AMD Phenom II X6 с числом ядер от одного до шести: тесты масштабируемости. AMD Phenom II X6 с числом ядер от одного до шести: тесты масштабируемости Обработка изображения в VSO Image Resizer

Конкуренция — двигатель прогресса. Если бы не конкуренция, мы бы не стали свидетелями такого стремительного совершенствования компьютерной техники. В одном из трудов американских авторов П. Хоровица и У. Хилла «Искусство схемотехники» было сказано: «Если бы Боинг 747 прогрессировал с такой же скоростью, с какой прогрессирует твердотельная электроника, то он умещался бы в спичечном коробке и облетал бы без дозаправки земной шар 40 раз!» Ну, толку от такого маленького Боинга для обывателя не так уж и много, а вот рост производительности компьютеров идет пользователям только на пользу! Благодаря постоянной борьбе за кошелек покупателя оба процессорных гиганта вынуждены все время работать над усовершенствованием своих продуктов. Это означает, что каждый новый процессор быстрее, холоднее и, зачастую, дешевле предшественника.

Каким же образом производители увеличивают производительность центральных процессоров? Ответ прост: необходимо, чтобы процессор выполнял как можно больше вычислений за единицу времени. Для этого нужно повышать тактовую частоту процессора или увеличивать количество выполняемых инструкций за такт. И, если рост тактовых частот ограничивается физическими свойствами полупроводников, то параллельное исполнение кода может существенно ускорить работу центрального процессора. В серверных решениях и профессиональных рабочих станциях многопроцессорные конфигурации используются еще с конца прошлого века. Но весной 2005 года AMD и Intel практически одновременно представили свои первые двухъядерные продукты: Athlon 64 X2 и Pentium D. Дальнейшим развитием этих событий стал выпуск четырехъядерных CPU. А совсем недавно оба процессорных гиганта представили настольные шестиядерные процессоры. И если Intel свой Core i7 980X позиционирует как решение для очень состоятельных энтузиастов, то AMD нацелила свои шестиядерные процессоры на массовый рынок! Сегодня мы подробно рассмотрим новейший AMD Phenom II X6 и сравним его производительность с конкурирующим решением Intel.

Phenom II X6: дизайн ядра, спецификации и фирменные технологии

Процессоры Phenom II X6 были представлены публике 27 апреля 2010 г. вместе с новейшим набором системной логики AMD 890FX. Такой системный подход AMD к анонсу продуктов вызывает уважение. Дело в том, что каким бы мощным не был процессор, для раскрытия его потенциала нужна соответствующая аппаратная платформа и программная поддержка. И с тем и с другим у AMD все в порядке. Платформа Socket AM3 предлагает широкие возможности расширения и функциональности, а фирменное ПО AMD Overdrive позволяет производить тонкую конфигурацию и мониторинг аппаратного обеспечения прямо из среды операционной системы MS Windows. А если добавить к этому всему великолепные DX11-совместимые графические адаптеры семейства «Evergreen», то мы получаем полный набор компонентов для построения мощного игрового компьютера. Вот как выглядит персональный компьютер класса High-end в 2010г. по версии AMD:


Итак, перед нами очень и очень серьёзная конфигурация, которой по плечу любая задача, будь то современная игра, или кодирование видео для домашнего архива. С новейшим чипсетом AMD 890FX и материнской платой на его основе мы познакомили вас в одной из предыдущих статей. Обзору архитектуры и тестированию ATI Radeon HD5870 также был посвящен отдельный материал. Теперь настало время познакомить вас с «сердцем» новой платформы — AMD Phenom II X6.

На сегодняшний день в продуктовой линейке AMD Phenom II X6 официально присутствуют только две модели: 1055T и 1090Т. Модель 1055T имеет модификацию с пониженным энергопотреблением. Характеристики процессоров семейства Phenom II X6 представлены в таблице:

Наименование AMD Phenom II X6 AMD Phenom II X6 AMD Phenom II X6
Модель 1090T BE 1055T 1055T
Номер для заказа HDT90ZFBGRBOX HDT55TFBGRBOX HDT55TWFGRBOX
Ядро Thuban Thuban Thuban
Степпинг E0 E0 E0
Техпроцесс, нм 45nm SOI 45nm SOI 45nm SOI
Разъем AM3 AM3 AM3
Частота, МГц 3200-3600 2800-3300 2800-3300
Множитель 16-18 14-16,5 14-16,5
HyperTransport, МГц 4000 4000 4000
Кэш L1, КБ 6x128 6x128 6x128
Кэш L2, КБ 6x512 6x512 6x512
Кэш L3, КБ 6144 6144 6144
Напряжение питания, В 1,125-1,40 1,125-1,40 1,075-1,375
TDP. Вт 125 125 95
Предельная температура, °C 62 62 71
Набор инструкций ISC, IA32, x86-64, NXbit, MMX, 3DNow!, SSE, SSE2, SSE3, SSE4a ISC, IA32, x86-64, NXbit, MMX, 3DNow!, SSE, SSE2, SSE3, SSE4a

В основе новых процессоров AMD лежит хорошо знакомая архитектура K10.5, со всеми её преимуществами и недостатками. Обновленное ядро Thuban конструктивно представляет собой старый добрый Deneb с увеличенным до шести количеством ядер:


Увеличение последних повлекло за собой закономерный рост числа транзисторов с 758 млн. (Deneb) до 904 млн. (Thuban), а площадь ядра возросла с 285 кв. мм до 346 кв. мм соответственно. Следует заметить, что объем разделяемого L3-кеша остался без изменений и по прежнему составляет 6 МБ. Процессор производится по улучшенному 45-нм литографическом техпроцессу, что позволило AMD ограничить тепловыделение Phenom II X6 на уровне 125 Вт. Конечно, себестоимость производства Thuban несколько выше, чем у Deneb, а процент выхода годных пластин меньше, что связанно с большей сложностью ядра. Так что любители лотереи могут рассчитывать на скорое появление процессоров AMD, в основе которых лежит новейшее ядро с отключенными функциональными блоками. Кто знает, может быть, мы еще увидим пятиядерные процессоры?! Phenom II X6 получили официальную поддержку оперативной памяти DDR3 1600 МГц, тогда как все прежние процессоры в исполнении Socket АМ3 поддерживают DDR3 с максимальной частотой 1333 МГц. При этом контроллер памяти сохранил обратную совместимость с ОЗУ стандарта DDR2, так что обладатели системных плат Socket АМ2+ запросто смогут установить новейший шестиядерный процессор, предварительно обновив BIOS.

С выходом на рынок Phenom II X6 компания AMD представила широкой общественности технологию Turbo Core. Суть ее работы заключается в динамическом управлении частотой вычислительных ядер. При интенсивной загрузке одного-трех ядер их частоты увеличиваются на 400-500 МГц. При этом частота неактивных ядер снижается до 800 МГц. В моменты срабатывания Turbo Core напряжение на процессоре повышается до 1,475 В, но тепловыделение все равно остается в рамках TDP, равном 125. При четырех-шести вычислительных потоках все ядра работают на частоте 2800 МГц. Управление частотой ядер и напряжением целиком и полностью возложено на BIOS совместимых материнских плат. Вот как работает технология Turbo Core на процессоре AMD Phenom II X6 1055T:


Таким образом, Turbo Core позволяет получить некоторый прирост при выполнении задач, которые не имеют ярко выраженной многопоточной оптимизации. К таким задачам относятся игры и большинство программ обработки звука или изображений. Влияние данной технологии на производительность мы рассмотрим несколько позже, а пока познакомимся поближе с нашим Phenom II X6 1055T.

В комплекте с 1055Т, которые предназначены для розничной продажи, поставляется неплохой кулер на тепловых трубках AV-Z7UH40Q001. Такой же системой охлаждения комплектуются и другие модели процессоров AMD с тепловым пакетом 125 Вт. Кулер оснащен вентилятором диаметра 70 мм, который в моменты высокой нагрузки разгоняется до 5000 об/мин, издавая при этом неприятный шум.


Как и все современные процессоры AMD Phenom II X6 1055T накрыт теплораспределяющей крышкой. Внешне, за исключением маркировки, CPU не отличим от своих собратьев с меньшим количеством ядер.


Процессор выпущен на восьмой неделе 2010 года. Диагностическая утилита CPU-Z 1.54 уже обучена распознавать Phenom II X6 и выдает следующую информацию:


У нашего экземпляра оказался довольно высокий VID, равный 1,425 В, но в моменты простоя работает технология Cool&Quite, которая понижает частоту ядер до 800 МГц и напряжение до 1,225 В. Как мы уже говорили ранее, процессоры на ядре Thuban получили официальную поддержку DDR3 1600 МГц:


Разгонный потенциал первых Phenom II на ядре Deneb степпинга С2 лежал в районе 3700 МГц, причем для покорения таких частот не требовались сложные и дорогостоящие системы охлаждения. Перевод ядра Deneb на новую ревизию С3 поднял планку разгона до 4000 МГц при использовании качественного воздушного кулера. Разгонный потенциал процессоров Phenom II X6 пока что слабо изучен, но в интернете есть сведения об успешном разгоне Phenom II X6 1055T до 4000 МГц и выше. Однако, также есть сведения о повышенном требовании новых процессоров AMD к мощности VRM материнских плат. Для экспериментов по разгону была выбрана плата MSI 890FXA-GD70 на чипсете AMD 890FX, с подробным обзором которой мы ознакомим вас в ближайшее время. Эта системная плата имеет продвинутые возможности разгона и оснащена мощной подсистемой питания CPU, построенной по схеме «4+1», где четыре фазы питают вычислительные ядра, а одна фаза отвечает за формирование напряжения для контроллера ОЗУ и кеш-памяти третьего уровня.

