Определить сечение рельефа. Выбор высоты сечения рельефа

По высотам сечения рельефа на топографических картах Тверская область лежит на территории равнин с чередованием низменностей и возвышенностей, сечение рельефа для масштаба 1:25000 будет равно 2,5 метрам.

При выборе высоты сечения рельефа необходимо учитывать очень многие факторы и требования, предъявляемые к изображению рельефа на топографических картах и планах. Является обеспечение необходимой точности положения горизонталей при использовании различных методов съемок, и одновременно одинаковая наглядность рисунка горизонталей на картах одних и тех же масштабов и при одном и том же сечение рельефа.

При изображении рельефа на картах необходимо четко выделять все горизонтали, даже при небольших заложениях. При изображении крутых ненарушенных склонов небольшой протяженности сначала проводят все утолщенные горизонтали, а между ними – такое количество горизонталей, которое позволяет избежать их слияния. На основе учета природных закономерностей ландшафта, изображение на картах рельефа должно быть увязано с изображением других компонентов ландшафта.

Практически в работах по созданию топографических карт предельно малым расстоянием между горизонталями (заложением) считается 0,2 мм.

Формула по которой определяется заложение рельефа следующая:

Где h- высота сечения рельефа; a - угол наклона поверхности.

Поэтому при выборе сечения рельефа необходимо учитывать преобладающие углы наклона поверхности.

Рельеф Тверской области равнинный с чередованием низменностей и возвышенностей, местами всхолмлённый с преобладающими углами наклона до 6. Поэтому, руководствуясь таблицей "Высоты сечения рельефа на топографических картах" (Т.В. Верещака, Н.С. Подобелов), определяем, что оптимальная высота сечения рельефа 2,5 метра . Но рельеф данной местности неоднороден. Поэтому есть вероятность, что придется использовать полугоризонтали, так как прибегать к использованию разных высот сечения рельефа в разных районах нет необходимости, так как это заметно усложнит чтение карты и проведение по ней морфометрических работ, кроме того, это не обусловлено морфометрическими характеристиками рельефа.

4. Метод картографирования

В настоящее время топографические карты и планы масштабов 1:500- 1:25000 создаются преимущественно на основе использования аэрофототопографической съемки, а в отдельных случаях – наземной фототеодолитной съемкой. Топографические карты более мелких масштабов получают путем камерального составления по имеющимся картам более крупного масштаба.

Аэрофототопографическая съемка - вид топографической съемки, которая выполняется по аэрофотоснимкам и другим материалам аэрофотосъемки при помощи фотограмметрических приборов. Он производится комбинированием и стереотопографическими методами.

Комбинированный метод используется при картографировании главным образом заселенных равнинных районов и также всхолмленной местности. На основе точек полевой плановой привязки аэрофотоснимков и планового сгущения опорной сети способами фототриангуляции изготавливают мозаичные фотопланы из предварительно трансформированных аэрофотоснимков. С мозаичных фотопланов изготавливают светокопии (репродукции), фотоизображение которых дешифрируют в полевых условиях для получения изображения контуров. На этих же репродукциях производят рисовку рельефа методом наземной топографической съемки. В результате получают полевой составительский оригинал топографической карты.

Стереотопографический метод отличается большой дифференциальностью.

Основными процессами которого являются:

Маркировка топознаков и создание планово-высотного обоснования съемки;

Производство аэрофотосъемочных работ;

Полевое и камеральное дешифрирование аэрофотоснимков;

Рисовка рельефа на стереообрабатывающих приборах;

Увязка результатов дешифрирования и рисовки рельефа на фотопланах, графических планах или других основах составительского оригинала. Этот метод создания топографических карт отличается от комбинированного сведением к минимуму полевых работ, поэтому он является самым рентабельным.

