Измерить радиоволны. Радиоволны: применение и свойства. Влияние атмосферы на распространение радиоволн

В данной статье объясняется что такое радиоволна, рассказывется история возникновения радиоволновой теории, классификации и применение радиоволн различной длины.

Теория

Радиоволны представляют собой электромагнитное излучение, а также микроволны, инфракрасное излучение, рентгеновское излучение и гамма-лучи. Наиболее известное использование радиоволн - для общения. Телевещание, мобильная связь и радиоприемники получают радиоволны и преобразуют их в механические вибрации в динамике для создания звуковых волн, которые можно услышать.

Электромагнитное излучение передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны, увеличения энергии и частоты. Основными являются радиоволны, микроволны, инфракрасные (ИК), видимые, ультрафиолетовые (УФ), рентгеновские и гамма-лучи.

По данным НАСА, радиоволны имеют самые длинные волны в электромагнитном спектре, в диапазоне от примерно 1 миллиметра до более чем 100 километров. Они также имеют самые низкие частоты: от 3 кГц до 300 ГГц.

Открытие

Шотландский физик Джеймс Клерк Максвелл, который разработал единую теорию электромагнетизма в 1870-х годах, предсказал существование радиоволн. Несколько лет спустя немецкий ученый Генрих Герц применил теории Максвелла для создания и получения радиоволн. Единица частоты волны электромагнитного излучения - один цикл в секунду - называется герцем в его честь.

Герц использовал разрядник, прикрепленный к индукционной катушке, и отдельный разрядник на приемной антенне. Когда волны, создаваемые разрядником передатчика катушки, были пойманы приемной антенной, электрические разряды начинали перескакивать через зазор между разрядниками. Герц доказал в своих экспериментах, что эти сигналы обладают всеми свойствами электромагнитных волн.

Диапазоны радиоволн

Национальное управление электросвязи и информации обычно делит радиочастотный спектр на девять полос.

Согласно Стэнфордской группе ОНЧ, самым мощным природным источником волн ИНЧ/ОНЧ на Земле является молния. Волны, вызванные ударами молнии, могут проскакивать между Землей и ионосферой, поэтому они могут путешествовать по всему миру. Радиоволны также создаются искусственными источниками, включая электрические генераторы, линии электропередач, приборы и радиопередатчики. Радиостанция ИНЧ полезна из-за ее дальнего расстояния и ее способности проникать в воду и землю для связи с подводными лодками, а также внутри шахт и пещер. Однако несущая частота часто ниже частотного диапазона слышимого звука, которым считается 20 - 20 000 Гц. По этой причине радиочастоту ИНЧ нельзя модулировать достаточно быстро, чтобы воспроизводить звук, поэтому он используется только для цифровых данных с очень низкой скоростью.

Радиочастотные диапазоны НЧ и CЧ включают в себя морскую и авиационную радиосвязь, а также коммерческую связь. Большинство радиостанций в этих диапазонах используют амплитудную модуляцию, чтобы перевести полученные данные в слышимый сигнал на радиоволновую частоту. Мощность или амплитуда сигнала изменяются или модулируются со скоростью, соответствующей частотам слышимого сигнала, такого как голос или музыка. Когда сигнал частично заблокирован, громкость звука соответственно уменьшается.

ВЧ, ОВЧ и УВЧ диапазоны включают FM-радио, широкополосный телевизионный сигнал, радиослужбы общественного вещания, мобильные телефоны и GPS. Эти полосы обычно используют частотную модуляцию, чтобы перевести звуковой сигнал или сигнал данных на несущую волну. В этой схеме амплитуда сигнала остается постоянной, а частота изменяется немного выше или ниже со скоростью и величиной, соответствующей звуку или сигналу данных. Это приводит к лучшему качеству сигнала, чем с амплитудной модуляцией, поскольку факторы окружающей среды не влияют на частоту так, как они влияют на амплитуду, и приемник игнорирует изменения амплитуды, пока сигнал остается выше минимального порога.