Наш процессор отказался работать при повышении базовой частоты выше 270 МГц. Даже на 272 МГц система отказывалась стартовать, несмотря на отключение CnQ и Turbo Core, понижение множителя HT, частот NB и памяти. Такое странное поведение данного процессора было замечено еще во время тестирования системной платы Gigabyte GA-890FXA-UD7 . Первоначальный разгон составил 3780 МГц (14х270 МГц) при напряжениях Vcore 1,48 В и Vnb 1,225 B. Система абсолютно стабильно работала в LinX и Prime95, но странным образом вылетала из CPU-теста 3DMark Vantage! Пришлось снизить базовую частоту на 5 МГц. В итоге разгон составил 3710 МГц, а частоты шины HyperTransport и NB составили 2385 МГц. Понижение тактовой частоты позволило уменьшить напряжение на ядре процессора до 1,46 В.


CPU-Z неверно отображает напряжение процессора при разгоне Phenom II X6 11055T на системной плате MSI 890FXA-GD70. Вместо текущего значения напряжения выводится значение CPU VID. Программа CPUID Hardware Monitor 1.16 вполне корректно считывает и выводит Vcore. Обращаем ваше внимание на непривычно низкие температуры, которые регистрируют подсокетный датчик и встроенный в CPU термодиод. При разгоне температура под нагрузкой не превысила 51 °С.

Увы, нам не удалось получить «заветные 4 ГГц», но с другой стороны частота стабильной работы всех шести ядер была увеличена на 900 МГц, притом совершенно бесплатно! Не забывайте, что разгон − это лотерея и частотный потенциал процессоров сильно разнится от экземпляра к экземпляру. Скорее всего, нам просто не повезло с конкретным процессором…

Как правило, отсутствие новинки каждые два квартала в мире процессоростроения приводит к незамедлительной гибели компании, - утере значительной доли рынка. Это обстоятельство в компании AMD прекрасно понимают. И для того, чтоб не отдать средний и низший ценовой диапазон продукции от компании Intel она выпускает на рынок новые шестиядерные процессоры, - Phenom II X6. Увеличение количества ядер позволяет компании не увеличивать частоту работы ядер до запредельных цифр путем повышения их рабочего напряжения и, соответственно, оставаться в рамках тепловыделения до 125 Ватт.

Новые процессоры призваны отстоять средний ценовой сегмент у компании Intel , которая пользователю в данном сегменте не предлагает ни одного шестиядерного процессора. Как показывают отзывы пользователей, новые шестиядерные процессоры отлично себя ведут в средах с поддержкой мультизадачности. В то время как приложения умеющие работать только с двух- и четырехъядерными решениями не могут оценить должным образом новинки от AMD и четырехъядерная продукция от Intel того же ценового диапазона, оказывается гораздо более производительной, нежели шестиядерники от AMD.

Новые процессоры от AMD поддерживают так называемую технологию Turbo Core , которая позволяет увеличивать частоту работы ядер, когда нагружены не все процессорные ядра. По заявлению пользователей, новая линейка шестиядерных процессоров от AMD при повышении рабочего напряжения неплохо разгоняется до отметки в 4 Ггц, что является некоторым рекордом для продукции от данной компании.

На сегодняшний день произведен анонс двух процессоров данного семейства: младший Phenom II X6 1055T и старший Phenom II X6 1090T. В нашем обзоре будет представлен процессор Phenom II X6 1055T, который можно уже сегодня найти в свободной продаже по всей нашей стране. Стоимость данного продукта находится ниже 250 долларов или менее 7500 рублей. В столице страны без проблем его можно приобрести за 6700 рублей. Согласитесь, заманчивая стоимость для шестиядерного процессора с 6 Мб КЭШа третьего уровня на борту?

История процессоров Phenom II X6.

-- картинка кликабельна --

Архитектура ядра AMD Phenom II X6

Многим может показаться, что во вводной части нашей статьи мы несколько лукавили относительно того, что у компании AMD нет каких-либо новых технологий, - мол, вот, шестиядерные процессоры подтверждение наличия новых перспективных решений. Несомненно, демонстрируемые вам процессоры от AMD действительно являются очень перспективными решениями, но новинками их не назовешь. У меня имеется достаточно большой опыт сборки серверов для самых различных решений, поэтому могу напомнить, что шестиядерный процессор AMD Opteron существует на рынке уже с середины прошлого года. Ядро шестиядерных процессоров AMD Opteron носит имя Istanbul. Данные процессоры имеют также 6 Мб КЭШ памяти третьего уровня на борту и могут похвастаться энергопотреблением не более 75 Ватт, как некоторые существующие новинки текущего года.

Новые шестиядерные решения имеют ядра под названием Thuban.

Естественно, было бы глупо полагать, что компания AMD путем обычного переименования своего топового ядра, начала бы продавать его как настольный продукт.

-- картинка кликабельна --

Архитектура ядра AMD Opteron - Istanbul

На самом деле между ядрами Istanbul и Thuban имеются некоторые отличия, которые представлены на схемах строения процессоров. В первую очередь, это урезанное число шин. Вместо трех линий шин HyperTransport в ядре Istanbul, в ядре Thuban используется одна линия. Если контролер памяти ядра Istanbul поддерживает серверную регистровую оперативную память ECC, то ядра Thuban лишены данной серверной возможности. Тем не менее, по заявлению компании AMD площадь ядра новых процессоров Phenom II X6 осталась равной 346 квадратных миллиметров, именно такую площадь имеют процессоры Opteron на ядре Istanbul. Возникает справедливый вопрос: "Что собой представляют новые процессоры на ядре Thuban - урезанные ядра Istanbul или ядро четырехъядерного Debeb с добавлением двух ядер?"

Пожалуй, на данный вопрос сегодня мы не сможем дать окончательный ответ. Для этого необходимо протестировать не одну партию процессоров на всех трех ядрах и на основе набранной статистики получить точный ответ на поставленный вопрос.

Тем не менее, любого пользователя должен мучить ответ на вопрос: "Почему анонс шестиядерных - настолько задержался?". Ответ на данный вопрос прост. AMD не может продавать новые процессоры в старшем ценовом сегменте, - по производительности они до них не дотягивают. А для продажи в среднем ценовом сегменте, необходимо снизить количество брака на 45 нанометровой технологической линии до минимума или набрать определенное количество неликвида по ядрам Istanbul, для их последующего урезания.

Спецификации процессоров Phenom II X6.
1. Шесть ядер
2. КЭШ память второго уровня: 6 x 512 KB L2
3. КЭШ память третьего уровня: 6 MB L3
4. Шина: HyperTransport 3.0
5. Контролер памяти: поддержка памятей типа DDR2 и DDR3
6. Рабочая частота: 2.8 GHz
7. Скорость обмена шины: 4.0 GT/s
8. Сокет: AM3
9. Технологический процесс: 45nm SOI
10. Тепловыделение: 125W
11. Рабочее напряжение: 1.125-1.40V
12. Максимальная температура: 62 C
13. Технологии:
- AMD Balanced Smart Cache
- AMD Dedicated Multi-cache
- AMD Virtualization (AMD-V)Technology
- AMD PowerNow 3.0 Technology
- AMD Dynamic Power Management
- Multi-Point Thermal Control
- AMD CoolCore Technology
- AMD Turbo CORE Technology

Особенностью новых процессоров является их "старые" преимущества. В частности полная совместимость с сокетными платформами AM2+ и AM3 , что позволяет домашнему пользователю путем обыкновенной перепрошивки БИОСа материнской платы установить современный шестиядерный продукт.

Тепловыделение тестируемого процессора не превышает 125 Ватт , что достаточно много для домашнего процессора по современным меркам. Понимая это, AMD начать поставки 95 Ваттных шестиядерных продуктов в ближайшее время. Очень хочется надеяться, что "ближайшее время" - будет действительно скорым. Справедливости ради хочется отметить, что 95 ваттные версии процессоров AMD Phenom II X6 1055T уже анонсированы. Как всегда распознать их можно по серийным номерам на теплораспределительной крышке. Если 125 ваттные версии имеют маркировку HDT55TFBK6DGR, то у 95 ваттных буквы "FB" заменены на "WF" и имеют следующий вид: HDT55TWFK6DGR.
Более подробно об изменениях маркировок я советую интересоваться прямо на сайте компании AMD.

-- картинка кликабельна --

Упомянутая в начале статьи технология от AMD Turbo Core является аналогом технологии Turbo Boost от компании Intel. Данная технология позволяет увеличивать тактовую частоту ядер процессора, при частичной их загруженности. Это позволяет увеличить производительность процессора при сохранении его энергопотребления и тепловыделения на заявленном уровне. Технология Turbo Core призвана обеспечить высокую производительность шестиядерного продукта в программных продуктах, которые не имеют полноценной поддержки мультизадачности на сегодняшний день.

В процессорах решение об увеличении частоты ядер увеличивается на основе данных получаемых технологией Cool"n"Quiet, которая призвана понижать множитель ядра при уменьшении нагрузки на него. Как только становится ясно, что технология Cool"n"Quiet сработала сразу на трех ядрах, происходит увеличение частоты работы оставшихся ядер на 500 Мгц. Естественно, ни о каком увеличении частоты не пришлось бы говорить без увеличения их рабочего напряжения, поэтому технология AMD Turbo Core увеличивает рабочее напряжение на 0,15 вольт. К сожалению, у процессоров AMD Phenom II X6 нет возможности управлять напряжением каждого ядра по отдельности, поэтому на 0,15 вольт увеличивается напряжение на всех шести ядрах, что сводит на нет экономию электричества во время запуска технологии Cool"n"Quiet на не нагруженных ядрах.