Фототеодолитная съемка – метод создания топографических планов и карт, основанный на использовании фотоснимков, полученных фотографированием с точек земной поверхности. Фотографирование производится фототеодолитом. Составление оригиналов топографических карт и планов при этом методе съемки осуществляется по фотоснимкам с использованием фотограмметрических приборов. Комплекс работ слагается из следующих основных процессов:

Выбор базисов и контрольных точек на местности;

Выполнение полевых и камеральных работ по определению координат станций, контрольных точек и длин базисов;

Фотографирование фототеодолитом местности с выбранных станций и выполнение фотолабораторных работ;

Фотограмметрическая обработка стереоскопических пар наземных снимков на стереокомпараторах или стереоавтографах для получения топографической карты соответствующего масштаба.

Фототеодолитная съемка используется главным образом для создания крупномасштабных топографических планов при выполнении различных инженерных изысканий на небольших участках территории. Эта съемка выполняется редко, как правило, в горных и высокогорных районах.

Основными методами создания топографических планов в настоящее время являются стереотопографический и комбинированный. Методы мензульной, тахеометрической или теодолитной съемки применяются лишь в отдельных случаях при создании планов небольших участков территории, при отсутствии материалов фотосъемок и т. п.

Таким образом, проанализировав возможные методы съёмки, для Тверской области целесообразно выбрать стереотопографический метод аэрофототопографической съёмки. Так как этот способ наилучшим образом подходит для масштаба создаваемой карты 1:25 000 000, для заселённого картографируемого района с равнинной, местами с всхолмлённой местностью. К тому же данный метод является менее затратным и трудоёмким, и по сравнению с комбинированным методом полевые работы сводятся к минимуму.

Рельефом называется совокупность неровностей суши, дна океанов и морей, разнообразных по очертаниям, размерам, происхождению, возрасту и истории развития. При проектировании и строительстве железных, автомобильных и других сетей необходимо учитывать характер рельефа – горный, холмистый, равнинный и др.

Рельеф земной поверхности весьма разнообразен, но все многообразие форм рельефа для упрощения его анализа типизировано на небольшое количество основных форм

1 - лощина; 2 - хребет; 3, 7, 11 - гора; 4 - водораздел; 5, 9 - седловина; 6 - тальвег; 8 - река; 10 - обрыв; 12 - терраса

К основным формам рельефа относятся:

Гора – это возвышающаяся над окружающей местностью конусообразная …
форма рельефа. Наивысшая точка её называется вершиной. Вершина может быть острой – пик, или в виде площадки – плато. Боковая поверхность состоит из скатов. Линия слияния скатов с окружающей местностью называется подошвой или основанием горы.

Котловина – форма рельефа, противоположная горе, представляющая собой замкнутое углубление. Самая низкая точка её – дно. Боковая поверхность состоит из скатов; линия их слияния с окружающей местностью называется бровкой.

Хребет – это возвышенность, вытянутая и постоянно понижающаяся в каком – либо направлении. У хребта два склона; в верхней части хребта они сливаются, образуя водораздельную линию, или водораздел.

Лощина – форма рельефа, противоположная хребту и представляющая вытянутое в каком – либо направлении и открытое с одного конца постоянно понижающееся углубление. Два ската лощины; сливаясь между собой в самой низкой части её образуют водосливную линию или тальвег, по которой стекает вода, попадающая на скаты. Разновидностями лощины являются долина и овраг: первая является широкой лощиной с пологими задернованными скатами, вторая – узкая лощина с крутыми обнаженными скатами. Долина часто бывает ложем реки или ручья.

Седловина – это место, которое образуется при слиянии скатов двух соседних гор. Иногда седловина является местом слияния водоразделов двух хребтов. От седловины берут начало две лощины, распространяющиеся в противоположных направлениях. В горной местности через седловины обычно пролегают дороги или пешеходные тропы; поэтому седловины в горах называют перевалами.

9. Что такое высота сечения рельефа.