Коротковолновая радиостанция

По данным Национальной ассоциации коротковолновых радиовещателей (NASB), радиоволны с короткой волной используют частоты в диапазоне ВЧ, от примерно 1,7 МГц до 30 МГц. В этом диапазоне коротковолновый спектр разделен на несколько сегментов, некоторые из которых отведены регулярным радиовещательным станциям, таким как «Голос Америки», Британская вещательная корпорация и «Голос России». По данным NASB, во всем мире есть сотни коротковолновых станций. Около 25 частных коротковолновых станций лицензированы в Соединенных Штатах Федеральной комиссией по связи.

По словам NASB, коротковолновые станции можно услышать на тысячи миль, потому что сигналы отражаются от ионосферы и возвращаются назад, на сотни или тысячи миль от места их происхождения.

FM-стерео

По мере роста популярности двухканальной стереофонической музыки спрос на стерео-радиовещание тоже вырос. Однако одноканальные (монофонические или моно) радиостанции уже широко используются и, вероятно, останутся таковыми в обозримом будущем. Проблема заключалась в том, чтобы создать систему, которая могла бы производить стереомузыку, но все же быть совместимой с существующими моноприёмниками.

Метод, принятый для FM-радиовещания, был довольно изобретательным. Райан Жидд, профессор физики в Университете штата Миссури, объяснил, что вещатель объединяет левый и правый каналы как L + R и L - R и транслирует их на несколько разных частотах, A и B. Моноприемник может блокировать A и слышать оба канала. Однако стереоприемник работает на обеих частотах и комбинирует A и B как A + B и A - B. Небольшая алгебра показывает, что A + B = (L + R) + (L - R) = 2 L и A - B = (L + R) - (L - R) = 2 R , тем самым эффективно разделяя левые и правильные каналы.

Очень высокие частоты

СВЧ и КВЧ представляют собой самые высокие частоты в радиодиапазоне и иногда считаются частью микроволнового диапазона. Молекулы в воздухе, как правило, поглощают эти частоты, что ограничивает их диапазон и применение. Однако их короткие длины волн позволяют передавать сигналы в узких волнах с помощью параболических антенн, поэтому они могут быть эффективны для ближней связи с высокой пропускной способностью между фиксированными местоположениями. СВЧ, который меньше влияет на воздух, чем КВЧ, используется для устройств малого радиуса действия, таких как Wi-Fi, Bluetooth и беспроводной USB. Кроме того, волны СВЧ имеют тенденцию отскакивать от объектов, таких как автомобили, лодки и самолеты, поэтому эта полоса часто используется для радара.

Астрономические источники радиоволн

Космос изобилует радиоисточниками. К ним относятся планеты, звезды, газовые и пылевые облака, галактики, пульсары и даже черные дыры. Эти источники позволяют астрономам узнать о движении и химическом составе этих источников, а также о процессах, вызывающих эти выбросы.

По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, астрономы используют большие радиотелескопы для картирования холодных нейтральных водородных облаков в галактиках. Эти облака представляют особый интерес, поскольку они выстраиваются вдоль спиральных рукавов галактик, таких как Млечный Путь, позволяя ученым отображать структуру облаков.

Специфические радиочастоты, соответствующие резонансным частотам общих атомов и молекул, зарезервированы FCC для исключительного использования радиоастрономами для предотвращения создания помех поскольку радиотелескопы чрезвычайно чувствительны к ним. Список этих частот можно найти на веб-сайте Национальной астрономии и ионосферы.

Согласно NASA, радиоастрономы часто объединяют несколько меньших радиотелескопов в массив, чтобы сделать более четкое или более высокое разрешение радио изображения. Например, радиотелескоп с очень большим массивом (САР) в Нью-Мексико состоит из 27 антенн, расположенных в огромном Y образце до 22 миль (36 км) в поперечнике.
По данным НАСА, радиотелескоп видит небо совсем не так, как кажется в видимом свете. Вместо того, чтобы видеть похожие на точки звезды, такой телескоп захватывает удаленные пульсары, звездообразующие области и остатки сверхновых.

Радиотелескопы также могут обнаруживать квазары - очень маленькие источники радиоволн. Квазар - невероятно яркое галактическое ядро, питаемое сверхмассивной черной дырой. Квазары излучают энергию в широком спектре ЭМ, но название исходит из того, что первые квазары, которые будут идентифицированы, излучают в основном радио энергию. Квазары очень энергичны; некоторые испускают в 1000 раз больше энергии, чем весь Млечный Путь. Однако большинство квазаров блокируются от видимого света пылью в окружающих их галактиках.