К сожалению, врятли у AMD на сегодняшний день имеется работающая технология раздельного контроля напряжений на ядрах или, хотя бы технология по полному отключению ядер в рамках Cool"n"Quiet, но зато существующие процессоры полностью совместимы с сокетами AM2+ и AM3, а поддержка AMD Turbo Core активируется прямо в БИОСе материнских плат.

Комплектация.

-- картинка кликабельна --

Наш герой тестирования, процессор AMD Phenom II X6 1055T был приобретен в OEM комплектации. Тем не менее, в продаже чаще всего встречаются процессоры в BOX версиях, поставляемые в коробках, изображенных на рисунке. Оформление коробок у всех процессоров одинаковое, о том какой процессор находится внутри, информирует только надпись на боковой стенке. Ниже наклейки располагается окно, через которое видна теплораспределительная крышка процессора, по надписи на которой можно уточнить модель процессора и его тепловыделение.

Если BOX вариант поставляется вместе с гарантийным талоном, наклейкой Phenom II X6 и системой охлаждения, то OEM вариант лишен всего этого.

Внешний осмотр процессора.

Внешне процессор ничем не отличается от аналогичных продуктов для сокета AM3 . Лишь маркировка на теплораспределительной крышке позволяет оценить его принадлежнсоть.

На оборотной стороне процессора имеются ножки, которые характерны для всей продукции от AMD . Гнуть их не следует, так как при выпряплении они легко отламываются.

Температурный режим работы процессора.

Нами была собрана следующая конфигурация:
1. Gigabyte GA-MA770T-UD3P
2. Phenom II X6 1055T
3. 2 х Samsung Original DDR3-1600 Mhz
4. Sapphire Radeon HD 5870.
5. Seagate Barracuda XT 2 Tb
6. Блок питания FSP 650 Ватт.

Для охлаждения во время тестов был использован известный по нашим тестированиям кулер OCZ Vendetta , который уже в течение года охлаждал старый процессор Phenom II X4.


Мы несколько раз перепроверяли получаемые температурные значения при нагрузке программным продуктом Prime95 и действительно, температура процессора не выходила за рамки 34 градусов. Единственное следует отметить, что в комнате на момент тестирования было порядка 20 градусов, - кондиционер трудился на ура. Разгон процессора AMD Phenom II X6 1055T.

Для начала следует отметить, что разгонять процессоры очень легко. Главное наличие современной материнской платы с хорошим набором возможностей для разгона через БИОС, в противном случае придется довольствоваться программным продуктом от AMD OverDrive.

-- картинка кликабельна --

Данная программа позволяет разгонять процессор прямо в операционной системе и сбивать достигнутый разгон при перезагрузке компьютера. Естественно, вы можете каждый раз запускать данную программу для подгруздки профиля разгона, но я рекомендую после получения точной частоты работы вашего процессора, я рекомендую перенести эти данные в БИОС материнской платы, чтоб система сразу начинала работать на повышенных частотах.

Уже почти два года назад на был представлен алгоритм разгона процессоров, как ни странно, - этот алгоритм совсем не изменился. Это связано с тем, что тактовая частота процессоров так и формируется путем умножения множителя процессора на частоту тактового генератора.

Также как и раньше, множители у многих процессоров фиксированы. У нашего процессора AMD Phenom II X6 1055T он фиксирован в сторону повышения на значении 14x, а вот у топового процессора Phenom II X6 1090T он не фиксирован и может изменяться в сторону повышения. Базовая частота тактового генератора шины равняется 200 Мгц, соответственно, при умножении 14 на 200 Мгц мы получаем 2800 Мгц, - частоту работы нашего процессора.

Тестируемый процессор при переходе в описанный выше режим AMD Turbo Core повышает частоту работы части ядер на 500 Мгц, то есть часть ядер работает на частоте 3,2 Ггц. Как же достигается данная частота?

Очень просто, технология AMD Turbo Core повышает множитель оставшихся ядер до 16,5х и добавляет 0,15 вольт на каждое ядро. Наличие данной технологии очень интересно для каждого оверклоккера, так как она практически гарантирует конечному пользователю то, что его процессор будет работать на частоте 3,2 Ггц в любом случае, главное обеспечить наличие хорошей материнской платы и системы охлаждения.

-- картинка кликабельна --

Так как множитель в нашем процессоре фиксирован, мы будем его разгонять путем повышения частоты тактового генератора, которая по умолчанию равняется 200 Мгц . В БИОСе материнских плат она фиксируется как CPU Bus Frequency.

Как правило, подобный разгон требует от пользователя, чтоб он помнил, что увеличивая частоту шины он увеличивает и частоту работы оперативной памяти, и частоту работы контроллеров материнской платы. Если частоту работы оперативной памяти мы еще как-то сможем откорректировать, то максимальная частота работы контроллеров материнской платы зависит только от нее и именно в этом кроется разгонный потенциал материнской платы.

Частоту работы оперативной памяти можно изменять в разделе БИОСа DRAM Frequency . Вы по умолчанию выставляете частоты 800, 1067, 1333 или 1600 МГц, тем не менее, вы должны помнить, что вы устанавливаете не частоту, а делитель частоты памяти. Не плохо было бы зафиксировать тайминги работы памяти, которые контроллеры памяти процессоров любят менять, в зависимости от выбранного делителя работы памяти.

-- картинка кликабельна --

Следующим моментом является увеличение напряжения работы процессора . При решении данного вопроса, главное не выходит за рамки "дозволенного" и обеспечить качественное охлаждение процессора. У тестируемого процессора мы увеличили напряжение работы с 1,3 вольт до 1,45 вольт. Некоторые оверклоккеры любят повышать напряжение работы северного моста интегрированного в процессор, я данную методику не люблю, в связи с низкой ее эффективностью.

Достаточно актуальным остается вопрос повышения напряжения работы оперативной памяти . В каждом случае необходимо подходить индивидуально к данному вопросу. Все зависит от итоговой частоты, которую вы получите в результате разгона процессора и, как правило, это является следующим этапом в разгоне всей системы.

Для неопытных пользователей и при "апробировании" процессора я рекомендую отключать технологию AMD Turbo Core . Зачем нам она нужна, если наш разогнанный процессор и так будет работать на предельной своей частоте?

Современные материнские платы имеют прочие особенности и тонкости для разгона компонентов системы, на них мы заострять ваше внимание не будем, - в виду их индивидуальности.

Наша материнская плата гарантированно трудится на частотах до 334 Мгц , поэтому в ее возможностях по разгону данного процессора мы были уверены. Должны отметить, что к нам в руки попал достаточно удачный экземпляр, который при напряжении в 1,45 вольт загружал операционную систему Windows 7 на частоте в 4,2 Ггц.

Но на данной частоте тесты Prime95 он не проходил, абсолютно стабильной частотой при данном напряжении оказалась цифра в 4,12 Ггц , что является очень хорошим показателем по моим меркам.

Тестирование уровня производительности.

К сожалению, на сегодняшний день мы владеем не таким большим набором замеров уровней производительности процессоров. Поэтому конкурентами новому решению от AMD выступят два процессора, - один от Intel, второй от AMD: Core i7 920 и Phenom II X4 965.


1. Синтетический тест SiSoftware Sandra 2010 Multimedia Processor Test.


Из результатов тестирования видно, что в мультимедийном тесте, который поддерживает многопоточность преимущество шестиядерного решения от AMD на лицо, о чем мы и говорили в теоретической части нашей статьи.


В ходе тестирования был выбран режим Entry с разрешением 1024x768. Из результатов тестирования четко видно, что игровой синтетический тест, который более приближен к реальности не может отдать преимущество новому процессору от AMD, - четырехъядерный продукт от Intel его опережает. Тем не менее, протестированный процессор выглядит намного лучше предыдущего топового решения Phenom II X4 965.

3. Игровой тест Crysis Warhead.


Данная игра яркий пример того, когда приложение не поддерживает мультипоточности, - она умеет работать с одним, двумя, четырьмя ядрами, но не более. Это приводит к тому, что никакие технологии вроде AMD Turbo Core, не помогают шестиядерному решению показать высокую производительность, - в результате чего мы получаем последнее место в ходе проведенного тестирования.

Заключение.
Естественно, проведенного объема тестирования мало для создания полного представления о процессоре. Но трех данных тестов вполне достаточно, чтоб создать о нем четкое мнение для себя. Шестиядерный процессор интересен со всех точек зрения, - энергопотребления, разгонного потенциала, работоспособности. Да, он уступает четырехядерным решениям в играх, но он превосходит их в ходе конвертации видео, архивировании и других задачах, где уже мультипоточность реализована в полной мере.

Новый процессор Phenom II X6 1055T нам очень понравился с точки зрения разгонного потенциала. Конечно, не каждый процессор разгонится до таких частот, но по уже имеющейся статистике 85% из них покоряют цифру в 3,8 Ггц.
Наш портал присуждает данному процессору золотую медаль, как оптимальный продукт в соотношении производительность/цена.


Уменьшение числа ядра Thuban

Не все процессоры автоматически можно назвать самыми лучшими только из-за того, что они оснащены максимально возможным количеством вычислительных блоков. Мы решили оценить производительность, энергопотребление и эффективность нового процессора Phenom II X6, протестировав его во всех возможных режимах ядер: с 6, 5, 4, 3, 2 и всего с одним вычислительным ядром CPU.

