Как работает GPS

Ваш GPS-приемник получает это сообщение и запоминает эфимерис и альманах для дальнейшего использования. Эта же информация используется для установки или коррекции часов приемника. Итак, для определения местоположения GPS-приемник сравнивает время отправки сигнала со спутника со временем его получения на Земле. Эта разница во времени говорит приемнику о расстоянии до конкретного спутника. Если добавить к этому информацию о расстоянии, измеренном до нескольких других спутников, то можно триангулировать свое местоположение. Это в точности то, что делает GPS-приемник. Имея сигналы от минимум трех спутников, он может определить широту и долготу - это называется двумерной фиксацией. Если же спутников четыре или более, то GPS-приемник может определить положение в 3-х мерном пространстве, т.е. указать широту, долготу и высоту. Постоянно отслеживая Ваше местоположение в течение некоторого времени, приемник также может рассчитать скорость и направление Вашего движения (имеется в виду т.н. "наземная скорость" и "наземный курс").

Это были хорошие новости, теперь - плохие! Что же заставляет GPS-приемник работать хуже своих предельных возможностей? Существует несколько факторов, вносящих ошибку в определение местоположения, не позволяющих получить наилучшую точность. Первым и наиболее существенным из них является т.н. "избирательный доступ" (SA - Selective Availability). SA - это преднамеренное уменьшение точности гражданских GPS-навигаторов, осуществляемое Министерством обороны США. SA приводит к уменьшению точности максимум до 100 метров. Конечно, внесенная ошибка обычно не достигает этой величины, но значения в 30 и более метров - не так уж редки.

Почему существует SA? Первоначально GPS была разработана и создана для военных целей. По мере ее внедрения стало ясно, что она может успешно применяться и для ряда гражданских задач. В начале 80-х годов в своей президентской речи Рональд Рейган заявил, что GPS будет доступна каждому - с тем только исключением, что наилучшая точность будет оставлена для военных. С этого времени начался регулярный запуск спутников с возможностью SA. Сегодня все существующие GPS-спутники имеют возможность и применяют на практике SA. Рациональное зерно в SA - не дать военному противнику или террористическим организациям использовать максимальную точность GPS.

Другим фактором, влияющим на точность GPS, является геометрия спутников. Простыми словами, понятие "геометрия спутников" означает то, как они расположены относительно друг друга и GPS-приемника. Если, например, приемник "видит" четыре спутника и все четыре расположены в северном и западном направлениях, то спутниковая геометрия скорее плохая. Причем вплоть до того, что приемник вообще не сможет определить местоположение. Почему? Потому что все расстояния, измеренные до спутников, будут лежать в одном глобальном направлении. Это означает, что триангуляция будет плохой и что область пересечения построенных прямых будет довольно большой (т.е. область вероятного положения будет занимать значительное пространство и точно указать координаты невозможно). В этом случае, даже если приемник выдает некоторые значения координат, их точность не будет достаточно хороша (возможно, 100 - 150 м).

Если же эти четыре спутника будут находиться в разных направлениях, то точность значительно возрастет. Предположим, что они расположены равномерно по сторонам горизонта - на севере, востоке, юге и западе. Тогда, очевидно, геометрия будет очень хорошей. Область, определяемая пересечением соответствующих прямых, будет невелика, и мы можем быть уверены в правильности рассчитанного местоположения. В таком случае, даже если принять во внимание действие SA, точность может быть не хуже 30 м.

Геометрия спутников становится особенно важной при использовании GPS-приемника в автомобиле, среди высоких зданий, в горах или в глубоких ущельях. Если сигналы от некоторых спутников оказываются экранированы, то точность определения местоположения будет зависеть от оставшихся "видимыми" спутников (а от их количества - возможность провести расчеты вообще). Чем большая часть неба заслонена искусственными или естественными предметами, тем более сложно определить положение. Хорошие модели GPS-приемников показывают не только сколько спутников находится в зоне видимости, но и где они расположены на небе (направление и высоту над горизонтом) для того, чтобы Вы могли определить, не экранируется ли сигнал от данного спутника.

Другим источником ошибок является переотражение спутникового сигнала от различных объектов. (В быту мы встречаемся с эти явлением в виде появления раздвоенного изображения на экране телевизора.) В случае GPS переотражение возникает при взаимодействии сигнала со зданиями или рельефом местности до того, как он достигнет приемной антенны. Такому сигналу требуется больше времени для достижения приемника, чем прямому. Это увеличение времени заставляет приемник считать, что спутник находится на большем расстоянии, чем на самом деле и это увеличивает ошибку при определении положения. Такие переотражения, если происходят, то могут добавить около 5 м в общую ошибку.