Высота сечения рельефа - разность значений высот двух последовательных основных горизонталей на карте или плане. Значение высоты сечения рельефа h зависит от угла наклона местности α и расстояния d между горизонталями на карте или плане (заложения) и определяется по формуле

Для равнинных и предгорных районов принимая предельный угол наклона равным 45°, а минимально возможное заложение равным 0,2 мм (толщина горизонтали 0,1 мм и просвет между горизонталями 0,1 мм) в масштабе карты, получим следующие значения высоты сечения рельефа для топографической карты масштаба: 1:10000 - 2 м (из практических соображений связи с картой следующего масштаба принимают 2,5 м); масштаба 1:25000 - 5 м; 1:50000-10 м; 1:100000 - 20 м.

В горных районах, где угол наклона может превышать 45°, вместо расчетного значения высоты сечения рельефа обычно принимается вдвое большее, т. е. для карт указанных выше масштабов 5, 10, 20 и 40 м соответственно.

Для топографических карт масштабов 1: 200000 и 1: 500000 расчетные значения высоты сечения рельефа 40 и 100 м применяются в предгорных, горных и высокогорных районах, а на равнинных территориях для лучшей характеристики форм рельефа используется вдвое меньшее сечение - 20 и 50 м. Схемы районирования территории РФ по высоте сечения рельефа приводятся в документах, регламентирующих создание карт соответствующих масштабов.

На одном листе топографической карты применяется только одна высота сечения рельефа. Исключение представляет карта масштаба 1: 1 000 000. В связи с большой площадью ее листов, охватывающих разнообразные по характеру рельефа территории, на ней применяется переменная высота сечения рельефа: в зоне 0 - 400 м она составляет 50 м; 400 - 1 тыс. м - 100 м; выше 1 тыс. м - 200 м. Переменная высота сечения рельефа применяется и на обзорных мелкомасштабных картах.

Значения высоты сечения рельефа, принятые для топографических планов масштабов от 1:500 до 1:10000 приведены в таблице.

Характеристика участка местности и максимальные доминирующие углы наклона Масштаб топографического плана
1:200 1:500; 1:1000 1:2000 1:5000 1:10000
Спланированные территории и участки с твердым покрытием с углами наклона до 2° 0,25; 0,5 0,25; 0,5 0,25; 0,5 0,5; 1,0
Равнинный с углами наклона до 2° 0,25; 0,5 0,5; 1,0 0,5; 1,0 0,5; 1,0 1,0; 2,0
Всхолмленный с углами наклона до 4° 0,5; 1,0 0,5; 1,0 1,0; 2,0 2,0; 2,5
Пересеченный с углами наклона до 6° 0,5; 1,0 1,0; 2,0 2,0; 5,0 2,5; 5,0
Горный и предгорный с углами наклона свыше 6° 1,0; 2,0 2,0; 2,5 2,0; 5,0 5,0; 10,0

При составлении топографических планов с использованием материалов съемки более крупных масштабов высота сечения рельефа может быть равна высоте сечения исходного плана и материалов съемки. При инженерно-гидрографических работах на реках, водотоках и водоемах высоту сечения рельефа дна при изображении его горизонталями (изобатами) следует принимать: аналогичной высоте сечения рельефа для топографической съемки прибрежной части; для специального и подробного промеров — 0,5 м при глубинах до 10 м; для облегченного и рекогносцировочного промеров — 0,5 м для глубин менее 5 м и 1 м — для глубин свыше 5 м.

Под рельефом местности понимают совокупность неровностей земной поверхности.

На топографических планах рельеф изображется горизонталями (0,1-0,15мм) кривыми. Расстояние между соседними горизонталями по высоте называется сечением рельефа. В плане заложением для большей выразительности рельефа каждая 4-я четная по высоте 5м(сечения через 0,5) или 5-я кратная высоте h=1м горизонталь утолщается и проводится t=0,25мм и в разрыве подписывается ее высота.

Основанием цифры в сторону понижения рельефа.

Направление ската склона обозначается берх-штрихами – черточками длина черточки 0,5мм.

Для указания высот горизонталей их отметки подписывают в разрывах утолщенных 0,25мм горизонталей располагая основание цифр вниз по рельефу.