Результаты наших тестов будут менее интересны тем пользователям, кто уже купил новые шестиядерные процессоры AMD, поскольку вряд ли они пойдут на отключение ядер процессора – всё же мы полагаем, что шесть ядер приобретаются по какой-то весомой причине. Однако результаты тестов довольно хорошо показывают, насколько хорошо производительность и эффективность Thuban масштабируется в зависимости от количества ядер – от нескольких ядер до полных шести вычислительных блоков. В конце концов, шесть ядер явно работают быстрее в многопоточных окружениях, но дают ли они при этом наилучшую эффективность энергопотребления? Да и переход с четырёх на шесть ядер может оказаться не таким ощутимым, как с двух на четыре.

Оценка различий между четырьмя и шестью ядрами имеет смысл и с другой перспективы. Как вы уже могли видеть в нашей статье "Разблокирование AMD Phenom II X4 960T: превращаем четыре ядра в шесть ", существует возможность разблокировать процессоры AMD, чтобы получить дополнительные вычислительные ядра. Конечно, будут разблокированные процессоры стабильно работать или нет – уже другой вопрос, поскольку шестиядерный CPU часто превращают в четырёхъядерный из-за дефектов в отключённых ядрах. Поэтому не забывайте провести расширенное тестирование стабильной работы, прежде чем использовать такую систему в играх и приложениях.

Реализация Turbo Core и материнские платы


В нашем обзоре процессора AMD Phenom II X6 и платформы 890FX приведены все детали о последнем флагмане AMD, так что мы рекомендуем ознакомиться со статьёй, если вы ещё этого не сделали. Кроме того, чуть выше мы уже упоминали статью, посвящённую разблокированию ядер четырёхъядерного Zosma , чтобы превратить его в шестиядерный Thuban.

Наш процессор должен быть хорошо вам знаком: AMD предлагает две версии, а именно Phenom II X6 1090T на 3,2 ГГц и 1055T на 2,8ГГц. Оба базируются на шестиядерном дизайне Thuban, который оснащён 512 кбайт кэша L2 на каждое ядро и общим кэшем L3 объёмом 6 Мбайт. Кросс-коммутатор обеспечивает доступ к двухканальному контроллеру памяти DDR3 и каналу HyperTransport, соединяющему CPU и чипсет.

Все новые четырёхъ- и шестиядерные процессоры (Zosma и Thuban) поддерживают функцию AMD Turbo Core, которая динамически разгоняет процессор выше уровня номинальной тактовой частоты. Уровень разгона зависит от нагрузки на CPU, при этом неиспользуемые ядра автоматически не замедляются. Но данная функция всё равно весьма полезна, поскольку она даёт прирост на несколько сотен мегагерц в ситуациях с пиковой нагрузкой на несколько ядер, при условии, что не превышается тепловой пакет.

Реализация Turbo Core

Выключение отдельных ядер означает, что у нас появляется больший резерв по тепловому пакету, чтобы функция Turbo Core срабатывала чаще. И в приложениях, которые не оптимизированы под многопоточность, мы потенциально должны заметить какие-либо преимущества. В таких случаях функция Turbo Core будет включаться и ускорять одно или два ядра до максимальной частоты. К сожалению, мы не получили подтверждения такового прироста в тестах.

Материнские платы

Хотя технически все материнские платы Socket AM3 способны запускать процессоры с меньшим числом ядер, мы хотели использовать решение на новейшем чипсете 890FX. На наших страницах уже был опубликован обзор нескольких материнских плат на чипсете 890GX с интегрированной графикой, а совсем недавно вышел сравнительный обзор разных моделей на 890FX . Мы решили использовать материнскую плату Asus Crosshair IV Formula, которая входит в тестовый набор, разосланный AMD по редакциям для тестов процессора Phenom II X6. Но нам ещё предстоит увидеть, какое количество материнских плат Socket AM3 оснащены необходимыми функциями BIOS для отключения отдельных вычислительных ядер. Если судить по материнским платам Intel Socket LGA 1366, то там существует крайне мало комбинаций плата/BIOS, которые позволяют выставлять произвольное количество активных ядер CPU.



Нажмите на картинку для увеличения.

Мы использовали материнскую плату Asus 890FX Crosshair IV Formula, которая позволяет произвольно выставлять количество активных ядер CPU.

Тестовая конфигурация

Аппаратное обеспечение
Материнская плата (Socket AMD3) Asus Crosshair IV Formula (Rev. 1.0), чипсет: AMD 890FX, BIOS: 0701 (04/02/2010)
CPU AMD I AMD Phenom II X6 1090T (45 нм, 3,2 ГГц, 6x 512 кбайт кэша L2 и 6 Мбайт кэша L3, TDP 125 Вт, Rev. C3)
Память DDR3 2x 2 Гбайт DDR3-1333 (OCZ3G2000LV4GK 8-8-8-24)
Видеокарта Sapphire Radeon HD 5850, GPU: Cypress (725 МГц), видеопамять: 1024 Мбайт GDDR5 (2000 МГц), потоковые процессоры: 1440
Жёсткий диск Western Digital VelociRaptor, 600 Гбайт, 10 000 об/мин
Блок питания PC Power & Cooling, Silencer 750EPS12V 750 Вт
Системное ПО и драйверы
Операционная система Windows Ultimate x64, обновлена 2010-03-03

Тесты и настройки

Кодирование аудио
iTunes Version: 9.0.3.15
Audio CD ("Terminator II" SE), 53 min.
Convert to AAC audio format
Lame MP3 Version 3.98.3
Audio CD "Terminator II SE", 53 min
convert wav to mp3 audio format
Command: -b 160 --nores (160 kbps)
Кодирование видео
Handbrake CLI Version: 0.94
Video: Big Buck Bunny (720x480, 23.972 frames) 5 Minutes
Audio: Dolby Digital, 48000 Hz, 6-Kanal, English
to
Video: AVC1 Audio1: AC3 Audio2: AAC (High Profile)
Mainconcept Reference v2 Version: 2.0.0.1555
MPEG2 to H.264
MainConcept H.264/AVC Codec
28 sec HDTV 1920x1080 (MPEG2)
Audio:
MPEG2 (44.1 kHz, 2 Channel, 16 Bit, 224 kbps)
Codec: H.264 Pro
Mode: PAL 50i (25 FPS)
Profile: H.264 BD HDMV
7-Zip Version 9.1 beta
LZMA2
Syntax "a -t7z -r -m0=LZMA2 -mx=5"
Benchmark: 2010-THG-Workload
Winrar Version 3.92
RAR
Syntax "winrar a -r -m3"
Benchmark: 2010-THG-Workload
Winzip 14 Version 14.0 Pro (8652)
WinZIP Commandline Version 3
ZIPX
Syntax "-a -ez -p -r"
Benchmark: 2010-THG-Workload
Autodesk 3d Studio Max 2010 Version: 10 x64
Rendering Space Flyby Mentalray (SPECapc_3dsmax9)
Frame: 248
Resolution: 1440 x 1080
Cinebench 11.5 Version 11.5 Build CB25720DEMO
CPU Test single and multi threaded
Adobe Photoshop CS 4 (64-Bit) Version: 11
Filtering a 16 MB TIF (15000x7266)
Filters:
Radial Blur (Amount: 10; Method: zoom; Quality: good)
Shape Blur (Radius: 46 px; custom shape: Trademark sysmbol)
Median (Radius: 1px)
Polar Coordinates (Rectangular to Polar)
Adobe Acrobat 9 Professional Version: 9.0.0 (Extended)
== Printing Preferenced Menu ==
Default Settings: Standard
== Adobe PDF Security - Edit Menu ==
Encrypt all documents (128 bit RC4)
Open Password: 123
Permissions Password: 321
Microsoft Powerpoint 2007 Version: 2007 SP2
PPT to PDF
Powerpoint Document (115 Pages)
Adobe PDF-Printer
Fritz Fritz Chess Benchmark Version 4.3.2
3DMark Vantage Version: 1.02 Patch 1901
Options: Performance
Graphics Test 1
Graphics Test 2
CPU Test 1
CPU Test 2
PCMark Vantage Version: 1.0.2.0 Patch 1901
PCMark Benchmark
Memories Benchmark
SiSoftware Sandra 2010 Version: 2010.1.16.10
Processor Arithmetic, Cryptography, Memory Bandwith

Результаты тестов


Все тесты АЛУ Sandra 2010 Pro показывают, что добавление каждого ядра увеличивает общую производительность пропорционально производительности одного ядра за некоторым исключениями. Два ядра дают более чем 2X прирост производительности.




Тест шифрования SHA256 вновь демонстрирует, что два ядра работают исключительно хорошо. Возможно, это связано с реализацией Turbo Core.

Тест пропускной способности памяти показывает, что четырёх ядер достаточно, чтобы максимально нагрузить контроллер памяти DDR3.


Тест GPU упирается в производительность видеокарты Radeon HD5850, которую мы использовали.

Общий результат отражает оба теста – графическая производительность заметно увеличивается, когда используется два или большее количество ядер.


Тест PCMark Vantage не выполнился полностью, когда мы ограничили Phenom II X6 одним ядром. По общему результату видно, что чем больше ядер, тем выше производительность, но прирост не всегда большой. Помните, что PCMark – это синтетический тест, который может и не соответствовать работе повседневных приложений, но он позволяет оценить производительность системы в целом.



7-Zip не очень хорошо работает на нечётном количестве ядер. Три или пять активных ядер не дают ощутимого прироста по сравнению с двумя или четырьмя ядрами, соответственно. Впрочем, данный архиватор выигрывает от увеличения количества активных ядер.