Существуют ли другие источники погрешностей? Конечно. Например, задержка прохождения сигнала из-за различных атмосферных феноменов. Или ошибка хода часов приемника. Однако GPS-приборы спроектированы так, чтобы, по возможности, компенсировать их и, надо сказать, они справляются с этой задачей вполне успешно. Однако, небольшие искажения все же возможны. Для тех, кто интересуется, можно заметить, что задержка прохождения сигнала означает уменьшение скорости распространения радиоволн при прохождении ионосферы и тропосферы Земли. В космосе радиосигналы распространяются со скоростью света, однако при попадании их в ионизированные слои атмосферы Земли они существенно замедляются.

Насколько же точна GPS на практике? Обычные гражданские GPS-приемники обеспечивают точность от 20 до 70 м в зависимости от действующего на данный момент SA, количества видимых спутников и их геометрии. Более сложные и дорогие приборы, стоящие несколько тысяч долларов, могут обеспечить точность до нескольких сантиметров, используя не оду, а несколько радиочастот. Однако точность даже обычных гражданских GPS-приемников может быть увеличена до 4 м и более (в ряде случаев - до 1 м) с помощью т.н. дифференциальной GPS (DGPS). DGPS использует дополнительный, фиксированный в одной точке GPS-приемник для определения коррекции спутниковых сигналов. Как же величина необходимой коррекции сообщается Вашему GPS-приемнику? В настоящее время в мире существует несколько бесплатных и платных служб такого рода.

Так, например, Береговая охрана США и Инженерный корпус Армии США передают GPS-коррекции через морские радиобуи. Они работают в диапазоне 283.5 - 325.0 кГц и пользоваться ими можно бесплатно. Вашими единственными расходами, если Вы захотите пользоваться услугами этих служб, будет приобретение DGPS-приемника. Этот приемник подключается к Вашему GPS-навигатору с помощью 3-х проводного кабеля, по которому поправка передается в обычном последовательном виде в формате, называемом RTCM SC-104.

Платные DGPS-службы работают в УКВ-диапазоне или осуществляют вещание через спутники. Естественно, и в этих случаях Вам понадобится специальный DGPS-приемник для приема поправок и передачи их на GPS-навигатор. Цена зависит от требуемой точности.

Какой же GPS-приемник будет для Вас наилучшим? Вот он, главный вопрос, не так ли? И, конечно, самый сложный, т.к. на ответ влияет множество различных факторов.

Как предполагается его использовать? Ведь самое трудное - это найти прибор, подходящий для Ваших конкретных задач. Если Вам нужен приемник для установки в приборную панель планера, то ручной навигатор для отдыха на воде не будет представлять никакого интереса. Для того чтобы сузить диапазон поиска, Вам надо внимательно посмотреть, какие приборы выпускаются для Ваших специфических задач.

После этого в некоторых случаях Вы все еще можете иметь достаточно широкий выбор моделей. Например, если Вы предпочитаете пеший туризм или охоту, то Вам подойдет прибор в герметичном исполнении - в прочем, с тем же успехом, что и портативная модель, предназначенная для яхтсменов или летчиков-любителей. В такой ситуации Вам придется более подробно изучить их специфические особенности. Если Вы не собираетесь пилотировать самолет, то вся дополнительная информация об аэропортах мира, хранящаяся в памяти ручных авиационных GPS-приемников, не будет оправдывать разницы в цене. Морские навигаторы со сменными картриджами, хранящими точные данные о навигационных знаках и глубинах, также не очень Вам помогут (если Вы, конечно, не захотите использовать его также на Вашей яхте). Каков ценовой диапазон? Как только Вы определили небольшой перечень подходящих приборов, Вам все еще предстоит определиться с приемлемой ценой. Внимательно изучите каждую модель и постарайтесь понять, что имеют более дорогие модели, чего нет в более дешевых? Нужны ли Вам дополнительные функции или принадлежности, присущие более дорогим моделям, или дешевой вполне достаточно для выполнения задачи?