Различают следующие формы рельефа:

1). гора-куплообразная возвышенность (выше 200м)

2).Котловина (чашеобразное углубление)

3). Хребет – возвышенность вытянутой формы с постепенным понижением имеет водораздельную линию

4). Лощина – вытянутое углубление местности постепенно понижающиеся. Имеет водозборнную линию

5). Сетловина – понижение местности между соседними возвышенностями

Крутизна ската местности характеризуется углом наклона местности или уклоном. При одинаковой высоте сечения рельефа расстояние между горизонталями (заложение) тем меньше чем круче скат

Рельеф местности изображается на топографической карте горизонталями -кривыми , замкнутыми линиями , проходящими через точки местности с одинаковой высотой над уровнем моря (рис. 5). Горизонтали можно представить как последовательно зафиксированные на определенных высотах границы уровня воды, которая постепенно затопляет местность.

Чтобы правильно изобразить рельеф необходимо знать его основные формы.

Крутизна скатов.

О крутизне ската можно судить по величине заложений на карте. Чем меньше заложение (расстояние между горизонталями), тем круче скат. На рис. 12, а заложение do больше d 0 , поэтому скат первой линии круче.

Для характеристики крутизны ската на местности используют угол наклона u (рис. 12.б). Чем больше угол наклона, тем круче скат. Другой характеристикой крутизны служитуклон . Уклоном линии местности называют отношение превышения к горизонтальному проложению i=h/d=tgu. Из формулы следует, что уклон безразмерная величина. Его выражают в процентах % (сотых долях) или в про­милле % 0

График заложения предназначен для определения крутизны скатов. TgV=h/d; d=h/tgv; h-высота сечения

Высота сечения рельефа,заложение,уклон и их взаимосвязь.

Разность высот двух соседних горизонталей называется высотой сечения , а расстояние между ними вдоль проекции профиля склона - заложением . Угол между направлением ската и его заложением составляет крутизну ската. Крутизна ската определяется по расположению горизонталей. Чем круче скат, тем ближе расположены горизонтали друг к другу. Максимальная крутизна ската, изображаемая горизонталями, не превышает 45°. Скаты круче 45° изображаются условными знаками.

Чтобы определить крутизну склона местности по топографической карте, нужно помнить, что расстояние между горизонталями (заложение), равное 1°, соответствует крутизне 1° на местности. Во сколько раз заложение будет больше (меньше), во столько раз крутизна ската будет меньше (больше) 1°.

Понятие о цифровых моделях рельефа местности и их использовании в строительстве.

Номенклатурой называется система нумерации отдельных листов топографических карт и планов разных масштабов.

В настоящее время в инженерной практике широко используются ЭВМ, позволяющие автоматизировать процессы изысканий, проектирования и строительства сооружений.

Использование ЭВМ.потребовало применения не только принципиально новой методики решения задач изыскания и проектирования, но и новых форм хранения информации о топографии местности.

В памяти ЭВМ данные о местности должны быть представлены в цифровой форме, например в виде координат X, У, Я некоторого упорядоченного множества точек земной поверхности. Такое множество точек с их координатами образует цифровую модель местности.

Цифровая модель местности должна давать информацию о контурах и рельефе местности в объеме, достаточном для решения определенной задачи, и вместе с тем не загромождать память машины.

Под цифровой моделью рельефа будем понимать некоторое количество точек с координатами X, Y,Z, выбранных на топографической поверхности таким образом, чтобы путем линейного интерполирования получить отметки других точек с требуемой точностью.

Выбор точек, характеризующих топографическую поверхность местности, является наиболее сложным элементом построения ЦМР. Критериями такого выбора являются характер рельефа местности (равнинный, всхолмленный, моренный и т. д.) и точность получения на модели высот, диктуемая условиями конкретно решаемой инженерной задачи. Поэтому существует трудность создания универсальной модели и возможность построения моделей, отвечающих как условиям решения поставленной задачи, так и характеру рельефа топографической поверхности.

НОМЕНКЛАТУРА ТОПОГРАФИЧЕСКИХ ПЛАНОВ И КАРТ.