Многопоточный тест Cinebench масштабируется очень хорошо, в отличие от однопоточного.

Adobe Acrobat мог бы работать намного быстрее, если бы программа была оптимизирована под несколько вычислительных ядер. Более значительный прирост можно получить, если запустить два ядра на высоких тактовых частотах.

Ситуация в Photoshop иная, программа приятно выигрывает от каждого ядра, хотя важно подчеркнуть, что преимущества по производительности зависят от накладываемых фильтров. Некоторые фильтры оптимизированы под многопоточность, другие – нет.

Архиватор WinRAR оптимизирован под многопоточность, но производительность ограничивается на уровне четырёх ядер. Переход на шесть ядер даёт незначительный прирост производительности.

Утилита WinZip, которая многими воспринимается как наиболее популярный архиватор, даёт весьма досадные результаты. Мы не видим ощутимой разницы от перехода с одного ядра на шесть. Вполне понятно, что данная утилита является однопоточной.


Как видим, даже одна из новых версий iTunes не даёт серьёзного преимущества от увеличения числа ядер. Впрочем, на кодирование аудио уходит совсем немного времени, так что особых проблем это не вызывает.

То же самое касается и Lame: утилита не очень хорошо масштабируется в зависимости от числа вычислительных ядер.

Mainconcept выигрывает от всех доступных вычислительных ядер, хотя чем больше используется ядер, тем меньше становится прирост производительности.

В Handbrake мы тоже можем наблюдать хорошую масштабируемость.

Энергопотребление системы в режиме бездействия изменяется довольно слабо при отключении отдельных ядер. Примерно 15-20 Вт требуются видеокарте, да и энергопотребление у CPU при переходе в режим бездействия не так и велико.

При пиковой нагрузке ситуация меняется. Каждое дополнительное ядро увеличивает суммарное энергопотребление. Впрочем, можно видеть, что чем больше ядер, тем меньше энергопотребления добавляет каждое новое ядро. Таким образом, увеличение числа ядер положительно сказывается с точки зрения пикового энергопотребления, что должно соответствующим образом повлиять на эффективность, которая выражается в производительности на ватт.


Шесть ядер оказываются самым производительным решением при выполнении нашего тестового прогона.

Ситуация начинает становиться интереснее: среднее энергопотребление у пяти ядер оказалось ниже, чем у четырёх ядер при выполнении нашей тестовой нагрузки.

Суммарная затраченная энергия тоже хорошо масштабируется, при этом вполне очевидно, что конфигурации с большим количеством ядер требуют меньше энергии для выполнения нашей тестовой нагрузки.

В итоге мы видим, что чем больше активных ядер, тем лучше производительность в расчёте на ватт (эффективность).




Заключение

Наше тестирование показало, что до сих пор многие рабочие нагрузки не могут использовать больше двух ядер. Программы, такие как WinZip, так и не были оптимизированы под многопоточность, что весьма досадно. Даже самый дешёвый двуядерный процессор мог бы дать значительно более высокую производительность, если бы программа была должным образом оптимизирована. То же самое касается кодировщика Lame MP3, а также Apple iTunes и Adobe Acrobat 9 – последний необходим для создания документов PDF. Поскольку компании Apple и Adobe довольно крупные и работают на рынке очень давно, то разочарование оказывается ещё более досадным.

Но давайте вернёмся к нашему анализу масштабируемости. Выключение вычислительных ядер не снизит энергопотребление в режиме бездействия. AMD прекрасно поработала над оптимизацией энергопотребления 45-нм процессора Thuban, поскольку система потребляла те же 81-83 Вт при использовании одного или шести ядер. Но результаты при пиковой нагрузке оказались более интересными – энергопотребление, добавляемое каждым новым ядром, оказывалась меньше при увеличении их количества. В итоге пиковое энергопотребление у четырёх, пяти и шести ядер оказалось очень близко. А производительность в многопоточных приложениях заметно увеличивалась.

По этой причине процессор AMD Phenom II X6 не только даёт прекрасную производительность благодаря шести вычислительным ядрам, но и обеспечивает увеличение эффективности энергопотребления при переходе с одного ядра на большее количество ядер, вплоть до шести. Вполне очевидно, что включение максимально возможного числа ядер максимизирует производительность на ватт или эффективность. Другими словами, если вас интересует вопрос экономии энергии, то вывод будет следующим: энергопотребление в режиме бездействия не меняется, а при увеличении числа ядер эффективность энергопотребления и производительность растут, так что никакого смысла в принудительном отключении ядер нет.

Введение

Не так давно, около двух с половиной лет назад, в ноябре 2007 года компанией AMD была представлена аппаратная платформа под названием «Spider», которая включала в себя процессоры семейства Phenom, материнские платы на базе чипсета 700-й серии, а также графические адаптеры класса Radeon HD 3800. Спустя чуть больше года, в январе 2009 компания закончила формирование новой платформы - «Dragon», основу которой составили процессор Phenom II, чипсет 700-й серии с новым южным мостом и графические решения на базе Radeon HD 4800.

Уже по сложившейся традиции, через год с небольшим, компания AMD представила последнюю на сегодняшний день платформу «Leo». Первоначально основана она была на чипсете 890GX, первом из 800-й серии, и обширном модельном ряде графических адаптеров линейки Radeon HD 5000. Увенчал же новую платформу первый шестиядерный процессор от AMD Phenom II X6. Также отметим, что вместе с этим процессором был представлен и новый чипсет 890FX, ориентированный на использование в материнских платах для энтузиастов.

Что же, теперь, пожалуй, пришло время познакомиться с первыми шестиядерными новинками от AMD — Phenom II X6 1090T с тактовой частотой 3,2ГГц и Phenom II X6 1055T с тактовой частотой 2,8ГГц.

Спецификации :

  • Модель — Phenom II X6 1090T;
  • Тактовая частота - 3.2 ГГц референсная (3.6 ГГц с Turbo CORE);
  • Исполнение — AM3;
  • Технологический процесс - 45нм;
  • Кэш-память - L1 128 Кбайт, L2 512 Кбайт х6, L3 6Мбайт;
  • Память - интегрированный двухканальный контроллер памяти с пропускной способностью 21Гбит/сек и поддержкой модулей PC2 8500 (DDR2 - 1066МГц) и PC3 10600 (DDR3 - 1333МГц);
  • Размер ядра - 346мм2;
  • Термодинамический пакет - 125Вт;
  • Питание - 1.125 - 1.4В.

Архитектура Phenom II X6 1090T

Как уже отмечалось, процессоры линейки Phenom II X6 завершают формирование платформы Leo. Несмотря на то, Phenom II X6 1090T имеет на два ядра больше своих четырехядерных собратьев, сами по себе вычислительные ядра не претерпели особых изменений, увеличилось лишь их число. Тем не менее, свои особенности есть и здесь и наиболее примечательной из них является технология под названием Turbo CORE.

Начиная с моделей, основанных на микроархитектуре Nehalem, процессоры производства Intel поддерживали технологию Turbo Boost, которая регулировала количество рабочих ядер в зависимости от конкретных условий работы системы, нагрузки на ЦП, потребления энергии или температурных показателей. При этом обеспечивалась возможность регулировать производительность задействованных в работе ядер. Примерно такие же возможности и обеспечивает новая технология от AMD.

Благодаря Turbo CORE тактовая частота трех активных ядер процессора Phenom II X6 может повышаться на 500МГц, при этом никакое специальное программное обеспечение или драйверы не требуются. Ожидается, что технология Turbo CORE сможет работать на всех материнских платах с процессорным разъемом в исполнении AM3 после обновления BIOS. В процессе тестирования максимальная тактовая частота нашего Phenom II X6 1090T составила 3,6ГГц, в то время, как менее мощному 1055T удалось достичь частоты в 3,3ГГц.

При работе технологии Turbo CORE три из шести процессорных ядер Phenom II X6 переводятся в режим повышенной производительности, так называемый P-state. Это не обязательно означает, что частота всех ядер повысится на 500МГц, уровень такого автоматического разгона будет зависеть от конкретной задачи. Отметим, что поддержка Turbo CORE не исключает работу технологии Cool `n` Quiet, поэтому частота работы каждого отдельно взятого ядра не обязательно будет совпадать с показателями других.

Ниже представлены несколько фотографий процессора AMD Phenom II X6 1090T. Как видим, новинка несколько отличается от своих собратьев, также имеющих исполнение AM3.

Процессор Phenom II X6 1090T построен на базе ядра с кодовым названием Thuban и оснащается кэш-памятью первого уровня (L1) объемом 768 Кбайт (из расчета 64 Кбайт инструкций и 64 Кбайт данных на каждое ядро). Объем кэш-памяти второго уровня (L2) составил 3Мбайт (по 512 Кбайт на ядро), а третьего (L3) - 6Мбайт.

Производятся новинки от AMD на заводах Global Foundries, при этом используется 45нм технологический процесс, а объем ядра составляет 364 квадратных миллиметра.

Подобно другим процессорам в исполнении AM3 Phenom II X6 может работать с оперативной памятью стандартов DDR2 и DDR3 посредством шины Hyper Transport с пропускной способностью 4GT/s.