Какая модель Вам больше нравится? Выбор правильного навигатора - это на две трети рациональные рассуждения, и на одну треть - просто чувство. Если логика подсказывает Вам остановиться на двух или трех моделях, попробуйте поработать с каждой из них. Иногда разница в удобстве эксплуатации может показаться очень большой. Один из приборов Вам может представиться понятным и удобным, а другой - чересчур сложным в использовании. Выбирайте тот GPS-приемник, который Вам больше нравится! Больше шансов, что Вы по-прежнему будете довольны своим выбором и через месяц, и через год! Кто же и как использует GPS? Вообще говоря, GPS может найти применение везде, кроме мест, где нельзя принимать спутниковые сигналы, т.е. в зданиях, под землей, под водой и т.п. В авиации наиболее распространено применение GPS в качестве навигационного на коммерческих и любительских самолетах. На море GPS обычно также используется рыбаками и любителями отдыха на море в качестве навигационного прибора. Наземное применение GPS очень разнообразно.

Достаточно интересным является использование GPS многими учеными и исследователями в качестве источника точного времени. Действительно, как уже говорилось выше, определение времени прохождения радиосигнала лежит в основе самой идеи GPS. С этой целью внутренние часы приемника постоянно синхронизируются с прецизионными атомными часами, установленными на спутниках. Это позволяет обеспечить точность измерения времени от микро- до наносекунд. Поэтому при проведении научных экспериментов становится возможным повсеместно иметь абсолютно точные отметки времени. Нельзя, конечно забывать, что и информация о положении в ряде экспериментов тоже может представлять интерес.

Важное место занимает GPS в работе спасательных служб. GPS позволяет существенно сократить затраты, связанные с поисковыми работами и значительно сократить время проведения спасательных операций. Используемые этими службами GPS-приемники стоят около 3 000 $ и обеспечивают точность до 1 м. Существуют и еще более дорогие модели, обеспечивающие точность до нескольких сантиметров!

Цели, для которых GPS используется любителями отдыха на природе, так же разнообразны, как и виды такого отдыха. Сегодня GPS становится чрезвычайно популярным среди любителей пешего, горного, водного и лыжного туризма, охотников, рыболовов, велосипедистов и еще многих других. Любой, кому нужно знать, где он находится и откуда пришел, как ему добраться до нужного места, с какой скоростью он движется и когда доберется до цели - может легко пользоваться преимуществами, предоставляемыми GPS.

Приобрести gps-навигаторы Garmin Вы можете на сайте www.garmin-nn.ru . Либо в специализированном магазине GARMIN-NN.
GARMIN-NN – официальный представитель Garmin в Нижнем Новгороде. gps-навигаторы и эхолоты Garmin не только на сайте, но и в магазине, расположенном по адресу - г.Н.Новгород, ул.Пятигорская, 4а, В магазине представлен весь ряд автомобильных и туристических навигаторов. Так же оказываем услуги по перепрошивке навигаторов и обновлению карт.


Наши контакты:

Адрес: г.Н.Новгород, ул.Пятигорская, 4а, офис 7. - nn . ru

Режим работы интернет-магазина: круглосуточно

Режим работы офиса-магазина:
Понедельник-Пятница: с 10:00 до 19:00.

Это компьютер и приемник, заключенные в общий корпус. Приемник получает сигналы от спутников, находящихся на орбите, а компьютер, в свою очередь, расшифровывает эти сигналы и указывает местоположение приемника. В 1977 году был запущен GPS. Его запустили разработчики самой программы - американцы. Система GPS использовалась до 1983 года только военными, а уже после стала доступна для пользования обычных людей.

Многие владельцы GPS-навигаторов замечали, что в местах нахождения большого количества высоких сооружений и зданий устройство ищет спутники довольно продолжительное время. Решением этой проблемы стала система A-GPS.

Рассмотрим, что такое A-GPS и когда она необходима.

Учитывая то, что эта система достаточно молодая (ее дебют пришелся на 2001 год), вопрос о том, что такое A-GPS, в настоящее время актуален. Она, как и GPS, была разработана в США. A-GPS представляет собой систему, ускоряющую работу GPS-приемника в определении координат. Эта система пользуется сигналом, исходящим от вышек сотовой связи, соответственно, чем в видимости устройства этих вышек больше, тем выше точность определения расстояния. При каждом стартовом поиске спутников A-GPS предоставляет навигатору расположение наиболее близких спутников через специальные серверы. Узнав, что такое A-GPS, становится понятно, что с ее помощью работа GPS-навигатора станет гораздо эффективнее. Ведь благодаря совместной работе двух устройств определение местоположения ускоряется в разы.