Форма и физи­ческие свойства земной поверхно­сти, а также состояние атмосферы сильно влияют на распространение радиоволн. Существенное влияние на распространение радиоволн ока­зывает ионосфе­ра, слои ионизированного газа в верхних частях атмосферы на вы­соте 100-300 км над поверхностью Земли. Ионизация воздуха верхних слоев атмосферы вызывается элек­тромагнитным излучением Солнца и потоком заряженных частиц, излу­чаемых им.

Проводящая электрический ток ионосфера отражает радиоволны с длиной волны >10 м, как обычная металлический пластина. Но способ­ность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени су­ток и времен года.

Устойчивая радиосвязь между удаленными пунктами на земной поверхности вне прямой видимости оказывается возможной благодаря отражению волн от ионосферы и способности радиоволн огибать выпуклую земную поверхность (явление дифракции). Дифракция выражена тем сильнее, чем больше длина волны. Поэтому радиосвязь на больших расстояниях за счет дифракции волнами Земли оказывается возможна лишь при длине волн, значительно превышающей 100 м (средние и длинные волны )

Короткие волны (диапазон длин волн 10 100 м) распространяются на большие расстояния только за счет многократных отражений от ионосферы и поверхности Земли. Именно с помощью корот­ких волн можно осуществить радиосвязь на любых расстояниях между радиостанциями на Земле.

Ультракороткие радиоволны (λ <10 м) проникают сквозь ионосферу и почти не огибают поверхность Земли. Поэтому они используются для радиосвязи между пунктами в пределах прямой видимости, а также для связи с космическими кораб­лями.

Обнаружение и точное определе­ние местонахождения объектов с по­мощью радиоволн называют радио­локацией. Радиолокационная уста­новка – радиолокатор (или ра­дар) – состоит из передающей и приемной частей. В радиолокации используют электрические колебания сверхвысокой частоты.

Радиоволны используются не то­лько для передачи звука, но и для передачи изображения (телевиде­ние ). Принцип передачи изображений на расстояние состоит в следующем. На передающей станции произво­дится преобразование изображения в последовательность электрических сигналов. Этими сигналами моду­лируют затем колебания, вырабаты­ваемые генератором высокой часто­ты. Модулированная электромагнит­ная волна переносит информацию на большие расстояния. В приемнике производится обратное преобразо­вание. Высокочастотные модулиро­ванные колебания детектируются, а полученный сигнал преобразуется в видимое изображение. Для передачи движения используют принцип кино: немного отличающиеся друг от друга изображения движущегося объекта (кадры) передают десятки раз в се­кунду (в нашем телевидении 50 раз). Изображение кадра преобразует­ся с помощью передающей вакуум­ной электронной трубки - иконо­скопа в серию электриче­ских сигналов. Кроме иконоскопа, существуют и другие передающие устройства. Внутри иконоскопа рас­положен мозаичный экран, на кото­рый с помощью оптической системы проецируется изображение объекта. Каждая ячейка мозаики заряжает­ся, причем ее заряд зависит от интен­сивности падающего на ячейку све­та. Этот заряд меняется при попада­нии на ячейку электронного пучка, создаваемого электронной пушкой. Электронный пучок последовательно попадает, на все элементы сначала одной строчки мозаики, затем дру­гой строчки и т. д. (всего 625 строк). От того насколько сильно меняется заряд ячейки, зависит сила тока в резисторе R. Поэтому напряжение на резисторе изменяется пропорционально изменению освещенности вдоль строк кадра. Такой же сигнал получается в телевизионном приемнике после де­тектирования. Это видеосигнал. Он преобразуется в видимое изображе­ние на экране приемной вакуумной электронной трубки – кинескопа. Телевизионные радиосигналы мо­гут быть переданы только в диапазоне ультракоротких (метровых) волн.

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) - это расстояние между соседними гребнями волны.
Амплитуда(а) - максимальное отклонения от среднего значения при колебательном движении.
Период(T) - время одного полного колебательного движения
Частота(v) - количество полных периодов в секунду

Существует формула, позволяющая определять длину волны по частоте:

Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»
Сверхдлинные волны - v = 3-30 кГц (λ = 10-100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны (ДВ) v = 150-450 кГц (λ = 2000-670 м).


Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500-1600 кГц (λ = 600-190 м).


Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3-30 МГц (λ = 100-10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны (УКВ) v = 30 МГц - 300 МГц (λ = 10-1 м).


Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:

Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц - 3 ГГц (λ = 1-0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц - 30 ГГц (λ = 0,1-0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM - FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM - амплитудная модуляция


Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ - первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM - частотная модуляция


Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.

На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины
Интерференция - в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.


Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция - явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:
Надеюсь, информация описанная мной будет полезна и принесет некоторое понимание по данной теме.

Радиоволны – разновидность электромагнитных волн, существование которых предсказал в 1864 г. британский физик, математик и механик Джеймс Клерк Ма́ксвелл, автор теории электромагнитного поля.

Теория Максвелла

Джеймс Клерк Максвелл

Обобщив результаты исследований, проведенных до него в области электрических и магнитных полей, Максвелл предположил, что переменные магнитные поля порождают электрические поля, а переменные электрические поля порождают магнитные и т.д. Вначале одно из этих полей создаётся каким-то внешним источником, а затем, вызывая появление друг друга, они словно отрываются от первоначального источника и существуют независимо от него, распространяясь дальше в пространстве в виде электромагнитных волн.

К сожалению, знаменитому учёному не суждено было экспериментально подтвердить свою блестящую теорию, объединившую описание всех явлений электричества и магнетизма. Это сделал позже другой учёный.

Опыт Герца

Генрих Рудольф Герц

Впервые на практике существование электромагнитных волн доказал в 1887 г. немецкий физик Ге́нрих Ру́дольф Герц, работавший в то время профессором физики технического университета в Карлсруэ. Следует сказать, что Герц взялся за этот эксперимент вовсе не потому, что был согласен с Максвеллом. Как раз наоборот, он предполагал, что Максвелл ошибался, и электромагнитных волн в действительности нет. Это он и хотел доказать.

Согласно теории Максвелла источником электромагнитных волн могут быть колеблющиеся электрические частицы. Для это цели используют простейший колебательный контур, состоящий из конденсатора и катушки индуктивности.

Излучателем электромагнитных волн (если они существуют) в первом опыте Герца должен был служить электрический разряд, возникающий между двумя шарами из латуни, укреплёнными на концах металлических стержней. В опытной установке шары, выполнявшие роль конденсатора, разделялись небольшим зазором, а сами стержни были объединены между собой катушкой индуктивности. В шарах накапливались электрические заряды.

На расстоянии нескольких метров от первого контура располагался второй контур, не соединённый с первым и представлявший собой незамкнутое проволочное кольцо с такими же латунными шариками на концах и с таким же искровым зазором, как и в первом контуре. Это был простейший резонатор – прибор для улавливания электромагнитных волн.

В некоторый момент между шариками первого контура проскакивали искры. И если электромагнитных волн в природе нет, разряда во втором контуре не должно быть. Но во время опыта между шариками второго контура такой разряд появлялся тоже. Это означало, что электромагнитные волны всё-таки существуют. И их энергию можно передавать без проводов.

Опыт Герца по обнаружению электромагнитных волн

Герц провёл серию опытов, которыми подтвердил теорию Максвелла . Он установил, что скорость распространения электромагнитных волн в вакууме равна скорости света. Более того, исследовав распространение этих волн, он доказал, что они ведут себя так же, как волны света и подчиняются законам отражения и преломления.

Но он не представлял, как это можно применить на практике. И свои открытия считал абсолютно бесполезными. «Маэстро Максвелл был прав», - так сказал студентам Герц. «Электромагнитные волны существуют, но мы не можем видеть их глазом». А на вопрос «Что же дальше?» он ответил: «Полагаю, что ничего».

В научной среде открытие Герца было названо началом новой «электрической эры».

Впоследствии из всего спектра электромагнитных волн был выделен диапазон радиоволн , которые стали использовать для передачи радиосигналов.

Диапазон радиоволн

Таблица диапазонов радиоволн

Все электромагнитные волны распространяются в вакууме со скоростью, равной скорости света. Различаются они длиной волны, или частотой. Между ними нет резкой границы. Одна разновидность электромагнитных волн плавно переходит в другую.