Разгон Phenom II X6 1090T

В процессе тестирование некоторое внимание было уделено и изучению разгонного потенциала нового шестиядерника от AMD. Отметим, что в процессе разгона использовался референсный кулер от AMD. Для начала в BIOS материнской платы MSI 890FXA-G70 было установлено питание процессора в 1,5В, а множитель Turbo CORE выставлен на 19.5x. Затем при помощи утилиты AMD Overdrive из под Windows мы увеличивали частоту работы шины до максимального значения, обеспечивавшего стабильную работу системы. В результате нам удалось разогнать тестовый экземпляр Phenom II X6 1090T до значения 4.01ГГц. При этом температура процессора составила 68 градусов Цельсия. И это при использовании референсного воздушного кулера! Вполне вероятно, что, применив более продвинутую систему охлаждения, можно будет достичь еще более впечатляющих результатов.

Чипсет AMD 890FX

Вместе с новым шестиядерным процессором компания AMD представила и обновленный чипсет — 890FX. Уже из названия видно, что новинка схожа с представленным ранее 890GX, однако, в отличие от него, лишена интегрированного видеоядра. Взамен разработчики расширили шину PCI Express, обеспечив 890FX поддержкой работы в полноценном режиме CrossFire x16/x16. Новинка работает в связке с уже успевшим себя зарекомендовать с положительной стороны южным мостом SB850.

Новый чипсет поддерживает работу с процессорами AMD в исполнении AM3, памятью DDR3 и способен обеспечить до 42 потоков PCI Express, что предоставляет широчайшие возможности по организации графической подсистемы ПК.

Среди остальных параметров стоит отметить новую шину Hyper Transport 3.0 между процессором и северным мостом с солидной пропускной способностью 5.2GT/s, а также новый интерфейс Alink Express III, связывающий 890FX с южным мостом SB850. Присутствует поддержка и других атрибутов современного чипсета — USB 2.0, HD Audio, Gigabit Ethernet, PATA и PCI. Кроме того, микросхема SB850 обеспечивает работу одного канала PCI Express Gen 2 и поддержку портов SATA 3.0.

Напомним, что чипсеты 890FX и 890GX являются далеко не единственными представителями 800-й серии. 870-й чипсет, подобно 770-му предыдущего поколения, представляет собой упрощенную версию 890GX, лишенную графического ядра. Еще один представитель новой линейки от AMD, 880G оснащается интегрированной графикой класса DirectX 10.1, но менее производительной, чем у флагмана 890GX.

Подобно топовому решению предыдущего поколения 790FX, новый 890FX производится по нормам 65нм техпроцесса TSMC в корпусе 29×29 мм.

Материнские платы на базе 890FX

Для испытания возможностей нового Phenom II X6 1090T была отобрана пара новейших материнских плат от компаний Asus и MSI, построенных на базе «свежего» чипсета 890FX: CrossHair IV Formula и 890FXA-GD70.

Материнские платы линейки CrossHair от компании Asus всегда выделялись на фоне конкурирующих решений наличием интересных и даже уникальных возможностей. Не стала исключением и модель CrossHair IV Formula. Новинка несет на борту порты USB 3.0 и SATA 3.0 с пропускной способностью 6Гбит/сек.

Чипсет и подсистема питания материнской платы охлаждаются большими, расположенными под углом друг к другу радиаторами, объединенными тепловыми трубками в единую систему. Не обошлось и без фирменных технологий Asus ExpressGate, MemOK, GameFirst, и TurboV.

Плата располагает четырьмя слотами PCIe x16, а также парой обычных разъемов PCI. Отметим наличие высококачественного интегрированного аудиочипа SupremeFX X-Fi. Оформлена Formula достаточно стильно - на печатной плате черного цвета расположились элементы красного и белого цветов. Что касается топологии CrossHair IV Formula, то расположение элементов близко к идеальному.

Подобно решению от Asus, материнская плата MSI 890FXA-GD70 также является топовой моделью с богатой оснасткой и комплектацией. Плата также выполнена на текстолите темного цвета, зато для элементов выбраны более мрачные синие и черные тона. Питающие элементы закрыты относительно большим радиатором, расположенным между разъемом процессора и задней панелью ввода-вывода, в то время, как южный мост SB850 охлаждается отдельным небольшим радиатором.

Вся конструкция объединена тепловыми трубками. Подобно предыдущему решению GD70 поддерживает новые высокоскоростные интерфейсы USB 3.0 и SATA 3.0, а также может похвастать высококачественной элементной базой «военного образца» (Military Class Components).

Количество полноценных слотов PCI Express x16 равно пяти, в то время, как под обычные PCI устройства отведен всего один слот.

Конфигурация тестовой системы:

Перед началом тестирования все настройки BIOS материнских плат были установлены в значение «Optimized» или «High performance Defaults». Для памяти DDR3-1333 были выставлены следующие тайминги: 8,8,8,24. Затем было произведено форматирование дискового пространства и установлена операционная система Windows 7 Ultimate x64. При этом инструменты Auto-Updating и Windows Defender были отключены. После инсталляции тестовых приложений система была очищена от временных файлов и произведена дефрагментация жестких дисков.

Система №1 :

  • Процессор - Phenom II X6 1090T;
  • Материнская плата — MSI 890FX-GD70, Asus CrissHair IV (чипсет 890FX);
  • Оперативная память — 2×2ГБ OCZ DDR3-1333МГц;

Система №2 :

  • Процессор - Core i7 Extreme 975/Core i7 980X;
  • Материнская плата - Gigabyte EX58-UD5 (чипсет X58 Express);
  • Оперативная память — 3×2ГБ OCZ DDR3-1333МГц;
  • Графический адаптер — GeForce GTX 280;
  • Жесткий диск — WD150 "Raptor" HD 10,000 об/мин SATA;
  • Операционная система — Windows 7 x64.

Система №3 :

  • Процессор - Core i7 870/ Core i5 750;
  • Материнская плата - Asus Maximus III Formula (чипсет P55 Express);
  • Графический адаптер — GeForce GTX 280;
  • Жесткий диск — WD150 "Raptor" HD 10,000 об/мин SATA;
  • Операционная система — Windows 7 x64.

Система №4 :

  • Процессор - Phenom II X4 965;
  • Материнская плата - Asus M4A79T Deluxe (чипсет AMD 790FX);
  • Оперативная память — 2×2ГБ Kingston DDR3-1600МГц;
  • Графический адаптер — GeForce GTX 280;
  • Жесткий диск — WD150 "Raptor" HD 10,000 об/мин SATA;
  • Операционная система — Windows 7 x64.

Тестирование

PCMark Vantage

Новый тестовый пакет PCMark Vantage от компании Futuremark предоставляет пользователям возможность выбора нескольких предустановленных сценариев для симуляции различных режимов работы системы. Он включает в себя симуляцию воспроизведения видео высокой четкости, симуляцию игровых нагрузок, сжатие музыкальных композиций и т.д. Отметим, что многие тесты являются многопоточными и адекватно оценивают производительность многоядерных процессоров.

По результатам тестирования в PCMark Vantage показатели системы на базе процессора AMD Phenom II X6 1090T оказались между Core i7 975 (Bloomfield) и Core i7 870 (Lynnfield). Новый шестиядерный процессор от AMD оказался определенно самым быстрым среди продуктов данного производителя. Естественно, некоторые топовые модели четырехядерных процессоров Intel оказались быстрее, чем X6 1090T, ну а шестиядерник Core i7 980X показал самый лучший результат.

LAME MT - декодирование аудио

В данном тесте мы производили переконвертирование большого WAV файла в формат MP3 при помощи пакета LAME MT. Напомним, что пакет LAME представляет собой приложение с открытыми исходными кодами, который позволяет создавать MP3 файлы с поддержкой высокого и переменного битрейта. Объем исходного WAV файла составил 223 Мб, при этом декодирование проводилось, как в однопотоковом, так и в многопотоковом режимах, а измеренное время операции и являлось показателем производительности.

Тест LAME MT показал эффективность новой технологии AMD Turbo CORE. Несмотря на меньшие по сравнению с Phenom II X4 965 частоты работы (на 200 МГц), 1090T смог превзойти своего четырехядерного предшественника. Однако, по сравнению с процессорами Intel решения от AMD существенно проигрывают в производительности.

В нижеприведенном тесте мы проверим, насколько быстро тестовая система сможет справиться с декодированием короткого видеоклипа в качестве MPEG-2 в видео высокой четкости H.264 HD. Приложение x264 производит декодирование в несколько потоков, при этом сам процесс разделен на несколько этапов.

Удивительно, но на первом этапе декодирования x264 Phenom II X6 1090T уступил X4 965, однако уже второй этап показал существенное превосходство шестиядерного процессора. Правда, до показателей Core i7 870 этим процессорам оказалось далеко.

3D рендеринг в Cinebench R11.5

Пакет Cinebench R11.5 оценивает производительность системы в процессе 3D рендеринга в режиме OpenGL. Он построен на базе движка Cinema 4D от компании Maxon, который используется многими современными анимационными студиями, например Sony Animation. Производительность в данном пакете существенно зависит от ресурсов центрального процессора, что является отличным показателем его производительности.

В этом тесте процессор Phenom II X6 1090T показал неплохие результаты, оказавшись между такими решениями, как Core i7 975 и Core i7 870, при этом оставив далеко позади Phenom II X4 965.

Трассировка в POV-Ray

Пакет POV-Ray или Persistence of Vision Ray-Tracer, представляет собой приложение с открытыми исходными кодами, предназначенное для создания реалистичной подсветки 3D объектов и сцен.

Результаты тестирования наших систем в POV-Ray совпадают с результатами, показанными в пакете Cinebench. Phenom II X6 1090T практически удалось догнать Core i7 975 и при этом существенно опередить Phenom II X4 965. О соперничестве с Core i7 870 речи здесь также не идет.

Многопотоковое сжатие файла в WinRAR x64 v3.9

В данном тесте производилось архивирование папки с двумя сотнями изображений размером 12.1 МП в один файл.