Определившись, что такое A-GPS и GPS-навигатор, стоит уделить внимание GPS-трекеру. Это устройство предназначено для наблюдения через спутник за передвижением объекта, на котором «установлено» это маленькое электронное устройство. GPS-трекер представляет своеобразный «жучок», который без проблем можно спрятать, например, в салоне автомобиля, и таким образом отследить все дальнейшие перемещения данного объекта.

В основном, GPS-трекер включает в себя 2 устройства: GPS-приемник и GSM-модем. При помощи он имеет возможность определить координаты движения и скорость, а затем передать эти данные наблюдателю посредством GPRS-канала (через сотовую связь).

Узнав из нашей статьи все о навигаторах, можно смело приобретать это устройство, ведь в современном городе, особенно если просто невозможно обойтись без этой техники.

Как нередко бывает с высокотехнологичными проектами, инициаторами разработки и реализации системы GPS (Global Positioning System - система глобального позиционирования) стали военные. Проект спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван Navstar (Navigation system with timing and ranging - навигационная система определения времени и дальности), тогда как аббревиатура GPS появилась позднее, когда система стала использоваться не только в оборонных, но и в гражданских целях.

Первые шаги по развертыванию навигационной сети были предприняты в середине семидесятых, коммерческая же эксплуатация системы в сегодняшнем виде началась с 1995 года. В настоящий момент в работе находятся 28 спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы достаточно 24 спутников).

Несколько забегая вперед, скажу, что поистине ключевым моментом в истории GPS стало решение президента США об отмене с 1 мая 2000 года режима так называемого селективного доступа (SA - selective availability) - погрешности, искусственно вносимой в спутниковые сигналы для неточной работы гражданских GPS-приемников. С этого момента любительский терминал может определять координаты с точностью в несколько метров (ранее погрешность составляла десятки метров)! На рис.1 представлены ошибки в навигации до и после отключения режима селективного доступа (данные ).Рис1.

Попробуем разобраться в общих чертах, как устроена система глобального позиционирования, а потом коснемся ряда пользовательских аспектов. Рассмотрение же начнем с принципа определения дальности, лежащего в основе работы космической навигационной системы.

Алгоритм измерения расстояния от точки наблюдения до спутника.

Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время на скорость света.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот - L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазовоманипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code - грубый код) используется в гражданских приемниках, второй Р-код (Precision code - точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 модулируется как С/А, так и Р-кодом, частота L2 существует только для передачи Р-кода. Кроме описанных, существует еще и Y-код, представляющий собой зашифрованный Р-код (в военное время система шифровки может меняться).

Период повторения кода довольно велик (например, для P-кода он равен 267 дням). Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Одной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная по обычным меркам погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобную штуку в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности (подробней об этом чуть позже).

Кроме самих навигационных сигналов, спутник непрерывно передает разного рода служебную информацию. Приемник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере (так как скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника (так называемых "альманах", содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Общие принципы определения координат с помощью GPS.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией. Рис2.

Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находится в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным - объект находится где-то на окружности (она показана синим цветом на рис.2), которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными синими точками на рис.2). Этого уже достаточно для однозначного определения координат - дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать расстояния от приемника до трех спутников.

Однако в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы по указанной в предыдущем разделе неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т.п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника.

Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам.

Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации, - например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным, например, от зданий). Мы не будем углубляться в особенности функционирования этих устройств, чтобы излишне не осложнять текст.

После отмены описанного выше режима селективного доступа гражданские приемники "привязываются к местности" с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим так называемой дифференциальной коррекции (DGPS - Differential GPS). Дифференциальный режим состоит в использовании двух приемников - один неподвижно находится в точке с известными координатами и называется "базовым", а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом. Коррекция может осуществляться как в режиме реального времени, так и при "оффлайновой" обработке данных, например, на компьютере.

Обычно в качестве базового используется профессиональный приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Например, в феврале 1998 года недалеко от Санкт-Петербурга компания "НавГеоКом" установила первую в России наземную станцию дифференциального GPS. Мощность передатчика станции - 100 Ватт (частота 298,5 кГц), что позволяет пользоваться DGPS при удалении от станции на расстояния до 300 км по морю и до 150 км по суше. Кроме наземных базовых приемников, для дифференциальной коррекции GPS-данных можно использовать спутниковую систему дифференциального сервиса компании OmniStar. Данные для коррекции передаются с нескольких геостационарных спутников компании.

