, но они могут быть легко включены в прошивку и она будет готова для нас.

Мы готовы к первому испытанию, мы можем использовать перо, чтобы проверить, что расстояния на чертеже верны.

Мы будем собирать прямой привод, как показано на рисунке, прикрепив шаговый двигатель к главной раме.

Для калибровки, поток пластика должен соответствовать кусочку пластиковой нити и расстоянию (например 100 мм), положить кусочек ленты. Затем перейдите к Repetier Software и нажмите выдавливать 100 мм, реальное расстояние и повторить Шаг 9 (операцию).

Шаг 10: Печатаем первый объект


Теперь аппарат должен быть готов для первого теста. Наш экструдер использует пластиковую нить диаметром 1.75 мм, которую легче выдавливать и более она более гибкая, чем стандартная диаметром 3 мм. Мы будем использовать PLA пластик, который является био-пластиком и имеет некоторое преимущество по сравнению с ABS: он плавится при более низкой температуре, что делает печать более легкой.

Теперь, в Repetier, мы активируем нарезки профилей, которые доступны для резки Skeinforge. Скачать .

Мы печатаем на принтере небольшой куб калибровки (10x10x10 мм), он будет печатать очень быстро, и мы сможем обнаружить проблемы конфигурации и моторный шаг потери, путем проверки фактического размера печатного куба.

Так, для начала печати, открыть модель STL и нарезать его, используя стандартный профиль (или тот, который вы скачали) с резки Skeinforge: мы увидим представление нарезанного объекта и соответствующий G-код. Мы подогреваем экструдер, и когда он нагреется до температуры плавления пластика (190-210C в зависимости от пластической марки) выдавим немного материала (пресс выдавливания), чтобы увидеть, что все работает должным образом.

Мы устанавливаем начало координат относительно экструзионной головки (х = 0, у = 0, z = 0) в качестве разделителя используем бумагу, головка должна быть как можно ближе к бумаге, но не касалась ее. Это будет исходное положение для экструзионной головки. Оттуда мы можем начать печать.

Относятся к устройствам для долговременного хранения данных и являются старейшими устройствами компьютера, в качестве носителя информации применяются дискеты диаметром 3,5 дюйма (объем дискеты от 1,44 MB до 2,88 MB, в зависимости от типа дисковода и дискеты).

Дисковод состоит из четырёх основных элементов: рабочий двигатель, рабочие головки, шаговые двигатели, управляющая электроника.

Рабочий двигатель. Двигатель включается только тогда, когда в дисковод вставлена дискета. Обеспечивает постоянную скорость вращения дискеты  300 об.мин. Для запуска двигателю необходимо в среднем 400 мс.

Рабочие головки. Дисковод оснащается двумя комбинированными головками (для чтения и записи каждая), которые располагаются над рабочей поверхностью дискеты. Так как обычно дискеты двухсторонние, т.е. имеют две рабочие поверхности, то одна головка предназначена для верхней, а другая головка для нижней рабочей поверхности дискеты.

Шаговые двигатели. Позиционирование головок выполняется при помощи двух двигателей. Двигатели перемещают головки над рабочей поверхностью для считывания данных.

Управляющая электроника. Электронные схемы размещаются в нижней части дисковода. Они выполняют функции передачи сигналов к контроллеру, т.е. отвечают за преобразование информации, которую считывают или записывают головки.

На данный момент дисководы морально и физически устарели, они не отвечают современным требованиям, к накопителям информации, особенно к объёму переносимой информации. Современные производители компьютеров всё реже включают дисковод в базовую комплектацию.

Жесткий диск (винчестер, Накопитель на жестких магнитных дисках)

Накопитель на жестких магнитных дисках (НЖМД) – это устройство с несменным носителем. Его конструктивная схема сходна со схемой НГМД, но реализация отличается, и существенно.

Конструкция жесткого диска (Рис.1)

Накопитель на жестких магнитных дисках состоит из четырех главных элементов, каждый из которых вносит свой вклад в его общие характеристики:

Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых делится на секторы, содержащие данные (в подавляющем большинстве случаев размер сектора составляет 512 байт) и коды коррекции ошибок. Процесс такой разметки диска на сектора, состоящий в записи на его поверхность секторных меток и идентификационных номеров и называется физическим или низкоуровневым форматированием. Количество секторов на дорожке в современных дисках варьируется в зависимости от длины дорожки, т. е. на внешних дорожках секторов больше, а на внутренних меньше (так называемый метод зонно_битовой записи - zoned bit recording). Совокупность дорожек, находящихся под головками в определенном их положении на всех пластинах диска, называется цилиндром .

Пластины представляют собой диски из алюминиевого сплава или стеклообразного материала(стеклянные пластины получили в последнее время более широкое распространение), поверхность которых покрыта несколькими слоями магнитных и немагнитных материалов, защищенных сверху тонким слоем алмазоподобного графита. Размеры и ориентация частиц магнитного слоя определяют вместе с размерами зазора магнитной головки возможную плотность записи. Заметим, что поверхностная плотность записи имеет две составляющие - продольную (определяется размерами магнитных доменов, представляющих каждый бит одной дорожки) и поперечную (определяется расстоянием между соседними дорожками). Одно из последних достижений в увеличении плотности записи за счет уменьшения размеров магнитных частиц - разработанное IBM покрытие с антиферромагнитной связью (AFC, AntiFerromagnetically Coupled). Такое покрытие, неофициально называемое «пыльцой эльфов», состоит из двух магнитных слоев, «проложенных» тончайшим (его толщина составляет всего три атомных диаметра!) слоем парамагнитного металла рутения. В этом «сэндвиче» вместо одиночных магнитных доменов образуются магнитные пары с противоположно направленными векторами намагниченности, обеспечивающие повышенную стойкость к размагничиванию. Пластины укреплены на шпинделе двигателя, который вращает их с весьма высокими угловыми скоростями (до 15 тыс. об./мин).