Несмотря на то, что WinRAR не смог загрузить все шесть ядер Phenom II X6 1090T, данному процессору, благодаря технологии Turbo CORE, все-таки удалось выступить лучше, чем Phenom II X4 965.

Обработка изображения в VSO Image Resizer

Для следующего теста также была использована уже знакомая нам папка с двумя сотнями файлов, загруженных с SLR камеры. Они были преобразованы в JPG формат размером 640×480 пикселей. Для сжатия был применен метод фильтрации под названием Lanczos, которых хоть и не обеспечивает высокоскоростного преобразования, однако качество полученных изображений при этом остается на высоте.

Показатели данного теста оказались близки к результатам WinRAR, и технология Turbo CORE также сыграла весьма важную роль.

Встроенный в пакет 3DMark06 тест процессора состоит из двух различных 3D сцен, прорисовка которых производится программным методом, чрезвычайно требовательным к ресурсам центрального процессора. Вычисления, обычно проводимые графическим адаптером, в данном случае возлагаются на CPU.

Как и в ряде предыдущих тестов результаты, показанные Phenom II X6 1090T оказались между показателями Core i7 870 и i7 975, однако выше, чем у Phenom II X4 965.

Для оценки производительности процессоров в данном пакете был применен CPU Test 2, разработанный специально для процессоров с несколькими ядрами.

Игровые тесты: Crysis и Enemy Territory: Quake Wars

Для оценки производительности процессоров в игровых приложениях мы уменьшили разрешение экрана до 800×600, а также постарались максимально снизить все графические параметры. Это позволило максимально разгрузить графический адаптер и подсистемы памяти и адекватно оценивать работу центрального процессора.

В реальных игровых тестах новый шестиядерный процессор Phenom II X6 1090T показал результаты наравне с Phenom II X4 965, однако до показателей продуктов от Intel они не дотягивали.

Потребление энергии

Прежде чем завершить наш обзор, хотелось бы остановиться на таком немаловажном моменте, как уровень энергопотребления нового процессора от AMD. На протяжение всех проводимых тестов мы контролировали уровень энергопотребления системы. Были оценены уровни энергопотребления как в простое, так и под нагрузкой.

По заявлениям представителей AMD Phenom II X6, как и предыдущее поколение четырехядерных процессоров Phenom II, должен работать в рамках 125 ваттного термодинамического пакета. Как показало тестирование, Phenom II X6 1090T потребляет меньше энергии, чем X4 965 при простое, и на 12 - 18 ватт больше под нагрузкой. Что касается процессоров Core i7, то в любом из режимов работы они однозначно потребляют большее количество энергии.

Заключение

Новый шестиядерный процессор от AMD показал себя во всех наших тестах достаточно неплохо. Особенно удачно наличие двух дополнительных ядер сказалось на результатах многопотоковых тестов, существенно опередив четырехядерные решения предыдущего поколения. Практически во всех тестах производительность Phenom II X6 1090T находилась между показателями Intel Core i7 870 (ядро Lynnfield) и i7 975 (ядро Bloomfield). В приложениях, не использующих многопотоковый режим работы, неплохие результаты X6 1090T объясняются работой технологии Turbo CORE, который смог обойти X4 965, несмотря на более низкие рабочие частоты.

Что касается сравнения с шестиядерным процессором Intel Core i7 980X, то здесь Phenom II X6 1090T проигрывает по всем параметрам за исключением цены, которая у продукта от AMD более чем в три раза ниже.

На сегодняшний день Phenom II X6 1090T является одним из самых удачных решений стоимостью до 300 долларов США и определенно самым быстрым на сегодняшний день решением от AMD. Продемонстрированные X6 1090T результаты во многих тестах находятся на уровне значительно более дорогих Core i7 870 и Core i7 975.

Также стоит отметить неплохой разгонный потенциал нового процессора от AMD, а также уровень энергопотребления, присущий предыдущему, менее производительному поколению процессоров. Следует учесть и тот факт, что новинка совместима с уже широко представленными на рынке материнскими платами, оснащенными разъемами AM2+ и AM3.

На сегодняшний день компания AMD представила два шестиядерных процессора Phenom II X6 1090T стоимостью285$ и Phenom II X6 1055T за 199$. А в скором времени планируется релиз еще двух решений X6 1035T и Phenom II X4 960T, которые призваны составить серьезную конкуренцию процессорам Intel в наиболее массовом среднем ценовом диапазоне.

Вердикт сайт : шесть ядер лучше, чем четыре.

Мода на многоядерность прочно вошла в нашу жизнь, и теперь не то чтобы двухъядерным, уже и четырехъядерным процессором в домашнем компьютере кого-то удивить сложно. Но прогресс не стоит на месте, и буквально вслед за компанией Intel, неделю назад представившей свой шестиядерный процессор для настольных компьютеров, компания AMD выпустила свой шестиядерник, который мы сегодня и рассмотрим.

⇡ Процессор AMD Phenom II X6 1090T

Внешне процессор AMD Phenom II X6 1090T ничем не отличается от своих собратьев для платформы Socket AM3, кроме как маркировкой. А внутри он выглядит следующим образом: На фото кристалла четко различимы шесть вычислительных ядер с выделенной кэш-памятью у каждого, а также общий разделяемый кэш, занимающий нижнюю четверть площади кристалла. Давайте посмотрим, что скажет утилита CPU-Z о характеристиках процессора AMD Phenom II X6 1090T и тестовой системы.

AMD Phenom II X6 1090T выполнен по техпроцессу 45 нм, содержит шесть вычислительных ядер, по 128 Кб и 512 Кб кэш-памяти первого и второго уровня на каждое ядро, соотвественно. Также имеется общая для всех ядер кэш-память третьего уровня объемом 6 Мб, как и у четырехъядерных предшественников.

Для знакомства с возможностями AMD Phenom II X6 1090T мы использовали материнскую плату MSI 890GXM-G65, основанную на наборе системной логики AMD 890GX.

Эта материнская плата обладает весьма продвинутыми возможностями и, хотя у AMD Phenom II X6 1090T заявлена поддержка памяти стандарта DDR3-1333, самостоятельно установила память в режим работы DDR3-1600 с таймингами 9-9-9-24-1T, что полностью соответствует характеристикам использованных модулей памяти. К сожалению, более высоких множителей частоты памяти в BIOS не оказалось, и дальнейшее повышение частоты оперативки возможно только при увеличении базовой частоты.

⇡ Разгон

Как и при тестировании четырехъядерных процессоров Phenom II, мы попробовали увеличить частоту кэш-памяти третьего уровня - ее стабильное значение составило 2600 МГц. Отметим, что не обошлось без некоторых странностей. Дело в том, что частота работы "северного моста", встроенного в процессор, не должна превышать частоту шины HT Link, максимум которой ограничен значением 2600 МГц. Тем не менее, если в BIOS установить частоту NB в значение, скажем, 2800 МГц, то все будет работать. По крайней мере, Windows загружалась и можно было пройти некоторые тесты. Впрочем, такой режим оказался нестабильным, несмотря на повышение соответствующих напряжений. А при одинаковых частотах HT и NB, равных 2600 МГц, процессор был совершенно стабилен, поэтому результаты тестирования при таких настройках будут приведены на итоговых диаграммах производительности.

На этом эксперименты с разгоном не закончились. Мы попробовали разогнать процессор и по частоте ядер. При частоте 4,2 ГГц можно было загрузить Windows 7, но запуск любого приложения, нагружающего процессор, приводил к падению системы в синий экран. При частоте 4,1 ГГц наблюдалась та же картина, а вот частота 4,0 ГГц оказалась стабильной, на ней и были проведены все тесты при разгоне.

⇡ AMD Turbo Core

Как известно, процессоры Intel с архитектурой Nehalem могут динамически изменять частоту ядер выше номинальной, в зависимости от загрузки. И называется эта технология - Intel Turbo Boost. Шестиядерные процессоры AMD теперь также обладают похожей технологией, а называется она AMD Turbo Core. При всей схожести идей, лежащих в их основе, некоторые различия все же имеются. В технологии Intel Turbo Boost рабочая частота активных ядер зависит количества простаивающих. Чем больше ядер простаивает в данный момент, тем выше частота остальных, загруженных работой. Если же все ядра загружены, то процессор работает на номинальной частоте. При использовании технологии AMD Turbo Core с шестиядерными процессорами дела обстоят похожим образом, однако повышенная частота всего одна, и для ее активации необходимо, чтобы по крайней мере три ядра не были загружены работой. Рассмотрим случай с процессором AMD Phenom II X6 1090T. Ниже приведены фрагменты скриншотов утилиты AMD OverDrive, которая наглядно демонстрирует состояние ядер процессора, и позволяет управлять режимами их работы, включая разгон и изменение настроек AMD Turbo Core. Для просмотра полного скриншота нажмите на фрагменте. Если загружено только одно ядро процессора, то его частота повышается до 3,6 ГГц, а напряжение на ядре с 1,3 В до 1,475 В. Частота остальных ядер при этом варьируется в довольно широких пределах - от 800 Мгц до номинальной, но напряжение на неиспользуемых ядрах остается штатным - 1,3 В. Если "нагрузить" еще два ядра, то они будут работать в точно таком же режиме, как показано на этом фрагменте, а остальные три ненагруженных - при штатном напряжении и пониженной частоте. Если у процессора AMD Phenom II X6 1090T нагружены четыре ядра или более, то их частота будет равна номинальной - 3,2 ГГц, как и напряжение - 1,3 В. Остальные ненагруженные ядра могут работать на пониженной частоте. Стоит отметить, что когда мы попытались отключить технологии энергосбережения в BIOS материнской платы, чтобы зафиксировать частоту ядер процессора на постоянном уровне, нам это не удалось. Возможно, это как то связано с особенностями конкретной материнской платы, но есть подозрение, что это процессор AMD Phenom II X6 1090T настолько "умный" и потому сам следит за своим энергопотреблением. Кстати, значение напряжения на ядрах процессора при активации AMD Turbo Core можно регулировать с помощью все той же утилиты AMD OverDrive. И, как выяснилось при разгоне нашего экземпляра процессора, напряжение Vcore, равное 1,475 В, несколько завышено. Процессор абсолютно стабильно работал под полной нагрузкой на частоте 4 ГГц при напряжении равном 1,425 В. Что интересно, повышение напряжения Vcore никак не сказывалось на увеличении потолка разгона. Впрочем, возможно, более продвинутые и "заточенные" под разгон материнские платы на основе чипсета AMD 890FX смогут раскрыть весь потенциал новинки более полно.