Следует заметить, что основными заказчиками дифференциальной коррекции являются геодезические и топографические службы - для частного пользователя DGPS не представляет интереса из-за высокой стоимости (пакет услуг OmniStar на территории Европы стоит более 1500 долларов в год) и громоздкости оборудования. Да и вряд ли в повседневной жизни возникают ситуации, когда надо знать свои абсолютные географические координаты с погрешностью 10-30 см.

В заключение части, повествующей о "теоретических" аспектах функционирования GPS, скажу, что Россия и в случае с космической навигацией пошла своим путем и развивает собственную систему ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Но из-за отсутствия должных инвестиций в настоящее время на орбите находятся лишь семь спутников из двадцати четырех, необходимых для нормального функционирования системы…

Краткие субъективные заметки пользователя GPS.

Так уж получилось, что о возможности определять свое местоположение с помощью носимого приборчика размерами с сотовый телефон я узнал году в девяносто седьмом из какого-то журнала. Однако замечательные перспективы, нарисованные авторами статьи, были безжалостно разбиты заявленной в тексте ценой навигационного аппарата - почти 400 долларов!

Года через полтора (в августе 1998) судьба занесла меня в маленький спортивный магазинчик в американском городе Бостон. Какого же было мое удивление и радость, когда на одной из витрин я случайно заметил несколько разных навигаторов, самый дорогой из которых стоил 250 долларов (простенькие же модели предлагались за $99). Конечно, уйти из магазина без прибора я уже не мог, поэтому принялся пытать продавцов о характеристиках, преимуществах и недостатках каждой модели. Ничего вразумительного от них я не услышал (и отнюдь не из-за того, что плохо знаю английский), так что пришлось разбираться во всем самому. И в результате, как это нередко бывает, была приобретена самая продвинутая и дорогая модель - Garmin GPS II+, а также специальный чехол к ней и шнур для питания от гнезда прикуривателя автомобиля. В магазине имелось еще два аксессуара для теперь уже моего аппарата - устройство для крепления навигатора на велосипедном руле и шнур для соединения с РС. Последний я долго крутил в руках, но, в конце концов, все же решил не покупать из-за немалой цены (немногим более 30 долларов). Как потом оказалось, шнур я не купил совершенно правильно, ибо все взаимодействие прибора с компьютером сводится к "сливке" в ЭВМ пройденного маршрута (а также, думаю, координат в режиме реального времени, но насчет этого есть определенные сомнения), да и то при условии покупки софта от Garmin. Возможность загружать в прибор карты, к сожалению, отсутствует.

Давать подробное описание своего прибора я не буду хотя бы потому, что он уже снят с производства (желающие ознакомиться с подробной технической характеристикой могут сделать это ). Замечу лишь, что вес навигатора - 255 гр., размеры - 59х127х41 мм. Благодаря своему треугольному сечению аппарат исключительно устойчиво располагается на столе или панели приборов автомобиля (для более прочной фиксации в комплект входит липучка Velcro). Питание осуществляется от четырех пальчиковых батареек АА (их хватает лишь на 24 часа непрерывной работы) или внешнего источника. Попробую рассказать об основных возможностях моего прибора, которые, думаю, имеет подавляющее большинство присутствующих на рынке навигаторов.

С первого взгляда GPS II+ можно принять за мобильный телефон, выпущенный пару лет назад. Лишь только присмотревшись, замечаешь необычно толстую антенну, огромный дисплей (56х38 мм!) и малое, по телефонным меркам, количество клавиш.

При включении прибора начинается процесс сбора информации со спутников, а на экране появляется простенькая мультипликация (вращающийся земной шар). После первоначальной инициализации (которая в открытом месте занимает пару минут) на дисплее возникает примитивная карта неба с номерами видимых спутников, а рядом - гистограмма, свидетельствующая об уровне сигнала от каждого спутника. Кроме того, указывается погрешность навигации (в метрах) - чем больше спутников видит прибор, тем, разумеется, точнее будет определение координат.

Интерфейс GPS II+ построен по принципу "перелистываемых" страниц (для этого даже есть специальная кнопка PAGE). Выше была описана "страница спутников", а кроме нее, есть "страница навигации", "карта", "страница возврата", "страница меню" и ряд других. Следует заметить, что описываемый аппарат не русифицирован, однако даже с плохим знанием английского можно понять его работу.