Для решения различных вопросов практики требуются карты и планы различных масштабов. Для удобства пользования многолистными картами вся земная поверхность делится на части меридианами и параллелями в единой системе. Система условного обозначения (буквами и цифрами) листов, планов и карт различных масштабов называется – номенклатурой карт. Основой номенклатуры составляет карта в масштабе 1:1000000. Для листа такой карты принят участок земной поверхности в 4° по широте (ряды) и 6° по долготе (колонны). Земная поверхность изображена картами 1:1000000 полученными разделением на 60 полос меридианами и на 22 пояса, называемых рядами. Каждая из полос, ограниченная меридианами, называется колоннами. Они нумеруются от восточного меридиана цифрами от 1 до 60°. Протяжённость колонны по долготе = 6°. Каждый пояс ограничивается параллелями и обозначается заглавными латинскими буквами от A до V, начиная от экватора к северному полюсу. Чтобы устранить неудобства, возникающие на стыке карт двух зон, на рамках карт наносят дополнительную сетку, являющуюся продолжением сетки соседней зоны. Оцифровка дополнительной сетки наносится за внешней рамкой карты.

Листы карты М 1:1000000 делятся на:

4 листа карты М 1:500000, обозначаемых заглавными буквами А, Б, В, Г;

На 36 листов карты М 1:200000 (I-XXXVI);

Основное деление на 144 листа карты М 1:100000 (1-144). Лист карты М 1:100000 является основой для карт в более крупном масштабе 1:50000; 1:25000; 1:10000 (А, Б, В, Г; а, б, в, г; 1, 2, 3, 4…). Для топографических планов и карт листа М 1:100000 делится на 256 частей (1-256). Для М 1:2000 каждый лист масштаба 1:5000 делится на 9 частей и обозначается маленькими русскими буквами.9.2 Измерение горизонтальных углов

Существ способы измерения горизонт углов: 1. Способ приёмов – примен, когда из вершины измеряемого угла выходит не более 2 направлений.

АВ, АС – стороны измеряемого угла. Правый угол – если от В к С. Левый угол – от С к В. Точка В – правая задняя, С – левая передняя. В точку А ставим теодолит и приводим его в рабоч положение. закрепляем лимб, открепляем алидаду, зрительную трубу наводим на точку В. По горизонтальн кругу теодолита берём отсчёт в 1 (произвольный). Открепляем алидаду и зрит трубу наводим на точку С и берём отсчёт с 1 . Это измерение выполненное при одном положении теодолита называется полуприёмом. β 1 =в 1 -с 1 – угол в полуприёме. 2. Способ круговых приёмов . Применяют, когда из вершины угла выходит несколько направлений. 01 – начальное направление, а 1 = 0°05". На лимбе устанавливают отсчёт, близкий к 0. Закрепляем алидаду, открепляем лимб и выбираем начальное направление и с этим отсчётом наводим зрит трубу на нач направление. Закрепляем лимб, открепляем алидаду и зрит трубу по ходу часовой стрелки наводим на все точки.

Берём отсчёты а 1 ,а 2 ,…,а 6 и повторно наводим на нач точку а 1 => а 1 ". трубу проводим через зенит, открепляем алидаду, 3-ий раз наводим на начальную точку и берём отсчёт а 1 "". Теодолит поворачиваем против хода часовой стрелки и снимаем отсчёт => в нач точке а 1 """. Углы вычисляем как разность отсчётов по сторонам углов. 3. Способ повторения . Над точкой устанавливают теодолит. На лимбе устанавлив отсчёт, близкий к 0. (аллидада откреплена). Открепляем лимб, прикрепляем алидаду и этим отсчётом наводим на точку А, открепляем алидаду и зрит трубой наводим на 2 точку, берём контрольный отсчёт Ак. N – число повторений. Β = (А – А 1 + N 360°) / 2N.

12. (10.1) Системы координат: географическая, плоская прямоугольная, полярная .