⇡ Условия тестирования

Для сравнения с AMD Phenom II X6 1090T мы решили взять процессор AMD Phenom II X4 955, поскольку его штатная частота также равна 3,2 Ггц, а все остальные параметры, за исключением числа ядер, одниковы. Это позволит, с одной стороны, увидеть прирост производительности от увеличения количества ядер в многопоточных приложениях, а с другой - оценить прирост от использования технологии AMD Turbo Core на тех приложениях, которые не используют больше трех вычислительных потоков. Также мы взяли уже рассмотренный нами шестиядерный процессор Intel Core i7 980X 3.33 GHz . Отметим, что этот процессор использовался в номинальном режиме с комплектом трехканальной памяти, работающей в режиме DDR3-1333 и таймингами 9-9-9-24-1T, а технология Intel Turbo Boost была активирована (максимальная частота ядра в этом режиме равна 3,47 ГГц). По умолчанию, технология Intel Hyper Threading активирована, то есть Intel Core i7 980X использует 12 вычислительных потоков, но дополнительно были проведены тесты и при отключении Hyper Threading. Таким образом, можно будет оценить прирост от использования Hyper Threading в том или ином тесте. Ну и еще один представитель Intel - процессор Core i7 870. Этот процессор также тестировался в номинальном режиме с оперативной памятью, работающей в в режиме DDR3-1333 и таймингами 9-9-9-24-1T. Технология Turbo Boost была активирована, заметим, что при этом частота активных ядер процессора равна 3,6 ГГц, как и у AMD Phenom II X6 1090T при активации AMD Turbo Core. Помимо штатных частот, Intel Core i7 870 был протестирован и при разгоне до частоты 4,0 Ггц, что опять же совпадает со значением, до которого разогнался шестиядерник AMD. В этом режиме технология Turbo Boost была выключена, а оперативная память работал в режиме DDR3-1800. Более подробный список остального использовавшегося при тестировании оборудования приведен ниже:

Тестовое оборудование

Процессоры AMD Phenom II X6 1090T 3.2 ГГц
AMD Phenom II X4 955 3.2 ГГц
Intel Core i7 870 2.93 ГГц
Intel Core i7 980X 3.33 ГГц
Система охлаждения CPU Zalman CNPS 10x Extreme @ 1600 об/мин
Материнские платы MSI 890GXM-G65, Socket AM3
Asus Maximus III Extreme, Socket LGA1156
ASUS Rampage II Extreme, Socket LGA 1366
Оперативная память 3x 1GB Apacer DDR-3 2000 MHz (9-9-9-24-2T) @ 1333 MHz (9-9-9-24-1T)
2x 2GB Super Talent DDR3-2000 @ 1600 (9-9-9-24-1T)
Видеокарта AMD Radeon HD 5870 1 Гб, Catalyst 3.10
Жесткий диск Samsung SpinPoint 750 GB
Блок питания Lian Li PS-A750GB, 750 Вт
Операционная система Windows 7 Home Premium x64

⇡ Температурные режимы

Поскольку мы использовали одну и ту же платформу, интересно было посмотреть на температурный режим новинки в сравнении с представителем четырехъядерной серии процессоров Phenom II. Как уже говорилось, использовался кулер Zalman CNPS 10x Extreme. Этот кулер имеет как плавную ручную регулировку скорости вращения вентилятора, так и фиксированными ступенями. Мы выбрали среднюю ступень, при которой вентилятор вращался со скоростью 1600 об/мин. Все доступные технологии энергосбережения процессоров были активированы.

Как видите, без нагрузки, в режиме рабочего стола Windows, температура процессора AMD Phenom II X6 1090T весьма низка и значительно ниже таковой у его младшего собрата. Однако здесь следует заметить, что при включении мониторинг BIOS материнской платы показывал температуру процессора около 45 градусов Цельсия, то есть на 22 градуса выше, чем утилита AMD Overdrive, показания которой приведены на диаграмме. Мы все же склонны верить данным утилиты AMD Overdrive, поскольку при и тестировании под нагрузкой теплосъемник кулера и тепловые трубки у его основания были лишь теплыми, а не горячими, что при температуре процессора около 70 градусов Цельсия не представляется возможным.

При прогоне нескольких циклов бенчамрка игры Far Cry 2 температура AMD Phenom II X6 1090T подросла совсем незначительно, и лишь при разгоне чуть превысила планку 40 градусов Цельсия. В то же время, процессор Phenom II X4 955 прогрелся уже до 50 градусов.

Стресс-тестирование утилитой OCCT в режиме Linpack 64-bit также показало весьма занятные результаты. На номинальных частотах температура Phenom II X6 1090T составила около 45 градусов Цельсия, и только повышение напряжения на ядре и разгон до частоты 4,0 ГГц смогло прогреть новинку до 56,2 градусов. А старичок Phenom II X4 955 даже в штатном режиме уже достиг планки 60 градусов. Заметим, что указываемая AMD максимальная температура ядра процессоров Phenom II равна 62 градуса Цельсия.

⇡ Общее энергопотребление системы

С температурами все ясно - новинка получилась весьма "прохладной" и неприхотливой. Теперь давайте посмотрим на энергопотребление системы в целом. Приведенные ниже цифры соответствуют показаниям ваттметра, которые снимались до блока питания. То есть, если вы хотите прикинуть реальную потребляемую системой мощность, следует умножить эти цифры примерно на 0,8-0,85 (КПД блока питания). Итак, приступим.

В режиме рабочего стола Windows платформа AMD потребляет не более 100 Вт, причем система на базе AMD Phenom II X6 1090T оказывается чуточку экономичнее по этому показателю. Занятно, но система на базе Intel Core i7 870, работающим на меньшей частоте, потребляет несколько больше, а при разгоне так и вовсе выбивается в "лидеры". Энергопотребление системы на основе шестиядерного процессора Intel Core i7 980X оказывается примерно на 40% выше, чем у представителей AMD.

C увеличением нагрузки на систему относительная разница в результатах уменьшается. Тем не менее, система на основе Intel Core i7 980X потребляет электроэнергии несколько больше, а в "лидерах" по-прежнему разогнанный Intel Core i7 870.

Стресс-тест OCCT Linpack 64-bit совершенно меняет картину. Самой экономичной теперь оказывается система на базе Intel Core i7 870 в номинальном режиме, затем идут представители AMD, также работающие в штатном режиме. Заметьте - здесь энергопотребление системы на основе шестиядерного процессора Phenom II X6 1090T впервые оказывается выше, чем у платформы с Phenom II X4 955, у которого четыре ядра. Чуть больше потребляет система с шестиядерным Intel Core i7 980X, ну а в лидерах оказываются платформы с процессорами, разогнанными до частоты 4,0 ГГц. Такой значительный скачок в энергопотреблении объясняется не столько повышенной частотой процессоров, сколько увеличением их напряжения питания. И, наконец, последний в этой серии тест, нагружающий как процессор, так и видеокарту - два наиболее "прожорливых" компонента современного игрового компьютера. "Прогрев" процессора осуществлялся с помощью стресс-теста из пакета Everest Ultimate. Конечно, это не такой "тяжелый" тест, как OCCT Linpack, но и он создает весьма ощутимую нагрузку на CPU. Поскольку при полной загрузке ядер процессора тест Furmark заметно снижал "обороты" и видеокарта работала не в полную силу, в Диспетчере задач Windows бенчмарку задавалось соответствие таким образом, чтобы один вычислительный поток оставался свободным. В этом случае Furmark сразу начинал работать в полную силу и энергопотребление видеокарты резко возрастало.

В номинальном режиме платформы на основе AMD Phenom II X6 1090T и Intel Core i7 870 демонстрируют практически одинаковое энергопотребление на уровне около 350 Вт. Система с шестиядерным Intel Core i7 980X потребляет уже чуть выше 380 Вт, а системы с разогнанными процессорами перешагнули планку 400 Вт. Как уже говорилось, с учетом КПД блока питания реальное энергопотребление компьютера будет несколько ниже. Глядя на приведенные цифры, возникает мысль, что даже обычного блока питания мощностью 450 Вт будет вполне достаточно для питания достаточно мощного компьютера с шестиядерным процессором и одной топовой видеокартой. В общем-то, это так, только стоит учесть, что блок питания должен быть качественным и обеспечивать нормальные выходные параметры при нагрузках, близких к максимальной. Что касается разгона, то здесь лучше подстраховаться и использовать блок питания с значительным запасом по мощности, поскольку любое повышение напряжения на CPU или GPU значительно увеличивает энергопотребление этих компонентов.



Просмотров