В зависимости от длины волны, весь спектр электромагнитных волн условно делится на гамма-излучение, рентгеновское излучение, видимый свет, инфракрасное излучение и радиоволны.

Самую короткую длину волны, всего 2·10 −10 м, имеет гамма-излучение. Все электромагнитные волны, длина которых превышает длину волны инфракрасного света и находится в диапазоне от 1 мм до 100 км, относятся к радиоволнам. Это электромагнитные волны, которые используются в радиотехнике. Их частота колеблется в диапазоне 3 кГц - 300 ГГц.

Согласно международным соглашениям весь спектр радиоволн разбивается на следующие диапазоны: децимиллиметровые, миллиметровые, сантиметровые, дециметровые, метровые, декаметровые, гектометровые, километровые, мириаметровые.

Миллиметровые волны

Волны, имеющие длину от 1 мм до 1 см, называются миллиметровыми . Их частота находится в диапазоне от 30 до 300 ГГц и называется крайне высокой (КВЧ). Такие волны используют в радиолокации, космической связи, радиоастрономии.

Спектр радиоволн, используемых для радиовещания, принято делить на ультракороткие, короткие, средние, длинные и сверхдлинные волны.

Ультракороткие волны

К ультракоротким относят сантиметровые, дециметровые и метровые волны.

Волны длиной от 1 см до 10 см и частотой от 3 до 30 ГГц (сверхвысокие частоты КВЧ) называются сантиметровыми . Этот диапазон используют для передачи данных через радиоэфир в спутниковых каналах связи, беспроводных компьютерных сетях Wi – Fi , в радиолокации и радиосвязи.

Волны с длиной волны в интервале от 10 см до 1 м, частотой 300-3000 МГц называются дециметровыми, а их частота ультравысокой частотой (УВЧ). Они используются в радиосвязи, телевидении, рациях, мобильных телефонах, микроволновых печах.

Волны, длина которых колеблется от 1 м до 10 м, называются метровыми . Чаще всего их используют для радиосвязи, телевидения и радиовещания на коротком расстоянии.

Короткие волны

Короткие волны – это волны в диапазоне от 10 до 100 м. Их называют декаметровыми волнами.

Средние волны

Средние, или гектометровые, волны занимают диапазон от 100 м до 1 км.

Длинные волны

Длинные , или километровые, волны находятся в интервале от 1 км до 10 км.

Короткие, средние, и длинные радиоволны волны применяются в радиовещании и радиосвязи.

Сверхдлинные волны

Все радиоволны, длина которых превышает 10 км, называются сверхдлинными . Их разделяют на мириаметровые (длина волны от 10 км до 100 км), гектокилометровые (в интервале от 100 км до 1000 км), мегаметровые (от 1000 км до 10 000 км) и декамегаметровые (от 10 000 км до 100 000 км).

Сверхдлинные радиоволны используются для связи с подводными лодками.

Децимиллиметровые волны

Отдельно нужно сказать о децимиллиметровых волнах. Такими считаются волны длиной от 0,1 мм до 1 мм. Их называют также субмиллиметровыми . Это вид электромагнитного излучения, спектр частот которого располагается между инфракрасным и сверхвысокочастотным излучением, включающим в себя диапазон дециметровых, сантиметровых и миллиметровых радиоволн. Хотя по международной классификации оно относится к радиоволнам, применяют его в основном в медицине и системах безопасности. В отличие от рентгеновского, оно безопасно для организма человека, поэтому используется в приборах для сканирования органов человеческого тела. В аэропортах с его помощью «просвечивают» багаж пассажиров. В физике его называют терагерцевым излучением из-за высокой частоты, расположенной в диапазоне 10 11 -10 13 Гц.

В данной статье расскажем вам про радиоволны и свойства их распространения.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

– синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ . Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.


схема передатчика и приемника Попова — Маркони

Свойства распространения электромагнитных волн

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение Р=U*I . А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

Почему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную горизонтальную поляризацию .

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию .

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию .

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризации – эллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек . В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation «АМ» . Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation , и у буржуев обозначаются как — «FМ» (по нашему «ЧМ» ).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн , или противофазное вычитание . В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля . Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

Куда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца . Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

– это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона , или мёртвая воронка .

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.



Просмотров