Координаты - числа, определяющие положение точки земной поверхности относительно начальных (исходных) линий или поверхностей. В инженерной геодезии наи­большее применение получили системы географических, прямоугольных, и полярных координат.

Система полярных координат

Эту систему применяют при определении планового положения точек на небольших участках в процессе съемки местности и при геодезических разбивочных ра­ботах.За начало координат - полюс принимают точку О местности, за начальную координатную ли­нию - полярную ось ОА, произвольно расположенную на местности. Полярными координатами точки М будут полярный угол бета, отсчитываемый по часовой стрелке от полярной оси и полярное расстояние (радиус-вектор)OM-S

По схеме «Уточненная схема районирования территории СССР по высотам сечения рельефа на топографических картах» о. Сахалин лежит на территории равнин и горных территорий, сечение рельефа для масштаба 1:25000 будет равно 2,5 метрам.

При выборе высоты сечения рельефа необходимо учитывать очень многие факторы и требования, предъявляемые к изображению рельефа на топографических картах и планах. Является обеспечение необходимой точности положения горизонталей при использовании различных методов съемок, и одновременно одинаковая наглядность рисунка горизонталей на картах одних и тех же масштабов и при одном и том же сечение рельефа.

При изображении рельефа на картах необходимо четко выделять все горизонтали, даже при небольших заложениях. При изображении крутых ненарушенных склонов небольшой протяженности сначала проводят все утолщенные горизонтали, а между ними – такое количество горизонталей, которое позволяет избежать их слияния. На основе учета природных закономерностей ландшафта, изображение на картах рельефа должно быть увязано с изображением других компонентов ландшафта.

Практически в работах по созданию топографических карт предельно малым расстоянием между горизонталями (заложением) считается 0,2 мм.

Формула по которой определяется заложение рельефа следующая:

Где h- высота сечения рельефа; a - угол наклона поверхности.

Поэтому при выборе сечения рельефа необходимо учитывать преобладающие углы наклона поверхности.

Рельеф поверхности территории России характеризуется большим разнообразием типов исложностью своего строения. Это определяет необходимость регионального подхода к выбору высоты сечения рельефа на топографических картах всего масштабного ряда, что установлено в

общеобязательном документе: «Основные положения по созданию топографических карт масштаба 1:10000, 1:25000 , 1:50000 , 1: 100000», к которому прилагается схема районирования территории страны по высотам сечения рельефа на топографических картах. На этой схеме выделено несколько групп районов, отличающихся своими морфологическими характеристиками. Учитывая что, территория о. Сахалина характеризуется равнинными и горными районами с преобладающими склонами до 3 *. То по таблице «Высоты сечения рельефа на топографических картах», приведенной в « Полевой картографии» (Т.В. Верещака, Н.С. Подобелов), определяем, что оптимальной высотой сечения рельефа рассматриваемой территории является 2 метра.

Но рельеф данной местности неоднороден. Поэтому есть вероятность, что придется использовать полугоризонтали. Но прибегать к

использованию разных высот сечения рельефа в разных районах нет необходимости, так как это заметно усложнит чтение карты и проведение по ней морфометрических работ, кроме того, это не обусловлено морфометрическими характеристиками рельефа. В случае, когда на одном листе карты изображаются, например, горные и равнинные участки, сечение рельефа в пределах каждого соответствующего листа карты оставляется единым с проведением дополнительных горизонталей или же с проведением не всех горизонталей основного сечения между утолщенными горизонталями. Таким образом, выбор оптимального варианта высоты сечения рельефа на топографических картах должен опираться на широкое использование сведений о

геоморфологических особенностях рельефа каждого конкретного участка картографируемой территории.

Метод картографирования

В настоящее время топографические карты и планы масштабов 1:500- 1:25000 создаются преимущественно на основе использования аэрофототопографической съемки, а в отдельных случаях – наземной фототеодолитной съемкой. Топографические карты более мелких масштабов

получают путем камерального составления по имеющимся картам более крупного масштаба.