На странице навигации отображаются: абсолютные географические координаты, пройденный путь, мгновенная и средняя скорости движения, высота над уровнем моря, время движения и, в верхней части экрана, электронный компас. Надо сказать, что высота определяется с гораздо большей погрешностью, чем две горизонтальные координаты (на этот счет есть даже специальная ремарка в руководстве пользователя), что не позволяет использовать GPS, например, для определения высоты парапланеристами. Зато мгновенная скорость вычисляется исключительно точно (особенно для быстродвижущихся объектов), что дает возможность использовать прибор для определения скорости снегоходов (спидометры которых имеют обыкновение значительно врать). Могу дать "вредный совет" - взяв напрокат автомобиль, отключите его спидометр (чтобы он насчитал поменьше километров - ведь оплата зачастую пропорциональна пробегу), а скорость и пройденное расстояние определяйте по GPS (благо он может вести измерения как в милях, так и в километрах).

Средняя скорость движения определяется по несколько странному алгоритму - время простоя (когда мгновенная скорость равна нулю) в вычислениях не учитывается (более логично, на мой взгляд, было бы просто делить пройденное расстояние на общее время поездки, но создатели GPS II+ руководствовались каким-то иными соображениями).

Пройденный путь отображается на "карте" (памяти аппарата хватает километров на 800 - при большем пробеге автоматически стираются самые старые метки), так что при желании можно посмотреть схему своих блужданий. Масштаб карты меняется от десятков метров до сотен километров, что, несомненно, исключительно удобно. Самое же замечательное состоит в том, что в памяти прибора имеются координаты основных населенных пункты всего мира! США, конечно, представлено более подробно (например, все районы Бостона присутствуют на карте с названиями), чем Россия (тут указано расположение лишь таких городов как Москва, Тверь, Подольск и т.п.). Представьте, например, что Вы направляетесь из Москвы в Брест. Находите в памяти навигатора "Брест", жмете специальную кнопку "GO TO", и на экране появляется локальное направление Вашего движения; глобальное направление на Брест; количество километров (по прямой, разумеется), оставшееся до точки назначения; средняя скорость и расчетное время прибытия. И так в любой точке мира - хоть в Чехии, хоть в Австралии, хоть в Таиланде…

Не менее полезной является так называемая функция возврата. Память аппарата позволяет записывать до 500 ключевых точек (waypoints). Каждую точку пользователь может называть по своему усмотрению (например, DOM, DACHA и т.п.), также предусмотрены различные пиктрограммки для отображения информации на дисплее. Включив функцию возврата к точке (любой из заранее записанных), владелец навигатора получает те же возможности, что и в описанном выше случае с Брестом (т.е. расстояние до точки, расчетное время прибытия и все остальное). У меня, например, был такой случай. Приехав в Прагу на автомобиле и устроившись в гостинице, мы с приятелем отправились в центр города. Оставив машину на стоянке, пошли побродить. После бесцельной трехчасовой прогулки и ужина в ресторане мы поняли, что совершенно не помним, где оставили машину. На улице ночь, мы - на одной из маленьких улочек незнакомого города… К счастью, прежде чем покинуть автомобиль, я записал его местоположение в навигатор. Теперь же, нажав пару кнопок на аппарате, я узнал, что машина стоит в 500 метрах от нас и через 15 минут мы уже слушали тихую музыку, направляясь на автомобиле в гостиницу.

Кроме движения к записанной метке по прямой, что не всегда удобно в условиях города, Garmin предлагает функцию TrackBack - возврат по своему пути. Грубо говоря, кривая движения аппроксимируется рядом прямолинейных участков, а в точках излома ставятся метки. На каждом прямолинейном участке навигатор ведет пользователя к ближайшей метке, по достижении же ее осуществляется автоматическое переключение на следующую метку. Исключительно удобная функция при езде на автомобиле по незнакомой местности (сигнал со спутников сквозь здания, конечно, не проходит, поэтому, чтобы получить данные о своих координатах в условиях плотной застройки, приходится искать более-менее открытое место).

Я не буду дальше углубляться в описание возможностей прибора - поверьте, что кроме описанных, в нем есть еще масса приятных и нужных примочек. Одна смена ориентации дисплея чего стоит - можно использовать аппарат как в горизонтальном (автомобильном), так и в вертикальном (пешеходном) положении (см. рис.3).