Головка записи-чтения - ключевой элемент НЖМД. Ее чувствительность и величина магнитного зазора в большой степени определяют плотность записи накопителя. Головка «летит» над поверхностью вращающейся пластины на расстояниях порядка 10-15 нм. Расстояние от головки до магнитного слоя при этом заметно больше - до 30 нм. Защитный слой из алмазоподобного графита, наносимый на головку и пластины, обладает чрезвычайно высокими прочностью и гладкостью, так что «падение» головки на поверхность пластины в случае, например, непредвиденной остановки двигателя не приводит в современных накопителях к выходу их из строя, как это было в НЖМД первых поколений.

Позиционер (actuator) - «средство доставки» головок к нужному цилиндру диска. Понятно, что от скорости и точности его работы зависит как время доступа к данным, так и допустимое расстояние между дорожками, т. е. в конечном счете плотность записи. Кроме основных своих функций, позиционер в современных дисках служит еще и средством обеспечения надежности. Он должен вывести головки из зоны возможного соприкосновения с носителем в случае остановки основного двигателя, пропадания питания и других непредвиденных ситуаций.

Контроллер управляет всеми электронными и электромеханическими компонентами накопителя и содержит все необходимые для чтения и записи данных аналоговые и цифровые схемы. Он строится, как правило, на базе специализированного процессора, оснащенного буферной памятью для промежуточного хранения данных записи-чтения и ПЗУ или ППЗУ со встроенным программным обеспечением. Контроллер вместе с позиционером обеспечивают безопасность диска в случае пропадания питания или остановки двигателя, выводя головки из зоны возможного соприкосновения. Кроме того, контроллер обеспечивает перевод диска в режим экономии энергии при отсутствии обращений к нему в течение некоторого времени.

Однажды, исследуя просторы интернета наткнулся я на интересную плату с микроконтроллером. Называется эта удивительная вещица Arduino. Меня очень заинтересовала эта схемка. С ее помощью можно сделать самому робота, метеостанцию, сигнализацию и даже что-то посерьезней, например - «Умный Дом».

Прикупив сей девайс, начал изучать. Наигравшись со светодиодами, датчиком температуры и LCD дисплеем, решил сделать что-то такое эдакое. Увидел на YouTube ролик про музыкальный дисковод, заинтересовался. Благо у меня этого добра (Floppy Drive`ов) полно на работе. Полазив по рунету и не обнаружив подробных мануалов как это можно реализовать, полез на буржуйские сайты и к своему счастью там и нашел подробное описание. И так начнем.

Необходимые ингредиенты:

Дисковод 3,5"" гибких дисков, у меня их 6 штук

Arduino Uno

BreadBoard, можно и без него, но с ним все же удобней

Блок питания от компьютера, подойдет любой

Мы сразу замыкаем 2 контакта зеленый и черный чтобы включить блок питания

Подключение флоппи к Arduino:

Полную распиновку флоппика давать не буду, ибо все есть в инете. Нам необходимы следующие пины:
11 и 12 контакты дисковода замыкаем между собой с помощью джампера (Jumper).
17 и 19 контакты дисковода подводим к земле Arduino (GND).
18 контакт флоппа соединяем с 3 digital pin Arduino.
20 контакт флоппа соединяем со 2 digital pin Arduino.
Это что касается одного флоппика, с другими остальными 5-ю, как в моем случае, то повторяем процедуру так же. Единственное отличие, то что на 2 дисководе 18 контакт соединяем с 5 цифровым контактом Ардуины, а 20 с 4-м и так далее.
Ну и соответственно питаем 5В и GND сами дисководы.

Установка софта:

Качаем IDE для Ардуины, подключаем к компу, ставим драйвера.
На данном этапе, перед заливкой скетча в Ардуину, необходимо скачать к себе библиотеку
TimerOne в то место где находится папка с ардуино, например: %arduino%\libraries\
Далее нам необходимо залить скетч в Arduino.
Далее после заливки кода в микроконтроллер и после того как все железо подключено, необходимо установить Java JDK и интегрированную среду разработки NetBeans .

После качаем java проект MoppyDesk - по сути эта прога и есть тот самый мозг, который заставляет через микроконтроллер производить звуки на флоппи дисководах.
Затем скачиваем драйвера для программы MoppyDesk. Так как у меня Windows 7, то я копировал файлы:
RXTXcomm.jar в \jre\lib\ext
rxtxSerial.dll в \jre\bin
rxtxParallel.dll в \jre\bin

Открываем проект MoppyDesk в NetBeans и запускаем его, выбираем наш com порт (в диспетчере устройств можно посмотреть на какой порт установился Arduino), нажимаем кнопку Connect, далее необходимо выбрать midi файл, нажимаем Start и начинается дискотека. Так как у меня в серверной очень шумно, и дисководов почти не слышно, то я использовал микрофон, дабы усилить эффект.



Просмотров