Аэрофототопографическая съемка - вид топографической съемки, которая выполняется по аэрофотоснимкам и другим материалам аэрофотосъемки при помощи фотограмметрических приборов. Он производится комбинированием и стереотопографическими методами.

На основе точек полевой плановой привязки аэрофотоснимков и планового сгущения опорной сети способами фототриангуляции изготавливают мозаичные фотопланы из предварительно трансформированных аэрофотоснимков. С мозаичных фотопланов изготавливают светокопии

(репродукции), фотоизображение которых дешифрируют в полевых условиях для получения изображения контуров. На этих же репродукциях производят рисовку рельефа методом наземной топографической съемки. В результате получают полевой составительский оригинал топографической карты.

Комбинированный метод используется при картографировании главным образом заселенных равнинных районов и также всхолмленной местности.

Стереотопографический метод отличается большой дифференциальностью.

Основными процессами которого являются:

Маркировка опознаков и создание планово-высотного обоснования съемки;

Производство аэрофотосъемочных работ;

Полевое и камеральное дешифрирование аэрофотоснимков;

Рисовка рельефа на стереообрабатывающих приборах;

Увязка результатов дешифрирования и рисовки рельефа на фотопланах, графических планах или других основах составительского оригинала.

Этот метод создания топографических карт отличается от комбинированного сведением к минимуму полевых работ, поэтому он является самым рентабельным.

Фототеодолитная съемка – метод создания топографических планов и карт, основанный на использовании фотоснимков, полученных фотографированием с точек земной поверхности.

Фотографирование производится фототеодолитом. Составление оригиналов топографических карт и планов при этом методе съемки осуществляется по фотоснимкам с использованием фотограмметрических приборов.

Комплекс работ слагается из следующих основных процессов:

Выбор базисов и контрольных точек на местности;

Выполнение полевых и камеральных работ по определению координат станций, контрольных

точек и длин базисов;

Фотографирование фототеодолитом местности с выбранных станций и выполнение фотолабораторных работ;

Фотограмметрическая обработка стереоскопических пар наземных снимков на стереокомпараторах или стереоавтографах для получения топографической карты соответствующего масштаба.

Фототеодолитная съемка используется главным образом для создания крупномасштабных топографических планов при выполнении различных инженерных изысканий на небольших участках территории. Эта съемка выполняется редко, как правило в горных и высокогорных районах.

Полевое дешифрирование выполняют непосредственно на местности путем сопоставления аэроснимков с натурой. Это надежный метод дешифрирования, обеспечивающий большую достоверность получаемых результатов, но и наиболее трудоемкий

Камеральное дешифрирование предусматривает изучение объектов по фотоснимкам в лабораторных условиях. Этот метод экономичен, менее трудоемок, обеспечивает изучение объектов с помощью стационарных приборов, но он не может обеспечить исчерпывающую полноту, достоверность полученной информации и регистрацию изменений.

Комбинированное дешифрирование заключается в совместном использовании полевого и камерального дешифрирования в различных вариантах и соотношениях, в зависимости от конкретных условий.

И полевое, и камеральное дешифрирование может проводиться визуально и

инструментально. При выборе наиболее рациональной организации проведения работ по топографическому дешифрированию исходят из анализа и учета следующих условий:

1. Назначение и масштаб создаваемой (обновляемой) карты.

Метод создания.

2. Географические особенности района. Решающее значение имеют: тип

ландшафта, степень хозяйственной освоенности территории, плотность и

значимость объектов антропогенного характера, проходимость,

удаленность местности.

3. Топографо-геодезическая изученность объекта дешифрирования.

Наличие и кондиционность съемок прежних лет.

4. Обеспеченность материалами аэросъемки, их качество,

современность. Параметры, условия и время фотографирования.

5. Соотношение масштаба создаваемой (обновляемой) карты

и масштаба аэрофотосъемки.

6. Обеспеченность материалами картографического значения

других ведомств и справочными данными.

7. Технические средства, которые могут быть использованы

при создании (обновлении) карт.