Одной из основных же прелестей GPS для пользователя я считаю отсутствие какой-либо платы за пользование системой. Купил один раз прибор - и наслаждайся!

Заключение.

Я думаю, нет нужды перечислять области применения рассмотренной системы глобального позиционирования. GPS-приемники встраивают в автомобили, сотовые телефоны и даже наручные часы! Недавно я встретил сообщение о разработке чипа, совмещающего в себе миниатюрный GPS-приемник и модуль GSM - устройствами на его базе предлагается оснащать собачьи ошейники, чтобы хозяин мог без труда обнаружить потерявшегося пса посредством сотовой сети.

Но в любой бочке меда есть ложка дегтя. В данном случае в роли последнего выступают российские законы. Я не буду подробно рассуждать о юридических аспектах использования GPS-навигаторов в России (кое-что об этом можно найти ), замечу лишь, что теоретически высокоточные навигационные приборы (коими, без сомнения являются даже любительские GPS-приемники) у нас запрещены, а их владельцев ждет конфискация аппарата и немалый штраф.

К счастью для пользователей, в России строгость законов компенсируется необязательностью их выполнения - например, по Москве разъезжает огромное количество лимузинов с шайбой-антенной GPS-приемников на крышке багажника. Все более-менее серьезные морские суда оборудованы GPS (и уже выросло целое поколение яхтсменов, с трудом ориентирующихся в пространстве по компасу и прочим традиционным средствам навигации). Надеюсь, власти не будут вставлять палки в колеса техническому прогрессу и в ближайшее время легализуют пользование GPS-приемниками в нашей стране (отменили же разрешения на сотовые телефоны), а также дадут добро на рассекречивание и тиражирование подробных карт местности, необходимых для полноценного использования автомобильных навигационных систем.

Статьи и Лайфхаки

У большинства обладателей мобильных телефонов появлялся вопрос, что такое gps в телефоне ? Раньше все разговоры по сотовому телефону начинались с вопроса «Где находишься?». А сегодня определение месторасположения пользователя на виртуальной карте стало реальным благодаря объединению знаний в математике, физике и других технических науках. Поэтому при рассуждении для многих в число программ непременно попадут приложения, работающие с системой GPS.

Для чего нужен gps в мобильном телефоне?

С помощью спутника можно определить расстояние до требуемого объекта (gps-приёмник сначала получает сведения о местонахождении спутника, а потом от него принимает информацию с координатами объекта). Кроме того, появляется социальный аспект – человек может, общаясь с друзьями и родственниками, добровольно отметить, где он в текущий момент находится.

Благодаря прочному союзу Интернета и спутниковой навигации упростились загрузки файлов - пользователь может в течение нескольких секунд показать свое местоположение как на карте, так и в конкретном заведении. При этом человек может пригласить к себе друзей, разослав сообщения с указанием своего точного месторасположения.

Телефон с gps модулем при правильной настройке программы можно использовать как обычный навигатор при путешествиях по России и иным странам (при поиске ближайших кинотеатров, музеев и магазинов).

Преимущества и недостатки мобильного телефона, оснащенного gps

Что такое gps в телефоне для современных пользователей? Спутниковая навигация в устройстве – обыденное явление даже для не очень дорогостоящих моделей. Регулярное определение своих координат с использованием электронных карт необходимо людям тех профессий, для которых важно уметь ориентироваться в неизвестной местности (курьерам, водителям). Для пользователей, которые проводят будни на рабочем месте, а выходные дни – дома, gps является непотребной функцией, значительно повышающей стоимость аппарата. Для оправдания оснащения мобильного телефона функцией gps разработчики создают разнообразные геосоциальные сервисы, к примеру, возможность вставить в файл координаты местонахождения съемки. Да и вообще - много чего или смартфоном, оснащенным данной системой.

Современными разработчиками намного упрощена система загрузки файлов, все операции осуществляются чрезвычайно быстро. Телефон, оснащенный gps, не сложен в эксплуатации, работает без сбоев и удобен в использовании. При этом он имеет различные настройки и возможность сохранения пройденных маршрутов.

Недостатки гаджета: без доступа к Интернету устройство не может определить требуемые координаты, да и за скорость выполняемых функций пользователи вынуждены дорого платить, в особенности, если они находятся за рубежом.

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.



Просмотров