8. Виды геодезических и топографических работ, проектируемые на

объекте картографирования. Они имеют значение для организации

сбора сведений о местности и для постановки самого дешифрирования.

9. Отчетные материалы, предусмотренные техническим проектом. Они

могут отличаться от обычных, установленных инструкциями, при

постановке съемок для создания специализированных карт, фотокарт и

других топографических карт нового типа.

При выборе технологии дешифрирования необходим анализ и учет всех перечисленных факторов вместе. Они определяют приемы и способы дешифрирования, соотношение полевых и камеральных работ, очередность полевого и камерального дешифрирования в каждом конкретном случае.

Приступая к дешифрированию следует уяснить, какие объекты могут встретиться на территории картографирования, как они изображаются на аэроснимках и как их показать условными знаками.

Основным материалом дешифрирования являются аэрофотоснимки. Любой вид дешифрирования должен быть обеспечен полным комплектом аэрофотоснимков с перекрытиями, необходимым для их стереоскопического изучения. Помимо аэроснимков используют фотосхемы и фотопланы. Они служат основой для фиксации результатов дешифрирования.

В зависимости от характера и изученности района, метода съемки и технологии топографических работ применяют различные варианты полевого и камерального дешифрирования: сплошное полевое; маршрутное полевое; сплошное камеральное; камеральное в сочетании с полевым.

Наиболее рациональной методикой при создании и обновлении топографических карт является сочетание полевого и камерального дешифрирования в виде последовательно чередующихся этапов. Оно предполагает два основных варианта.

1. Полевое дешифрирование по маршрутам с последующим

камеральным дешифрированием.

2. Предварительное камеральное дешифрирование с последующей

полевой доработкой.

Для территории о. Сахалин наиболее подходящим является второй вариант,

т.к. природные условия района и история ее картографирования не предопределяют сложности при создании карты; район картографирования достаточно изучен в топографическом отношении и обеспечен материалами;

В этом случае, как правило, работу строят по схеме: 1) изучение района, предварительная рекогносцировка с составлением эталонов, анализ имеющихся материалов указаний редактора; 2) предварительное камеральное дешифрирование; 3) составление проекта полевого обследования; 4)полевая доработка дешифрирования и выборочный полевой контроль камерального дешифрирования; 5) полевая приемка работ.

В первую очередь составляют проект наземных маршрутов.

Тщательно продумывают организацию работ, дифференцируют маршруты

пешеходные, лодочные по рекам, автомобильные. Избегают дублирования и холостых ходов.

Редактор следит за размещением маршрутов на смежных листах.

По окончании проектирования наземных маршрутов при необходимости намечают аэровизуальные маршруты так, чтобы образовалась единая сеть обследования участка, где наземные и аэровизуальные маршруты дополняют друг друга.

Наземное маршрутное дешифрированиеследует выполнять в полосе шириной около 250 м, Впрочем, ширина полосы обследования

может корректироваться в зависимости от характера конкретного участка местности иразмещения объектов на нем. Маршруты прокладывают с таким расчетом, чтобы данные

полевых наблюдений обеспечили камеральное дешифрирование межмаршрутных пространств.

На о. Сахалин маршруты целесообразно прокладывать вдоль железных дорог, и рек так как передвижение по другим транспортным путям может быть сильно затруднено, а кроме того все важные объекты, дешифрирование которых требует особой тщательности, приурочены именно к этим транспортным путям. На охватываемой маршрутом территории выполняют

распознавание объектов при сличении с местностью, определение их характеристик, нанесение неизобразившихся объектов, сбор сведений и названий, фотографирование, составление абрисов. Особое внимание обращают на установление дешифровочных признаков

путем сопоставления дешифрируемых объектов местности с их изображением на аэроснимке. Дешифрирование ведут на контактных отпечатках или на маршрутных фотосхемах с соответствующими парными аэроснимками. Результаты аккуратно отмечают на снимках сразу по ходу маршрута.

Для детальных полевых обследований намечают станции наблюдения и эталонные участки.



Просмотров